• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    點缺陷石墨烯的電導

    2019-10-14 07:56:52劉南舒周思趙紀軍
    物理化學學報 2019年10期
    關鍵詞:點缺陷大連理工大學電導

    劉南舒,周思,趙紀軍

    大連理工大學三束材料改性教育部重點實驗室,遼寧 大連 116024

    1 lntroduction

    Owing to the fascinating properties, such as ultra-high carrier mobility, superior electrical and thermal conductivities,graphene is among the most promising materials for future electronics1,2. Extensive efforts have been devoted to fabricate large-scale and high quality graphene sheets, via mechanical exfoliation3, chemical vapor deposition (CVD)4,5, epitaxial growth on metal or SiC substrates6, etc. However, defects are inevitable in the fabricated graphene samples7,8, and they can appreciably affect the material properties8-10, such as opening an energy gap, inducing local charging or magnetic moments,degrading the carrier mobility, and altering the interaction strength between graphene and substrates7,11-14. Understanding the defect impacts is crucially important for device applications of graphene.

    Point defects are most commonly observed in synthetic graphene8,9,15,16and their properties have been intensively studied by experiment8,16-19. For instance, zigzag-oriented divacancies and multi-vacancies composed of rotated hexagons are favorably formed by electron irradiation of graphene, and the former exhibits metallic behavior17, while the latter opens a bandgap up to 0.2 eV16. Atomic defects in graphene can lead to sublinear dependence of conductivity on carrier density, distinct from the linear dependency observed for charge impurities20. As the defect concentration increases, an almost insulating behavior was observed for n-type conduction while a metallic behavior was observed for p-type conduction, the conductance showed a plateau above the Dirac point and suppression of ambipolar behavior in graphene21. Lattice defects can also cause significant intervalley scattering, giving rise to constant mobility and insulating temperature dependence of conductivity, both are much lowered than those of graphene with charge impurities22.Moreover, reconstructed vacancies in graphene serve as efficient trapping centers for metal atoms, which can be used for engineering the local electronic and magnetic structure of graphene23.

    On the theoretical aspect, point defects were shown to prominently modify the electronic band structure of graphene24-26. They can induce localized states and sharp resonant states at Fermi energy27, which acts as scattering centers for electrons and remarkably reduces the electrical conductivity of graphene28-33. The conductance decreases as the defect concentration increases due to more resonant states in the transport spectrum34,35. However, such a suppression seems to be weakened at the charge neutrality point, leading to a minimum conductivity of 4e2/πh even for higher defect concentrations36. Single vacancies behave as hole dopants24,while Stone-Waals defect and double vacancies can open band gap up to 0.3 eV in graphene37,38.

    Despite of the aforementioned successes, the role of point defects on the electrical transport properties of graphene is not entirely understood. Some critical issues remain to be solved.For instance, how is the electron conduction in graphene affected by various types and concentrations of point defects? How is the electrical transport property of defective graphene correlated to the band structure? To address these questions, here we systematically explored the electrical transport properties of graphene with various point defects by density functional theory(DFT) calculations combined with the non-equilibrium Green’s function (NEGF) method. We find striking difference in the electrical conductance of graphene with various types of point defects, which can be correlated to the energy splitting at the Dirac point. Our theoretical results provide vital insights into the electrical transport properties of realistic graphene sheets, and would be helpful for experimental synthesis of graphene-based electronics of high performance.

    2 Computational method

    The electron transmission in graphene monolayer with point defects was simulated by DFT within the Keldysh nonequilibrium Green’s function framework implemented in the QuantumWise Atomistix Toolkit (ATK) package39-41, using a cutoff energy of 2040 eV and the generalized gradient approximation parameterized by Perdew, Burke and Ernzerhof(GGA-PBE) for the exchange-correlation functional42. The wave functions were expanded by a numerical basis set of double-ζ plus polarization (DZP). As displayed by Fig. 1, we adopted a two-probe model composed of three parts: the left and right electrodes made of semi-infinite graphene, the scattering region comprising defective graphene monolayer, and the buffer regions as continuation of the graphene electrodes. Charge carriers transport along the zigzag direction of graphene (Γ to X in the first Brillouin zone in Fig. 2a). The scattering region consist of 10 × n (n = 5, 6, 7, 8) graphene unit cells incorporated with point defects, corresponding to lateral dimensions of 2.46 nm and 2.56-3.44 nm along and perpendicular to the transport direction, respectively. The electrode and buffer region include 2 × n (n = 5, 6, 7, 8) graphene unit cells. Periodic boundary condition was adopted perpendicular to the transport direction.A vacuum region of 2 nm was added to the out-of-plane direction to avoid the interactions between the neighboring layers. The Brillouin zone was sampled by a Monkhorst-Pack 50 × 5 × 1 kpoint mesh. With such a k-point sampling, the Dirac cone of graphene lead can be clearly seen in the band structure (Fig. S1,Supporting Information). The defective graphene monolayer(scattering region) was optimized for the ionic and electronic degrees of freedom using the criteria for total energy of 10-4eV and force on each atom of 0.2 eV·nm-1, using an orthorhombic supercell periodic for both two lateral directions, as shown in Fig. 2. The electronic band structure of the scattering region was calculated, using a convergence criterion of 10-6eV for total energy, which achieved convergence according to our test (see Fig. S2, Supporting Information).

    Fig. 1 Two-probe model of graphene monolayer with point defects for simulating the electrical transport properties.The transport direction is along the x axis. Periodic boundary condition is applied to the y axis.

    We tested scattering regions with larger transport lengths up to ~3 nm. The computed transmission spectrum T(E) remains the same for transport length above ~2.4 nm, suggesting that ballistic transport regime is achieved at this length scale.Therefore, the electrical conductance can be calculated from T(E) based on the Landauer-Buttiker formalism under the linear response approximation43:

    where e is electron charge, h is Planck’s constant, f0is the Fermi-Dirac distribution function:

    with the electron temperature T = 300 K (kBis Boltzmann constant and EFis the Fermi energy).

    3 Results and discussion

    As shown by Fig. 2, we consider a total of seven kinds of point defects incorporated in graphene monolayer, including Stone-Waals defect (SW), inverse Stone-Waals defect (inverse-SW),single vacancy (SV), SV undergone a Jahn-Teller distortion(SV5-9), and double vacancies composed of different defect rings (DV585, DV555777 and DV5555-6-7777, see Fig. S3 of Supporting Information). These point defects are most commonly observed in synthetic graphene samples8. The concentration of point defects (c) is defined as the number of point defects in the scattering region divided by the width (w) of the scattering region perpendicular to the transport direction. The considered defect concentration in this work is 0.29-0.78 nm-1,falling in the range of the experimental values (0.10-0.59 nm-1)21.We also examined graphene with even lower defect concentration c = 0.23 nm-1, which gives very similar transmission spectra as that of c = 0.29 nm-1(see Fig. S4,Supporting Information). For all the considered systems, the defective graphene sheets have a planar structure without any noticeable buckling. The energetic stability of defective graphene is characterized by the formation energy ΔH:

    ΔH = (Edefect- N × μC)/n (3)

    where Edefectis the energy of defective graphene consisting of N number of C atoms; μCis the energy of a C atom in perfect graphene; n is the number of point defects in the scattering region. Point defect with larger positive ΔH value is less energetically stable and more difficult to form in synthetic graphene. As revealed by Table 1, the graphene point defects have formation energies of 4.02-7.88 eV. Generally, the formation energies of various defects follow the sequence:Stone-Waals defects < double vacancies < single vacancies.Stone-Waals defect is most stable in our considered point defects, which is consistent with the previous report8. For each type of point defect, the formation energy increases with the increase of defect concentration.

    Fig. 3 shows the transmission spectra at zero bias voltage of defective graphene monolayers. Obviously, the presence of point defects is detrimental to the electron transport in graphene.Compared to double vacancies, Stone-Waals and single vacancy defects have relatively small impact on the transmission spectrum. In particular, at low concentrations (c = 0.29-0.39 nm-1), the transmission coefficients of SW and inverse SV defects are almost identical to that of graphene in the vicinity of Fermi energy (electron energies of -0.5 - 0.3 eV). Beyond this energy range, the transmission spectra of Stone-Waals and single vacancy defects are moderately reduced with respect to perfect graphene. Some dips are present in the transmission spectra,which are attributed to the localized states induced by the defects and would lead to the suppression of transmission channels44.High concentrations of defects (c ≥ 0.58 nm-1) severely destruct the electron transport in graphene, with transmission coefficientsreduced by 3-5 times with regard to perfect graphene. For all these point defects, the transmission spectra reveal distinct asymmetric electron and hole conduction.

    Table 1 Formation energy (ΔH), energy splitting at the Dirac point(Δ) and ratio between average electrical conductance of graphene monolayer with point defect (Ge) and that of pristine graphene(Ge0) (between ±0.5 eV) at various concentrations (c).

    To quantitatively evaluate the electrical transport properties of the defective graphene monolayers, we calculated the ratio between the average electrical conductance (Ge·G-1e0), which is

    Fig. 3 Transmission spectra per unit width (T·w-1) for graphene monolayer with (a) SW, (b) inverse-SW, (c) SV5-9, (d) SV,(e) DV585 and (f) DV555777 defects at various defect concentrations (colored solid lines).The transmission spectrum of perfect graphene is shown by black dashed line. The Fermi energy is shifted to zero.

    Fig. 4 Ratio between average electrical conductance of graphene monolayer with point defect (Ge) and that of pristine graphene (Ge0) (between±0.5 eV) as a function of (a) defect concentration (c) and (b) energy splitting at the Dirac point (Δ) for graphene monolayer with various point defects.The dashed lines are the fit of Ge·G-1 e0 vs c and Ge·G-1 e0 vs Δ with exponential functions.

    where G(E) and G0(E) are the electrical conductance with and without defects, respectively. Ge·G-1e0(between ±0.5 eV) as a function of defect concentration and energy splitting at Dirac point are plotted in Fig. 4. Ge·G-1e0of various point defects follows the sequence: SW > inverse-SW > SV5-9 > SV >DV585 > DV5555-6-7777 > DV555777. At low concentrations,SW, inverse-SW and SV5-9 almost retain the electrical conductance of perfect graphene, SV and DV585 defects induce moderate reduction of 25%-34%, and DV55577 and DV5555-6-7777 show largely suppress by 51%-62% of that of graphene.As the defect concentration increases to above 0.58 nm-1,Ge·G-1e0shows the reduction of average electrical conductance by a factor of 2-3 compared to the values of graphene monolayers with low concentration of point defects.

    To gain further insights into the electrical transport properties of various point defects, we examine the band structures of the scattering region along the transport direction (zigzag direction).As illustrated in Fig. 2, charge carriers transport along the x axis,corresponding to the direction from Γ to X point in the first Brillouin zone. The band structures and local density of states(LDOS) are presented in Fig. 5. The conical point of perfect graphene monolayer with a rectangular supercell along the zigzag direction is identified as the Dirac point (K point in the Brillouin zone as indicated in Fig. 2a). All the point defect systems show some flat bands close to Fermi energy, which are dominated by the C atoms in the defect region (see the partial charge densities in Fig. 5), and result in resonant peaks close to Fermi energy in the local density of states (LDOS). Due to the breaking of intrinsic symmetry of the graphene honeycomb lattice, the band degeneracy at the Dirac point is removed, giving rise to an energy splitting45,46, which is the energy difference between the two bands near Fermi energy at K point.Considering defect concentration of c = 0.39 nm-1as representative, graphene with SW defect induces a defective π state at about 0.5 eV above Fermi energy. It maintains the linear dispersion with the conical point slightly shifted from the Dirac point, giving an energy splitting of 0.05 eV. For inverse-SW,SV5-9 and SV defects, the induced localized states are closer to Fermi energy and narrow gap of 0.06-0.10 eV is opened near the Dirac point. In presence of double vacancies, the band structure of graphene is severely disturbed—the valence band maximum(VBM) and conduction band minimum (CBM) are shifted to the Γ or Z point giving small indirect gap of 0.04-0.10 eV, which may help improve the on/off ratio of graphene-based field effect transistor21. The Dirac point of DV555777 shifts up by about 0.25 eV relative Fermi energy, leading to Δ = 0.33 eV. The density of states of double vacancies shows more localized states around the defective C atoms, which may result in stronger scattering of carriers and thus more suppressed transmission spectrum. Accordingly, the partial charge densities reveal enhanced localization in the defect region for double vacancies,such that the charge carriers are hindered by these states, leading to the reduction of electrical conductivity of the graphene sheet.

    Fig. 5 Band structures (left panels) and density of states (DOS)(right panels) of graphene monolayer with various point defects:(a) SW, (b) inverse-SW, (c) SV5-9, (d) SV, (e) DV585 and (f) DV555777,at defect concentration of 0.39 nm-1.In the left panels, the red circles show the bands from C atoms in the defect region,and the radius of the circles is proportional to the weight. In the right panels,the black solid line shows the total DOS of defective graphene monolayers,the red solid lines show the DOS from C atoms in the defect region, and the light blue dashed line shows the DOS of perfect graphene. The insets display the partial charge densities of the localized states indicated by the cyan dashed arrows, with an isosurface value of 1.5 e·nm-1. The Fermi energy is shifted to zero.

    Interestingly, the electrical conductance at Fermi energy of the defective graphene monolayers is correlated to their energy splitting at the Dirac point in the band structures. As demonstrated by Fig. 4b, Ge·G-1e0decreases exponentially as Δ increases. Compared to Stone-Waals and single vacancy defects(Δ = 0.03-0.09 eV), double vacancies have large Δ (0.18-0.33 eV) and thus induce prominent reduction of electrical conductance. As defect concentration increases, the energy splitting rises 2-3 times of the values of graphene with low concentrations of point defects.

    Fig. 6 Band structure (left panels) and density of states (DOS)(right panels) of graphene monolayer with SW defect at various concentrations: (a) 0.29 nm-1, (b) 0.39 nm-1, (c) 0.58 nm-1 and (d) 0.78 nm-1.In the left panels, the red circles show the bands from atomic orbitals of C atoms in the defect region, and the radius of the circles is proportional to the weight. In the right panels, the black solid line shows the total DOS of defective graphene monolayers,the red solid lines show the DOS from C atoms in the defect region, and the light blue dashed line shows the DOS of perfect graphene. The insets display the partial charge densities of the localized states indicated by the cyan dashed arrows, with an isosurface value of 1.5 e·nm-1. The Fermi energy is shifted to zero.

    Fig. 6 shows the band structures and LDOS of graphene monolayer with various concentrations of SW defect (see Figs.S5-S10 of Supporting Information for the other point defects).The energy splitting (Δ) and the energy of the band bottom to the Fermi energy (Ebottom) as a function of defect concentration is depicted in Fig. S11 (Supporting Information). Δ and Ebottomfollow the opposite sequence of Ge·G-1e0: SW < inverse-SW <SV5-9 < SV < DV585 < DV5555-6-7777 < DV555777. For c ≤0.39 nm-1, Δ and Ebottomare linear dependence to c, which is consistent to literature46. As defect concentration increases,more flat bands are present near Fermi energy, and density of states shows more localized states on C atoms in the defective region, which may enhance the scattering of electrons34,according induce more conduction dips at the Fermi energy in the transmission spectrum. The corresponding partial charge densities exhibit enhanced localization with higher defect concentration. Consequently, charge carriers are hindered by these localized states and electron conduction is severely destructed in graphene with high concentrations of point defects.

    4 Conclusions

    In summary, the electrical transport properties of graphene monolayer carrying various point defects were systematically explored by density functional theory calculations with the nonequilibrium Green’s function method. The point defects induce localized states near Fermi energy and give rise to energy splitting at the Dirac point due to the breaking of intrinsic symmetry of the graphene honeycomb lattice. The electrical conductance shows exponential decay as the energy splitting increases, and it highly depends on the type and concentration of point defects in graphene. Low concentrations of Stone-Waals defect do not noticeably degrade the electron transport in graphene, while double vacancies severely reduce the electrical conductance of graphene by a factor of 2-3. These theoretical results elucidate the impact of various structural defects on the electrical transport properties of graphene monolayer, and reveal the key parameters for modulating the electrical conductance of defective graphene.

    Supporting lnformation:available free of charge via the internet at http://.

    猜你喜歡
    點缺陷大連理工大學電導
    金紅石型TiO2中四種點缺陷態(tài)研究
    Fe-Cr-Ni合金中點缺陷形成及相互作用的第一性原理研究
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    GaN中質子輻照損傷的分子動力學模擬研究
    基于IEC標準的電阻表(阻抗表)和電導表的技術要求研究
    電子制作(2018年14期)2018-08-21 01:38:38
    偽隨機碼掩蔽的擴頻信息隱藏
    基于電導增量法的模型預測控制光伏MPPT算法
    RNA干擾HeLa細胞IKCa1基因對中電導鈣激活鉀通道電流的影響
    多磺酸黏多糖乳膏聯合超聲電導儀治療靜脈炎30例
    中泰化學與大連理工大學簽署戰(zhàn)略合作框架協議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    日本三级黄在线观看| 啦啦啦观看免费观看视频高清| 人人妻人人看人人澡| 亚洲电影在线观看av| www日本黄色视频网| 亚洲最大成人av| 97在线视频观看| 日本一二三区视频观看| 欧美色视频一区免费| 一卡2卡三卡四卡精品乱码亚洲| 一级毛片aaaaaa免费看小| 亚洲av二区三区四区| 欧美日韩精品成人综合77777| 黄色视频,在线免费观看| 禁无遮挡网站| 亚洲三级黄色毛片| 免费在线观看影片大全网站| 色综合站精品国产| 夜夜夜夜夜久久久久| 日韩欧美在线乱码| 国产一区二区三区av在线 | 国产黄a三级三级三级人| 高清毛片免费观看视频网站| 精品久久久久久久久久免费视频| 91久久精品电影网| 淫秽高清视频在线观看| 麻豆精品久久久久久蜜桃| 赤兔流量卡办理| 91久久精品电影网| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 婷婷亚洲欧美| 香蕉av资源在线| 97热精品久久久久久| 校园春色视频在线观看| 亚洲经典国产精华液单| 国产成人91sexporn| 嫩草影院入口| 精品久久久久久久久久免费视频| 悠悠久久av| 欧美精品国产亚洲| 51国产日韩欧美| 天堂av国产一区二区熟女人妻| 成人av一区二区三区在线看| 亚洲性夜色夜夜综合| 中文字幕精品亚洲无线码一区| av专区在线播放| 精品人妻偷拍中文字幕| 欧美一区二区亚洲| 欧美中文日本在线观看视频| 婷婷精品国产亚洲av| 国产高清激情床上av| 国产成人a∨麻豆精品| 日本在线视频免费播放| 国产熟女欧美一区二区| 床上黄色一级片| 简卡轻食公司| 国产伦一二天堂av在线观看| 日本 av在线| 18禁在线无遮挡免费观看视频 | 99在线人妻在线中文字幕| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 久久久久久久久久成人| 国产真实伦视频高清在线观看| 99九九线精品视频在线观看视频| 欧美极品一区二区三区四区| 亚洲av二区三区四区| 一级a爱片免费观看的视频| 一区二区三区四区激情视频 | 亚洲av五月六月丁香网| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看 | 亚洲美女视频黄频| 日本欧美国产在线视频| 少妇的逼水好多| 神马国产精品三级电影在线观看| 一区二区三区四区激情视频 | 小说图片视频综合网站| 久久人人爽人人爽人人片va| 夜夜夜夜夜久久久久| 不卡视频在线观看欧美| 色综合亚洲欧美另类图片| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| 久久热精品热| 观看美女的网站| 老司机福利观看| 亚洲av五月六月丁香网| 国产男人的电影天堂91| 麻豆av噜噜一区二区三区| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 一级毛片电影观看 | 欧美日韩乱码在线| 精品人妻一区二区三区麻豆 | 亚洲高清免费不卡视频| av在线老鸭窝| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 午夜精品国产一区二区电影 | 久久精品人妻少妇| 俄罗斯特黄特色一大片| 日本在线视频免费播放| 22中文网久久字幕| 91在线精品国自产拍蜜月| 九九爱精品视频在线观看| 国产亚洲精品久久久久久毛片| 国产成年人精品一区二区| 成人性生交大片免费视频hd| 人妻制服诱惑在线中文字幕| 在线免费观看的www视频| 久久久国产成人免费| 人人妻人人看人人澡| 美女大奶头视频| 男女视频在线观看网站免费| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 岛国在线免费视频观看| 成人美女网站在线观看视频| 无遮挡黄片免费观看| 日日摸夜夜添夜夜爱| av黄色大香蕉| 久久精品人妻少妇| 久久天躁狠狠躁夜夜2o2o| 成人美女网站在线观看视频| 亚洲乱码一区二区免费版| 亚洲欧美日韩卡通动漫| 国产精品电影一区二区三区| 在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 又黄又爽又免费观看的视频| 天堂√8在线中文| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 亚洲av美国av| 欧美3d第一页| 成年女人看的毛片在线观看| 超碰av人人做人人爽久久| 欧美高清性xxxxhd video| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 亚洲图色成人| 午夜福利在线在线| 亚洲va在线va天堂va国产| av专区在线播放| 深夜a级毛片| 欧美在线一区亚洲| 成人精品一区二区免费| 国产伦精品一区二区三区视频9| 99久国产av精品国产电影| 免费av观看视频| 男人舔女人下体高潮全视频| 国产真实乱freesex| 91狼人影院| 国产精品av视频在线免费观看| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 床上黄色一级片| 91精品国产九色| 高清午夜精品一区二区三区 | 桃色一区二区三区在线观看| 欧美三级亚洲精品| 嫩草影院新地址| 老女人水多毛片| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o| 可以在线观看毛片的网站| 深夜a级毛片| 男人的好看免费观看在线视频| 国产激情偷乱视频一区二区| 一a级毛片在线观看| 国产亚洲av嫩草精品影院| 亚洲国产日韩欧美精品在线观看| 99热网站在线观看| 又爽又黄无遮挡网站| 夜夜看夜夜爽夜夜摸| 日韩强制内射视频| av黄色大香蕉| 亚洲国产精品sss在线观看| 在线观看午夜福利视频| 特级一级黄色大片| 床上黄色一级片| 亚洲av不卡在线观看| 亚洲第一区二区三区不卡| 我要看日韩黄色一级片| 久久久久久久亚洲中文字幕| 一a级毛片在线观看| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av| 色综合站精品国产| 精品人妻一区二区三区麻豆 | 亚洲国产色片| 欧美不卡视频在线免费观看| 国产一区二区三区在线臀色熟女| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 国产黄色小视频在线观看| 国产成人a区在线观看| 成人亚洲精品av一区二区| 国产老妇女一区| 听说在线观看完整版免费高清| 日本三级黄在线观看| 亚洲av中文av极速乱| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 国产高清视频在线播放一区| 久久午夜福利片| 人人妻人人看人人澡| 国产成人91sexporn| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 99九九线精品视频在线观看视频| av专区在线播放| 日本 av在线| 午夜激情福利司机影院| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆 | 亚洲成人久久爱视频| 国产黄片美女视频| 日韩成人av中文字幕在线观看 | 日韩欧美免费精品| 国产在线男女| 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 男女啪啪激烈高潮av片| 1024手机看黄色片| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验 | 精品欧美国产一区二区三| 免费看光身美女| 成年女人永久免费观看视频| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄 | 一级毛片久久久久久久久女| 亚洲中文日韩欧美视频| 亚洲av成人av| 国产在线精品亚洲第一网站| 久久久久久伊人网av| 欧美3d第一页| 国产高潮美女av| 夜夜爽天天搞| 尾随美女入室| 综合色av麻豆| 亚洲丝袜综合中文字幕| 香蕉av资源在线| 中出人妻视频一区二区| 日韩精品青青久久久久久| 97热精品久久久久久| 久久精品国产亚洲av涩爱 | 久久精品夜色国产| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频 | av中文乱码字幕在线| 毛片女人毛片| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 看黄色毛片网站| 免费电影在线观看免费观看| 在线播放国产精品三级| 日本 av在线| 欧美3d第一页| 久久人人精品亚洲av| 老司机影院成人| 亚洲av二区三区四区| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 国产精品一及| 精品久久久久久久久久久久久| 日本色播在线视频| 在线看三级毛片| 色哟哟哟哟哟哟| 丝袜美腿在线中文| 中文资源天堂在线| or卡值多少钱| 午夜免费男女啪啪视频观看 | 久久精品国产亚洲av涩爱 | 最新在线观看一区二区三区| 亚洲av中文av极速乱| 午夜精品在线福利| 午夜福利在线观看免费完整高清在 | 色噜噜av男人的天堂激情| 一级黄片播放器| 国产一级毛片七仙女欲春2| 一个人观看的视频www高清免费观看| 成人永久免费在线观看视频| 成年女人永久免费观看视频| 午夜福利成人在线免费观看| 欧美区成人在线视频| 午夜福利高清视频| 婷婷亚洲欧美| 日本色播在线视频| 久久天躁狠狠躁夜夜2o2o| 久久久a久久爽久久v久久| 两个人的视频大全免费| 亚洲熟妇熟女久久| a级毛色黄片| 婷婷精品国产亚洲av| 免费av毛片视频| 51国产日韩欧美| 欧美激情久久久久久爽电影| 少妇的逼好多水| 国产精品久久电影中文字幕| 一区二区三区高清视频在线| 国产蜜桃级精品一区二区三区| 天天躁日日操中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国内精品美女久久久久久| 偷拍熟女少妇极品色| 精品人妻一区二区三区麻豆 | 久久精品久久久久久噜噜老黄 | 看非洲黑人一级黄片| 国产亚洲av嫩草精品影院| 日韩成人伦理影院| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 日韩国内少妇激情av| 精品乱码久久久久久99久播| 久久精品国产亚洲网站| av福利片在线观看| 久久精品影院6| 成年女人毛片免费观看观看9| 国产av在哪里看| 能在线免费观看的黄片| 日韩人妻高清精品专区| 欧美xxxx性猛交bbbb| 亚洲成人久久性| 久久午夜亚洲精品久久| 身体一侧抽搐| 国产亚洲精品久久久com| 九九在线视频观看精品| 高清毛片免费观看视频网站| 午夜福利在线观看免费完整高清在 | 给我免费播放毛片高清在线观看| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久com| 国产精品久久久久久久电影| 国产亚洲精品久久久com| 你懂的网址亚洲精品在线观看 | 日日摸夜夜添夜夜爱| 人妻制服诱惑在线中文字幕| 日韩av在线大香蕉| 国产高清不卡午夜福利| 久久久久九九精品影院| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 国产国拍精品亚洲av在线观看| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 精华霜和精华液先用哪个| 中出人妻视频一区二区| 日韩精品有码人妻一区| 99热这里只有精品一区| 国产蜜桃级精品一区二区三区| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 国产久久久一区二区三区| 午夜a级毛片| 高清毛片免费看| 午夜a级毛片| 别揉我奶头 嗯啊视频| 男女做爰动态图高潮gif福利片| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 国产 一区 欧美 日韩| 亚洲av.av天堂| 最近最新中文字幕大全电影3| 日本 av在线| 色尼玛亚洲综合影院| 久久久久久伊人网av| 久久人妻av系列| 精品午夜福利在线看| 日韩大尺度精品在线看网址| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 舔av片在线| av在线亚洲专区| 观看美女的网站| 日本熟妇午夜| 一区二区三区免费毛片| 永久网站在线| 日韩 亚洲 欧美在线| 日韩精品青青久久久久久| 国产视频内射| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 国产高清视频在线观看网站| 亚洲人成网站在线观看播放| 少妇裸体淫交视频免费看高清| 久久鲁丝午夜福利片| 99久久无色码亚洲精品果冻| 你懂的网址亚洲精品在线观看 | 一边摸一边抽搐一进一小说| 身体一侧抽搐| 麻豆乱淫一区二区| 久久精品国产自在天天线| 欧美高清性xxxxhd video| 99热网站在线观看| 免费人成在线观看视频色| 久久久精品94久久精品| 特级一级黄色大片| 午夜福利在线观看吧| 熟女电影av网| 一进一出抽搐动态| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 97超视频在线观看视频| 亚洲av中文字字幕乱码综合| 观看美女的网站| 亚洲av五月六月丁香网| 亚洲最大成人手机在线| 国产精品久久久久久亚洲av鲁大| 国产单亲对白刺激| 精品一区二区免费观看| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 人妻制服诱惑在线中文字幕| 插阴视频在线观看视频| 中文字幕av成人在线电影| 桃色一区二区三区在线观看| 热99在线观看视频| 久久久精品大字幕| 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 禁无遮挡网站| 久久久午夜欧美精品| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 亚洲欧美日韩高清在线视频| 亚洲无线在线观看| 黄色一级大片看看| 禁无遮挡网站| 日产精品乱码卡一卡2卡三| 特大巨黑吊av在线直播| 97超视频在线观看视频| 亚洲精华国产精华液的使用体验 | 免费黄网站久久成人精品| 日韩欧美三级三区| 免费av观看视频| 岛国在线免费视频观看| 精品一区二区三区视频在线观看免费| 午夜激情欧美在线| 亚洲精品成人久久久久久| 国内久久婷婷六月综合欲色啪| 亚洲熟妇中文字幕五十中出| 亚洲性久久影院| 国产一区二区在线观看日韩| 久99久视频精品免费| 欧美日本亚洲视频在线播放| 日本三级黄在线观看| 天堂动漫精品| av在线亚洲专区| 欧美成人a在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产美女午夜福利| eeuss影院久久| 国产色爽女视频免费观看| 男女边吃奶边做爰视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲va在线va天堂va国产| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 丰满的人妻完整版| 波多野结衣巨乳人妻| av在线播放精品| 中文亚洲av片在线观看爽| 一进一出抽搐动态| 久久精品久久久久久噜噜老黄 | 国产乱人偷精品视频| 国产av不卡久久| 国产精品99久久久久久久久| 久久久久九九精品影院| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 伦精品一区二区三区| 在线观看午夜福利视频| 国产精品久久久久久亚洲av鲁大| 国产久久久一区二区三区| 变态另类丝袜制服| 成人高潮视频无遮挡免费网站| 午夜福利视频1000在线观看| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 男女边吃奶边做爰视频| 伦理电影大哥的女人| 久久九九热精品免费| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 亚洲国产欧美人成| 看十八女毛片水多多多| 精品人妻熟女av久视频| 午夜a级毛片| 啦啦啦韩国在线观看视频| 亚洲av第一区精品v没综合| 久久精品91蜜桃| 秋霞在线观看毛片| 亚洲美女视频黄频| 赤兔流量卡办理| 毛片一级片免费看久久久久| 国产乱人视频| 高清毛片免费看| 国产一区二区亚洲精品在线观看| 少妇熟女aⅴ在线视频| 一本一本综合久久| av国产免费在线观看| 精品久久久噜噜| 一级毛片久久久久久久久女| 欧美三级亚洲精品| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区久久| 久久精品国产亚洲av涩爱 | 成人欧美大片| 99国产精品一区二区蜜桃av| 国产女主播在线喷水免费视频网站 | 两个人的视频大全免费| 人妻久久中文字幕网| 国产精品一区二区三区四区久久| 日韩,欧美,国产一区二区三区 | videossex国产| 久久精品人妻少妇| 久久精品国产鲁丝片午夜精品| 欧美一区二区国产精品久久精品| 人人妻人人澡人人爽人人夜夜 | 国产高潮美女av| 女的被弄到高潮叫床怎么办| 精品久久久久久久久av| 欧美不卡视频在线免费观看| 欧美xxxx性猛交bbbb| 日韩制服骚丝袜av| 中文字幕av在线有码专区| 一区二区三区免费毛片| 免费看a级黄色片| 最近最新中文字幕大全电影3| 久久综合国产亚洲精品| 国内精品美女久久久久久| 欧美成人免费av一区二区三区| 少妇的逼好多水| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| 亚洲美女视频黄频| 青春草视频在线免费观看| 天美传媒精品一区二区| 色哟哟哟哟哟哟| 一卡2卡三卡四卡精品乱码亚洲| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 少妇人妻精品综合一区二区 | 日韩强制内射视频| 国产熟女欧美一区二区| 男人狂女人下面高潮的视频| 九色成人免费人妻av| 伦理电影大哥的女人| 非洲黑人性xxxx精品又粗又长| 91麻豆精品激情在线观看国产| 欧美人与善性xxx| 1024手机看黄色片| 在线观看一区二区三区| 免费av观看视频| 禁无遮挡网站| 国产一区二区在线观看日韩| 波多野结衣巨乳人妻| 国产成人影院久久av| 91av网一区二区| 可以在线观看毛片的网站| 18禁在线无遮挡免费观看视频 | av黄色大香蕉| 午夜亚洲福利在线播放| 国产爱豆传媒在线观看| 天堂影院成人在线观看| 男女之事视频高清在线观看| 日韩欧美 国产精品| 最近的中文字幕免费完整| 国产午夜精品久久久久久一区二区三区 | 极品教师在线视频| 精品乱码久久久久久99久播| 在线国产一区二区在线| 男人的好看免费观看在线视频| 亚洲成人中文字幕在线播放| 国产在线男女| 日本一二三区视频观看| 少妇丰满av| 国产在线男女| 午夜福利视频1000在线观看| 色噜噜av男人的天堂激情| 日韩在线高清观看一区二区三区| 亚洲av免费高清在线观看| 精品国产三级普通话版| 日日摸夜夜添夜夜添av毛片| 国产欧美日韩一区二区精品| 婷婷六月久久综合丁香| 伦精品一区二区三区| 亚洲成人久久爱视频| 美女黄网站色视频| 大香蕉久久网| 99热这里只有是精品在线观看| 哪里可以看免费的av片| 免费av不卡在线播放| 又爽又黄无遮挡网站|