• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單層,少層和塊狀WS2薄膜中聲子位移隨溫度的變化

    2019-10-14 07:56:50劉新科王佳樂許楚瑜羅江流梁迪斯岑俞諾呂有明李治文
    物理化學(xué)學(xué)報 2019年10期
    關(guān)鍵詞:深圳大學(xué)聲子實驗室

    劉新科,王佳樂,許楚瑜,羅江流,梁迪斯,岑俞諾,呂有明,李治文

    深圳大學(xué)材料科學(xué)與工程學(xué)院,深圳市特種功能材料重點實驗室,深圳大學(xué)南山區(qū)生物聚合物與安全評價重點實驗室,廣東 深圳 518060

    1 Introduction

    Two-dimensional transition metal dichalcogenides (TMDs)have recently gained much interest due to their rich physical and chemical properties, which enable the future applications in nano-electronics1,2, nano-photonics3-5, and valley-electronics6-8.The counterpart graphene, has also been intensively investigated due to its high electron mobility ~200000 cm2·V-1·s-1, since its first mechanical exfoliation by Novoselov et al. in 20049,10.However, due to its absence of bandgap, to achieve high current on/off ratio is difficult for graphene-based devices. Several techniques have been proposed to create the bandgap for graphene.For example, employing quantum mechanical confinement in patterned11or exfoliated graphene nano-ribbons12introduces a bandgap up to 400 meV, and applying perpendicular electric field (voltage exceeding 100 V) in bi-layer graphene creates a bandgap up to 250 meV13. These innovative methods of introducing a bandgap in graphene always come with a price of significant mobility degradation (~200 cm2·V-1·s-1), process complexity, or device reliability under high voltage14-16. For TMDs, such as MoS2, MoSe2, WSe2, and WS2etc, these materials have a bandgap, which is tunable based on the number of layer. Usually, the bandgap of the bulk TMDs is ~1.2-1.3 eV,and one of mono-layer TMDs is ~1.8-2.1 eV, the increase of bandgap with decreasing number of layer for TMDs is due to the carrier quantum confinement at an atomic scale. Being able to achieve atomic thickness and have a bandgap larger than that of silicon, TMDs are also attractive for being used as the channel material for Si CMOS devices beyond sub-22 nm, since TMDs have advantage for suppressing the source-to-drain tunneling current in ultra-short transistors and offering superior immunity to short-channel effects17.

    Among TMD group, MoS2in both mono- and few-layer films has been intensively studied in the research community over the years18-23. MoS2-based field effect transistors (FETs) with excellent electrical characteristics have been demonstrated, such as high current on/off ratio (~108), low subthreshold swing (~70-80 mV·dec-1), mobility up to ~200 cm2·V-1·s-1(in highk/MoS2/high-k structure)24. As a typical TMD, WS2 has been widely used due to its potential excellent performance25. Similar to MoS2, WS2can also be grown through chemical vapor deposition (CVD)26. According to the simulation work by Liu et al.27, WS2 have a lower in-plane electronic mass, compared with MoS2, MoSe2, and MoTe2, which shows the potential for higher carrier mobility or higher output current for WS2-based FETs.However, as compared with MoS2, the experimental studies on WS2 are limited, or more work is required to be done for further harnessing the full potential of WS2-based FETs. In the literature, mono- and multi-layer WS2-based FETs were demonstrated, and achieved on/off current ratio of ~106-108with mobility of ~140-234 cm2·V-1·s-128-30.

    As for the nano-electronic application, it is important to investigate the electron-phonon interaction and vibration properties of WS2. Raman spectroscopy, as an effective and nondestructive approach for phonon vibration study, has been used to evaluate graphene, and TMDs31-33. Raman spectra reveal much useful information of the test sample through Raman peak position and Raman shape change. Temperature dependent phonon shifts of single layer WS2by mechanical exfoliation34and multi-layer WS2by hydrothermal method35, have been investigated by Raman spectroscopy. In this work, we present thickness- and temperature-dependent studies of the phonon vibration mode for mono-layer, few-layer, and bulk WS2films prepared by mechanical exfoliation.

    2 Experimental

    The mono-layer (1L), few-layer (FL), and bulk WS2films were prepared on 300 nm SiO2/Si wafer by mechanical exfoliation from bulk WS2crystal, which was purchased from 2D Semiconductor Inc. 3M scotch-tape was used for transferring the WS2films. Raman and photoluminescence (PL) spectra were collected in a Renishaw inVia confocal system in the backscattering configuration. The wavelength of the laser was 514 nm (2.4 eV) from an argon ion laser, the grating of 2400 grooves·mm-1was used to obtain more details of line shapes of the Raman band. The laser power on the sample was set at around 1.0 μW to avoid laser induced heating. The application of a 100× objective lens with a numerical aperture of 0.9 can provide us a spot size of ~1 μm, and spectral resolution was 1 cm-1. The Si peak at 520 cm-1was used as a reference for wavelength calibration. Atomic force microscopy (AFM)images were obtained under tapping mode using Bruker Dimension Icon.

    3 Rseults and Discussion

    The atomic force microscopy (AFM) images of 1L, FL, and bulk WS2films are shown in Fig. 1a, b, and c. The film thickness was directly measured by AFM in a non-contact mode. As shown in Fig. 1d, e, and f, the step height or thickness of 1L, FL, and bulk WS2films were measured to be 0.98, 10, and 76 nm. Based on the reported mono-layer WS2thickness of ~0.9 nm, the number of layer for 0.98, 10, and 76 nm is determined to be 1L,~11 L, and ~84 L, respectively. In Fig. 2, PL spectra were measured using a 514 nm excitation laser. It is known that the bulk WS2is an indirect bandgap semiconductor with a ~1.3 eV bandgap, whereas 1L WS2has a direct bandgap of ~2.1 eV. For the bulk WS2, the electron states involved in the indirect transition (the valence band maximum at Γ point and the conduction band minimum at T point) originate from linear combination of tungsten d-orbital and sulfur pz-orbital, and their dispersion strongly depends on the number of layers. For the 1L WS2, the electron states involved in the direct transition (the valence band maximum at K point and the conduction band minimum at K point) mainly originate tungsten d-orbital, and their energies are not very sensitive to the number of layers36. In Fig. 2, one sharp PL peak centered at ~638.5 nm is observed for 1L WS2and the measured spectral range nearly vanishes for the FL WS2sample. When the thickness decreases to 1L, the dramatic increase of the PL intensity is a signature of the transformation from indirect to direct bandgap structures. Based on the PL peak for 1L WS2shown in Fig. 2, the bandgap of 1L WS2is estimated from the PL peak to be ~1.94 eV, which is smaller than ~2.1 eV. Direct electronic transitions in 1L WS2originate from exitonic radiative relaxation, and for this reason the PL peak signal always appears at energies slightly lower than~2.1 eV direct bandgap of WS2.

    Fig. 1 The atomic force microscopy (AFM) images of (a) 1L, (b) FL, and (c) bulk WS2 films.The step height or thickness of (d) 1L, (e) FL, and (f) bulk WS2 films.

    Fig. 2 Photoluminescence spectra from FL to 1L. One sharp PL peak centered at ~638.5 nm for 1L WS2, however nearly no peak for the FL sample.

    Raman studies of 1L, FL, and bulk WS2films have been carried out using a 514 nm excitation laser, since Raman spectrum of WS2under a 514 nm excitation laser becomes very rich, revealing many second-order peaks37,38. Raman spectra at 300 K of 1L, FL, and bulk WS2films are shown in Fig. 3a, b,and c. Raman active modes of WS2comprise of A1g, E1g, E12g, and E22gat the center of the Brillouin zone, but E1gis forbidden in the back-scattering configuration and E22g is less studied due to its low frequency out of the most conventional Raman spectral range. The A1gmode is related to the out-of-plane vibration of sulfur atoms, and the E12gmode is associated with the in-plane vibration of tungsten and sulfur atoms. Under a 514 nm excitation laser, the A1g(Γ) mode was observed at 419 cm-1and dominant 2LA(M) mode observed at ~350 cm-1overlapping with E12g(Γ) mode (~355 cm-1), which was acquired by multi-Lorentzian fitting. Fig. 3d, e, and f show the multi-Lorentzian fitting of 2LA(M)-2 E22g(Γ), E12g(M), 2LA(M), and E12g(Γ) modes for 1L, FL, and bulk WS2films, respectively. When the number of layer increases from 1L to bulk, the A1g(Γ) mode shows a blueshift of 1.34 cm-1from 419.14 to 420.48 cm-1, similar to the trend observed for MoS2, as the van der Waals interactions between the layers increase the restoring force in the thicker layers. On the other hand, E12g(Γ) mode shows a red-shift of 0.69 cm-1from 354.59 (1L) to 353.90 cm-1(bulk), which is attributed to the increment of dielectric long-range coulomb interactions among the effective charges. It is worth noting that in WS2, the close proximity of the 2LA(M), and E12g(Γ) modes increases the error in determining the frequency shift. As compared with MoS2, the A1g(Γ) blue-shift of 1.34 cm-1and the E12g(Γ) red-shift of 0.69 cm-1of WS2are much smaller, as the A1gblue-shift and the E12gred-shift of MoS2as increasing 1L to bulk is ~4.2 and 2.2 cm-1, respectively. As shown in Fig. 3, the frequency difference(Δ) between A1g(Γ) and E12g(Γ) modes is varied from 64.55 to 66.58 cm-1, when the number of WS2layer increases from 1L to bulk. The Δ between A1g(Γ) and E12g(Γ) modes for 1L WS2prepared by mechanical exfoliation is reported to be 64 cm-1by Thripuranthaka et al.34. In the literature, Δ between A1g(Γ) and E12g(Γ) modes is also increased from ~62 to 65 cm-1, when the number of WS2 layer increases from 1L to bulk prepared by chemical vapor deposition (CVD) method. Although this observed trend is similar to that of MoS2, there are a larger Δ change between A1g(Γ) and E12g(Γ) modes (from ~19 to ~25 cm-1), when the number of MoS2layer increases from 1L to bulk. It is noted that the Δ (~18 cm-1) between A1g and E12g modes for the 1L MoS2 by mechanical exfoliation is smaller than that of 1L MoS2by CVD method (~19 cm-1). However, based on the reported values in the literature, the case for WS2is opposite,since the Δ (~64 cm-1) between A1g(Γ) and E12g(Γ) modes for the 1L WS2by mechanical exfoliation is larger than that (~62 cm-1)of 1L WS2 by CVD method. Further, it looks that Raman vibration mode for WS2 is less sensitive to the number of layer as compared to MoS2. Δ between A1gand E12gmodes is often used to identify the number of layer in MoS2films. Due to the less sensitivity of Δ between A1g(Γ) and E12g(Γ) modes to the number of layer for WS2, more accurate or robust method is needed for identifying the number of layer in WS2 films, except for the AFM direct measurement method.

    Temperature-dependent Raman measurements of 1L, FL, and bulk WS2films have been carried out at 80-300 K under a 514 nm excitation laser, and the results are show in Fig. 4a, b, and c.In this part, we will focus on the discussion about peak intensity ratio [2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), etc.] and peak position as a function of temperature. In viewing of WS2 as the potential CMOS channel material beyond Si, it is important to study the electron-phone interactions or vibration modes under various temperatures through non-destructive Raman method. The temperature-dependent Raman vibration modes of WS2can have a direct bearing on the carrier transport of WS2-based FETs. As shown in Fig. 5, the 2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), and Rec.[2LA(M), E12g(Γ)]/A1g(Γ) peak intensity ratio are plotted as a function of temperature for (a) 1L, (b) FL, and (c) bulk WS2.Rec. [2LA(M), E12g(Γ)] is the recombination of 2LA(M) and E12g(Γ) modes, or the mode without multi-Lorentzian fitting. The peak intensity of Rec.[2LA(M),, and A1g(Γ) as a function of temperature for 1L, FL, and bulk WS2 films can be referred to Fig. 5. With the temperature decreasing,the Raman intensities of Rec. [2LA(M), E12g(Γ)], 2LA(M), E12g(Γ),and A1g(Γ) are increasing at different rates for 1L, FL, and bulk WS2 films. As shown in Fig. 5, it is noted that the Rec. [2LA(M),E12g(Γ)]/A1g(Γ) intensity ratio is creased to more than 1 at 230,190, and 160 K, respectively, for 1L, FL, and bulk WS2films.The A1g(Γ) vibration mode, related to the out-of-plane vibration of sulfur atoms, is dominated when the temperature is above the“cross-over” point or intensity ratio more than 1; Rec.[2LA(M),E12g(Γ)] mode, related to film disorder and in-plane vibration of tungsten and sulfur atoms, is dominated when the temperature is below “cross-over” point or intensity ratio less than 1. The“cross-over” phenomenon is mainly caused by the fast increasing intensity of 2LA(M) mode as the temperature decreasing. Based on the “cross-over” temperature, it may be possible to determine the layer number of WS2 films, since it shows layer-dependent behavior, although more detailed work is needed.

    Fig. 3 Raman spectra at 300 K of (a) 1L, (b) FL, and (c) bulk WS2 film under a 514 nm excitation laser. Multi-Lorentzian fitting of 2LA(M) - modes for (d) 1L,(e) FL, and (f) bulk WS2 film, respectively.

    Fig. 4 Temperature-dependent Raman measurements of (a) 1L, (b) FL, and (c) bulk WS2 films at 80-300 K under a 514 nm excitation laser.

    Fig. 5 2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), and Rec. [2LA(M), E12g(Γ)]/A1g(Γ) peak intensity ratios as a function of temperature for (a) 1L,(b) FL, and (c) bulk WS2 films.It is noted that the Rec.[2LA(M), E1 2g(Γ)]/A1g(Γ) ratio is creased to more than 1 at 230, 190, and 160 K, respectively, for 1L, FL, and bulk WS2 films.

    When the temperature decreasing from 300 to 80 K, all the Raman modes of 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) + LA(M)for 1L, FL, and bulk WS2 films change linearly as a function of temperature, shown in Fig. 6a, b, c, and d. It is well-known that Raman spectroscopy is a photon-phonon process which is dominant over thermal expansion, as well as the phonon process on the Raman mode linearly shifts with change in temperature.A few data point dispersion for the Raman peak position can be expected and is well-understood due to the slight variation in the laser spot on the sample, or the local Raman stage vibration, or low excitation power on the sample followed by the extra attenuation from the cold-hot cell window during the measurement. The observed data of peak position obtained from Lorentzian fitting for 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) +LA(M) modes versus temperature were fitted using the Grüneisen model: ω(T) = ω0 + XT, where ω0 is the Raman mode peak position at zero Kelvin temperature, and X is the first-order temperature coefficient of the same mode. The slope of fitted lines gives the first-order temperature coefficient of the specific Raman mode, and shown as an inset in Fig. 6. X values of 2LA(M), E12g(Γ), and A1g(Γ) modes for the 1L WS2are larger than those of FL and bulk WS2, shown in Fig. 6a, b, and c. However,X (~-0.010 cm-1·K-1) of A1g(M) + LA(M) mode is almost identical for 1L, FL, and bulk WS2. Table 1 summarizes the extracted first-order temperature coefficient of LA(M), 2LA(M)- 2E22g(Γ), E12g(M), 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) + LA(M),for 1L, FL, and bulk WS2. The X values for the 2LA(M), A1g(Γ),and A1g(M) + LA(M) modes of 1L WS2 in this work were observed to be close or nearly same as the reported one by Thripuranthaka et al.34. The X variation of E12g(Γ) between this work and Ref.34could be due to the error caused by multi-Lorentzian fitting. Also, the reported X for E12g(Γ) and A1g(Γ)modes of 1L WS2grown by CVD method is -0.0125 and-0.0149 cm-1·K-1, respectively, which is larger or one order magnitude higher than the ones reported in this work and Ref.34.In addition, the reported X for and E12gand A1gmodes of 1L MoS2by mechanical exfoliation method, is ~-0.017 and ~-0.013 cm-1·K-1, respectively, which is larger or one order magnitude higher than the ones reported in this work and Ref.39-41. This indicates that the thermal stability of WS2 may be better than that of MoS2, based on the first-order temperature coefficient of the Raman modes. As compared to X (~-0.0162 cm-1·K-1) of G peak for 1L graphene by mechanical exfoliation, X of 1L WS2in this work is also about one order magnitude lower. With the combination of lower in-plan electronic mass and higher thermal stability (or lower temperature coefficient)42, WS2 could serve as a better candidate for Si CMOS channel material beyond sub-22 nm, as compared to other TMDs. By now, temperaturedependent Raman studies have not been carried out for FL and bulk WS2films by mechanical exfoliation in the literature. The presence of substrate 300 nm SiO2/Si in this work may not affect the final results of temperature coefficient a lot. The effect of substrate on temperature coefficient of WS2 grown by CVD has been investigated by Peimyoo et al.39, and only gives about 6%variation. It is interesting to note that we did not observe the dependence of FWHM on the temperature in the examined temperature range in the 1L, FL, and bulk WS2samples. This is in contrast with the A1g FWHM temperature dependent for MoS2. Further, the variation in the Raman peak position as a function of temperature for the 1L, FL, and bulk WS2samples is due to the temperature contribution that consequences from anharmonicity and contribution from the thermal expansion or volume contribution.

    Fig. 6 Effect of temperature variation on the Raman modes of (a) 2LA(M), (b) E12g(Γ), (c) A1g(Γ), and (d) A1g(M) + LA(M) for 1L, FL, and bulk WS2 films.

    Table 1 Extracted temperature coefficient X for 1L, FL, and bulk WS2 films.

    4 Conclusions

    We have systematically investigated the thickness- and temperature-dependent Raman studies of the phonon vibration mode for mono-layer (1L), few-layer (FL), and bulk WS2films prepared by mechanical exfoliation. With the film thickness increasing to bulk, A1g(Γ) and E12g(Γ) modes show blue-shift of 1.34 cm-1and red-shift of 0.69 cm-1, respectively, with respect to 1L WS2. With temperature decreasing, all the Raman peak positions shift to a higher energy. The “cross-over” temperature,when the dominant Raman vibration modes swaps between E12g(Γ) and A1g(Γ), was identified to be 230, 190, and 160 K,respectively, for 1L, FL, and bulk WS2films. As compared to MoS2, WS2shows much smaller frequency change (64.55-66.58 cm-1) between E12g(Γ) and A1g(Γ) as the film thickness varying,and one magnitude lower temperature coefficient of Raman peak position or better thermal stability. Through this systematic study, the results shown here provide a physical guidance for WS2-based device engineering.

    猜你喜歡
    深圳大學(xué)聲子實驗室
    《深圳大學(xué)學(xué)報理工版》2023 年分類總目次
    半無限板類聲子晶體帶隙仿真的PWE/NS-FEM方法
    《深圳大學(xué)學(xué)報理工版》2021 年分類總目次
    納米表面聲子 首次實現(xiàn)三維成像
    聲子晶體覆蓋層吸聲機(jī)理研究
    《深圳大學(xué)學(xué)報理工版》2020年分類總目次
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實驗室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實驗室
    電子競技(2019年19期)2019-01-16 05:36:09
    人人澡人人妻人| 日韩欧美一区二区三区在线观看| 欧美成人免费av一区二区三区| 国产三级黄色录像| 亚洲av五月六月丁香网| 国产成人一区二区三区免费视频网站| 两个人免费观看高清视频| 香蕉久久夜色| 99久久精品国产亚洲精品| 露出奶头的视频| 丝袜在线中文字幕| 少妇粗大呻吟视频| 精品国产超薄肉色丝袜足j| 精品少妇一区二区三区视频日本电影| 97人妻天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 中文字幕精品免费在线观看视频| 看黄色毛片网站| 99国产精品99久久久久| 两个人看的免费小视频| 亚洲在线自拍视频| 真人做人爱边吃奶动态| 国产精品电影一区二区三区| 亚洲一区高清亚洲精品| 亚洲人成伊人成综合网2020| 日本一区二区免费在线视频| 精品熟女少妇八av免费久了| 午夜精品久久久久久毛片777| 一级片免费观看大全| 99国产精品一区二区蜜桃av| 香蕉丝袜av| 国产三级黄色录像| 亚洲av日韩精品久久久久久密| 亚洲中文av在线| 在线天堂中文资源库| 欧美不卡视频在线免费观看 | 精品电影一区二区在线| 精品国产亚洲在线| 亚洲精品在线美女| 国产精品1区2区在线观看.| 777久久人妻少妇嫩草av网站| 欧美日韩瑟瑟在线播放| 一边摸一边抽搐一进一出视频| 久久精品亚洲熟妇少妇任你| 国产精品乱码一区二三区的特点 | 老汉色av国产亚洲站长工具| 亚洲精品粉嫩美女一区| 欧美日本中文国产一区发布| 国产一区二区激情短视频| 亚洲熟妇熟女久久| 啦啦啦 在线观看视频| videosex国产| 91av网站免费观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美激情在线| 久久久久久免费高清国产稀缺| 亚洲欧美激情在线| 一区二区三区激情视频| 亚洲三区欧美一区| 久久久久久免费高清国产稀缺| 精品不卡国产一区二区三区| 国产精品久久视频播放| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 国产精品秋霞免费鲁丝片| av天堂久久9| 91九色精品人成在线观看| 免费一级毛片在线播放高清视频 | 很黄的视频免费| 国产视频一区二区在线看| 免费观看人在逋| 国产三级黄色录像| 久久久国产精品麻豆| 欧美日韩中文字幕国产精品一区二区三区 | 久久人妻av系列| 久久久久久久久免费视频了| 精品久久久久久久人妻蜜臀av | 国产成人欧美| 精品一区二区三区视频在线观看免费| 麻豆久久精品国产亚洲av| 最好的美女福利视频网| 亚洲美女黄片视频| 日韩成人在线观看一区二区三区| 久久精品国产清高在天天线| 啦啦啦 在线观看视频| 日韩欧美免费精品| 中国美女看黄片| 18禁裸乳无遮挡免费网站照片 | 男人舔女人的私密视频| 欧美绝顶高潮抽搐喷水| 久久精品亚洲熟妇少妇任你| 亚洲欧美激情在线| 亚洲精品在线观看二区| 日本欧美视频一区| 天堂√8在线中文| 亚洲一码二码三码区别大吗| 欧美乱妇无乱码| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 又黄又粗又硬又大视频| 18禁观看日本| 欧美在线黄色| 在线天堂中文资源库| 亚洲精华国产精华精| 精品国产一区二区久久| 法律面前人人平等表现在哪些方面| 黑人欧美特级aaaaaa片| 国产伦一二天堂av在线观看| 在线观看免费视频日本深夜| 国产精品影院久久| 一区二区日韩欧美中文字幕| 国产三级黄色录像| 18美女黄网站色大片免费观看| 十分钟在线观看高清视频www| 久久人人爽av亚洲精品天堂| 欧美精品啪啪一区二区三区| 欧美+亚洲+日韩+国产| 久久天堂一区二区三区四区| 淫秽高清视频在线观看| 亚洲色图 男人天堂 中文字幕| 精品久久久久久成人av| 国产熟女xx| 少妇粗大呻吟视频| 日韩欧美一区视频在线观看| 亚洲av电影在线进入| 午夜免费激情av| 亚洲精品国产一区二区精华液| 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| 在线观看免费视频网站a站| 亚洲九九香蕉| 欧美日韩一级在线毛片| 夜夜夜夜夜久久久久| 黄色a级毛片大全视频| 777久久人妻少妇嫩草av网站| 97碰自拍视频| 99国产精品免费福利视频| 一级片免费观看大全| 亚洲av电影不卡..在线观看| 国产成人精品久久二区二区免费| 中文亚洲av片在线观看爽| 国产成人系列免费观看| 欧美激情极品国产一区二区三区| 久久久久久久精品吃奶| www国产在线视频色| 国产精品一区二区免费欧美| 国产精品国产高清国产av| 亚洲 国产 在线| 欧美午夜高清在线| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 一级毛片精品| 日本黄色视频三级网站网址| 99re在线观看精品视频| 叶爱在线成人免费视频播放| 99精品久久久久人妻精品| 黄色丝袜av网址大全| 国产精品乱码一区二三区的特点 | 制服诱惑二区| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 午夜免费成人在线视频| 亚洲成av片中文字幕在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲av电影不卡..在线观看| 欧美 亚洲 国产 日韩一| 午夜福利高清视频| 岛国视频午夜一区免费看| av视频在线观看入口| 国产色视频综合| 国产片内射在线| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 亚洲国产高清在线一区二区三 | 国产亚洲精品av在线| 在线视频色国产色| 一边摸一边抽搐一进一出视频| 国产又色又爽无遮挡免费看| 久久人妻熟女aⅴ| 精品熟女少妇八av免费久了| 亚洲一码二码三码区别大吗| 国产精华一区二区三区| 性少妇av在线| 亚洲精品美女久久久久99蜜臀| 免费观看人在逋| 麻豆国产av国片精品| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 在线观看一区二区三区| АⅤ资源中文在线天堂| 国产成人影院久久av| 美女扒开内裤让男人捅视频| 国产亚洲精品一区二区www| 国产男靠女视频免费网站| 国产精品日韩av在线免费观看 | 欧美乱色亚洲激情| 日本五十路高清| 久久久国产精品麻豆| 如日韩欧美国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美日韩精品网址| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 国产精品亚洲av一区麻豆| 天天一区二区日本电影三级 | 国产成人欧美在线观看| 波多野结衣巨乳人妻| 天天躁夜夜躁狠狠躁躁| 人人妻人人爽人人添夜夜欢视频| 久久精品成人免费网站| 精品久久久久久成人av| 国产精品乱码一区二三区的特点 | 女人被狂操c到高潮| 看黄色毛片网站| 精品电影一区二区在线| 国产成年人精品一区二区| 青草久久国产| 多毛熟女@视频| 国产精品一区二区精品视频观看| 91成人精品电影| 国产av精品麻豆| 美女 人体艺术 gogo| 国产激情欧美一区二区| 女同久久另类99精品国产91| 久久天堂一区二区三区四区| 欧美在线一区亚洲| www国产在线视频色| 亚洲国产欧美网| 黑人巨大精品欧美一区二区蜜桃| 欧美老熟妇乱子伦牲交| 夜夜爽天天搞| 国产精品久久电影中文字幕| 亚洲午夜精品一区,二区,三区| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 国产区一区二久久| 久久久久国产精品人妻aⅴ院| 女人高潮潮喷娇喘18禁视频| 久久中文字幕人妻熟女| 一级作爱视频免费观看| 精品久久久久久久人妻蜜臀av | 亚洲无线在线观看| 国产麻豆69| 91精品国产国语对白视频| 好男人电影高清在线观看| 黄片小视频在线播放| 日韩高清综合在线| 熟女少妇亚洲综合色aaa.| 欧美绝顶高潮抽搐喷水| 久久欧美精品欧美久久欧美| 国产一区二区三区综合在线观看| 一本久久中文字幕| 日本在线视频免费播放| 亚洲一区中文字幕在线| 欧美在线黄色| 美女高潮喷水抽搐中文字幕| 制服丝袜大香蕉在线| 别揉我奶头~嗯~啊~动态视频| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 国产99白浆流出| 人人妻人人爽人人添夜夜欢视频| 午夜精品在线福利| 亚洲 欧美一区二区三区| 亚洲全国av大片| 免费观看人在逋| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 亚洲熟妇中文字幕五十中出| 女警被强在线播放| 欧美乱色亚洲激情| 在线观看免费视频网站a站| 国产av又大| 国产成人精品久久二区二区免费| 国产一区在线观看成人免费| 一级片免费观看大全| 在线播放国产精品三级| 女同久久另类99精品国产91| 日韩 欧美 亚洲 中文字幕| 91av网站免费观看| 首页视频小说图片口味搜索| 9191精品国产免费久久| 欧美在线黄色| 这个男人来自地球电影免费观看| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 亚洲男人天堂网一区| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 天堂影院成人在线观看| 动漫黄色视频在线观看| 亚洲精品美女久久久久99蜜臀| 好男人在线观看高清免费视频 | 欧美乱码精品一区二区三区| 涩涩av久久男人的天堂| 一个人观看的视频www高清免费观看 | 欧美在线黄色| 夜夜爽天天搞| 日韩欧美在线二视频| 一级黄色大片毛片| 女生性感内裤真人,穿戴方法视频| 亚洲av熟女| 精品第一国产精品| ponron亚洲| 欧美激情高清一区二区三区| 午夜福利成人在线免费观看| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| 免费不卡黄色视频| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 好男人在线观看高清免费视频 | 精品高清国产在线一区| 亚洲 国产 在线| 亚洲精品中文字幕一二三四区| 法律面前人人平等表现在哪些方面| 在线观看www视频免费| 精品久久久久久久毛片微露脸| 狂野欧美激情性xxxx| 岛国在线观看网站| 99国产精品免费福利视频| 日本vs欧美在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | av超薄肉色丝袜交足视频| 9色porny在线观看| 91字幕亚洲| 日日干狠狠操夜夜爽| 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| or卡值多少钱| 久久久久国产一级毛片高清牌| 777久久人妻少妇嫩草av网站| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 大型黄色视频在线免费观看| 日韩欧美免费精品| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 久热这里只有精品99| 中国美女看黄片| 中文字幕久久专区| 老熟妇仑乱视频hdxx| 国产精品av久久久久免费| 婷婷丁香在线五月| 午夜激情av网站| 国产私拍福利视频在线观看| 午夜精品久久久久久毛片777| 一本综合久久免费| 他把我摸到了高潮在线观看| 波多野结衣一区麻豆| 中文字幕高清在线视频| 午夜影院日韩av| 欧美成人一区二区免费高清观看 | 亚洲色图av天堂| 久久天堂一区二区三区四区| 欧美色视频一区免费| 久久 成人 亚洲| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清 | 欧美av亚洲av综合av国产av| av超薄肉色丝袜交足视频| 人妻丰满熟妇av一区二区三区| 亚洲成人精品中文字幕电影| 一级,二级,三级黄色视频| 亚洲欧美日韩高清在线视频| 午夜免费成人在线视频| av视频在线观看入口| 欧美最黄视频在线播放免费| 精品久久久久久,| 给我免费播放毛片高清在线观看| 搡老熟女国产l中国老女人| 男人舔女人下体高潮全视频| 久久九九热精品免费| 欧美绝顶高潮抽搐喷水| 国产精品,欧美在线| 真人一进一出gif抽搐免费| 国产亚洲精品一区二区www| 欧美午夜高清在线| 99精品久久久久人妻精品| 亚洲va日本ⅴa欧美va伊人久久| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 国产欧美日韩一区二区三| 非洲黑人性xxxx精品又粗又长| 777久久人妻少妇嫩草av网站| 久久久久久久午夜电影| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 极品教师在线免费播放| 亚洲欧洲精品一区二区精品久久久| 亚洲全国av大片| 国产精品 国内视频| 免费在线观看日本一区| 亚洲国产看品久久| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 欧美老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 精品久久久久久,| 亚洲久久久国产精品| 制服诱惑二区| 在线十欧美十亚洲十日本专区| 人人妻人人爽人人添夜夜欢视频| 首页视频小说图片口味搜索| 不卡一级毛片| 18禁美女被吸乳视频| 久久久久久久久免费视频了| 中文字幕人成人乱码亚洲影| 无人区码免费观看不卡| 9热在线视频观看99| 天堂动漫精品| 成人三级做爰电影| 日韩免费av在线播放| 午夜福利视频1000在线观看 | 黄色毛片三级朝国网站| 国产成人系列免费观看| 91国产中文字幕| 色婷婷久久久亚洲欧美| 久久久久久久午夜电影| 9色porny在线观看| 亚洲片人在线观看| 免费不卡黄色视频| 999久久久精品免费观看国产| 夜夜爽天天搞| 欧美绝顶高潮抽搐喷水| 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 欧美av亚洲av综合av国产av| 国产极品粉嫩免费观看在线| 亚洲国产高清在线一区二区三 | 精品乱码久久久久久99久播| 桃色一区二区三区在线观看| 久久婷婷成人综合色麻豆| 国产精品久久久久久人妻精品电影| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 亚洲欧美精品综合久久99| 久久欧美精品欧美久久欧美| 国产熟女午夜一区二区三区| 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 精品久久久久久久人妻蜜臀av | 久久久国产成人免费| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 中文字幕av电影在线播放| 亚洲激情在线av| 美女扒开内裤让男人捅视频| 婷婷精品国产亚洲av在线| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 窝窝影院91人妻| 一进一出好大好爽视频| 美女扒开内裤让男人捅视频| 精品人妻1区二区| 欧美人与性动交α欧美精品济南到| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放 | 91国产中文字幕| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| 99国产精品一区二区三区| 成人亚洲精品一区在线观看| 精品久久久久久久久久免费视频| 久久精品aⅴ一区二区三区四区| 久久久国产成人精品二区| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| a在线观看视频网站| 免费无遮挡裸体视频| 高清黄色对白视频在线免费看| 人人澡人人妻人| 中文字幕人成人乱码亚洲影| 亚洲成a人片在线一区二区| 国产欧美日韩一区二区三区在线| 久9热在线精品视频| 在线观看www视频免费| 一边摸一边抽搐一进一小说| 国产免费男女视频| 久久久久久大精品| 99精品在免费线老司机午夜| 亚洲熟妇中文字幕五十中出| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人97超碰香蕉20202| 久9热在线精品视频| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| 亚洲人成77777在线视频| 精品久久久久久久人妻蜜臀av | 99精品久久久久人妻精品| 悠悠久久av| 真人一进一出gif抽搐免费| 亚洲精品在线美女| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三 | 国产三级黄色录像| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出| 9色porny在线观看| 午夜福利,免费看| 黄片播放在线免费| 免费在线观看完整版高清| 黄色a级毛片大全视频| 天堂动漫精品| 99精品在免费线老司机午夜| 国产一区二区三区综合在线观看| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区久久 | 国内精品久久久久久久电影| 亚洲专区中文字幕在线| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 91国产中文字幕| 丝袜在线中文字幕| 国产欧美日韩一区二区精品| 少妇粗大呻吟视频| 制服诱惑二区| 色哟哟哟哟哟哟| 一区在线观看完整版| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产超薄肉色丝袜足j| 国产亚洲av嫩草精品影院| 国产成人欧美| av网站免费在线观看视频| 色播在线永久视频| 日韩欧美免费精品| 欧美国产精品va在线观看不卡| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 欧美日韩福利视频一区二区| 午夜精品国产一区二区电影| 国产麻豆69| 男女午夜视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日本亚洲视频在线播放| 亚洲第一欧美日韩一区二区三区| 久久狼人影院| 伦理电影免费视频| 国产精品免费一区二区三区在线| 黄片播放在线免费| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 露出奶头的视频| 无限看片的www在线观看| 最近最新中文字幕大全免费视频| 色婷婷久久久亚洲欧美| 夜夜爽天天搞| 日本黄色视频三级网站网址| 欧美色视频一区免费| 一二三四在线观看免费中文在| 亚洲精品中文字幕一二三四区| 亚洲国产精品合色在线| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 精品免费久久久久久久清纯| 韩国av一区二区三区四区| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 久久青草综合色| 国产一区二区三区综合在线观看| 91大片在线观看| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 欧美激情 高清一区二区三区| 亚洲国产精品久久男人天堂| avwww免费| 午夜福利成人在线免费观看| 久热这里只有精品99| 国内久久婷婷六月综合欲色啪| 亚洲国产看品久久| 色尼玛亚洲综合影院| 午夜免费观看网址| 午夜免费鲁丝| 88av欧美| 国产精品电影一区二区三区| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 国产精品爽爽va在线观看网站 | 校园春色视频在线观看| 1024香蕉在线观看| 高潮久久久久久久久久久不卡| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点 | 老司机福利观看| 国产免费av片在线观看野外av| 午夜免费鲁丝| 叶爱在线成人免费视频播放| 成年版毛片免费区| 亚洲色图 男人天堂 中文字幕| 99国产极品粉嫩在线观看| 成人三级做爰电影| 88av欧美| 搡老熟女国产l中国老女人| 男女下面插进去视频免费观看| 亚洲国产高清在线一区二区三 | 日韩av在线大香蕉| 不卡一级毛片| 十分钟在线观看高清视频www|