• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二維鐵電材料ABP2X6內(nèi)在極高的負(fù)泊松比

    2019-10-14 07:56:50張春梅聶亦涵杜愛軍
    物理化學(xué)學(xué)報(bào) 2019年10期
    關(guān)鍵詞:昆士蘭州布里斯班昆士蘭

    張春梅,聶亦涵,杜愛軍

    昆士蘭科技大學(xué)科學(xué)與工程學(xué)院,化學(xué)物理與機(jī)械工程系,澳大利亞,昆士蘭州,布里斯班 4001

    1 Introduction

    Negative Poisson’s ratio (NPR) materials, known as auxetic materials, behave expansion instead of contraction under tension, which have attracted intensive research interests,because these materials exhibit novel properties such as enhanced toughness and enhanced sound or vibration absorption1. NPR is mainly observed in engineered threedimensional bulk structures2, but only several twodimensional (2D) auxetic materials are proposed, which are monolayer Be5C23, black phosphrous4, BP55, SnSe6, pentagraphene7, silicon dioxide8, borophene9,10, and TiN11. These materials possess re-entrant or hinged geometric structures,which is the main reason of auxetic behaviour. Among them,the largest NPR value reported is -0.17 in monolayer SnSe6,which is quite low for realistic application. Moreover, the technological evolution requires that the electronics to be of a smaller size12,13. Thus, the exploration of auxetic nanomaterial with high NPR is highly demanded. Considering that NPR is mainly structure-oriented, more attentions should be paid into nanomaterials with particular geometry structure for exploring 2D auxetic material.

    The newly emerged van der Waals (vdW) layered materials with particular structure of ABP2X6have stimulated great research interests due to the potential use as ultrathin ferroelectrics (FE) in memory storage and other devices14,15.Generally, A and B can be transition metals or rare earths atoms, and X represents the atoms from VIB group. The ABP2X6 family mainly includes CuInP2S616, CuBiP2Se617,AgBiP2S617,and AgBiP2Se617. They exhibit FE-antiferroelectric polarization modulated by van der Waals force18. Among them, the CuInP2S619was the first reported FE material that can be thinned down to nanoflake. Further investigations reveal that the FE properties in ABP2X6 sustains down to monolayer, such as in monolayers CuInP2Se620,AgBiP2Se621, CuCrP2S622, and CuBiP2Se618. The monolayer ABP2X6structure is composed of pillar-like P-P bonds,which are covered by two X atoms layers. Between two X atoms layers, A and B atoms are embed into nominally octahedral holes formed between the [(PX3)-(PX3)]4-anions.The off-center of the A-B atoms induce spontaneous FE polarization in monolayer ABP2X6, as reported in Ref. 21. Up to now, electrical, magnetic, and optical properties21have been studied, but none have studied the mechanical properties of monolayer ABP2X6. So far, the predicted 2D FE materials,including 1T MX223and SnSe24, all display novel mechanical properties, i.e. intrinsic NPR6,25or ferroelasticity26. Given the special structure of ABP2X6, interesting mechanical property,i.e. NPR might present.

    In this work, we investigate the electrical, mechanical, and electromechanical coupling properties of ABP2X6(A = Ag,Cu; B = Bi, In; X = S, Se) monolayers. They are all semiconductors with wide bandgaps. The conduction band minimum (CBM) is contributed by p orbital of B and X atoms,while for valence band maximum (VBM), it is resulted from the hybridization of p orbital of X atoms and the d orbitals of metal A atoms. More interestingly, when tensile strain is imposed on the ABP2X6monolayer, the buckling height enlarges and ABP2X6demonstrates out-of-plane auxetic behaviour. Moreover, the FE polarization is enhanced when the compressive strain is applied in ABP2X6 monolayers, and an out-of-plane piezoelectric polarization is obtained.

    2 Computational methods

    Structural relaxation and electronic structure calculations were carried out by using first-principles methods, based on the density functional theory (DFT) as implemented in the Vienna Ab Initio Simulation (VASP) package27-29. The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE)30form for the exchange and correlation potential were adopted, together with the projectoraugmented wave (PAW) method. The hybrid functional method, based on the Heyd-Scuseria-Ernzerhof (HSE)exchange-correlation functional31, was adopted for accurate band structure calculation. A dispersion correction of total energy (DFT-D3 method)32was used to incorporate the longrange vdW interaction. To study 2D systems under the periodic boundary condition, a vacuum layer with a thickness more than 1 nm was set to minimize artificial interactions between neighbouring layers. The plane wave energy cut-off was set to 500 eV. The structure was fully relaxed until energy and force were converged to 10-6eV and 0.01 eV·nm-1. The Brillouin zone integration was sampled by a 5 × 5 × 1 k-grid mesh for a honeycomb unit cell and 11 × 7 × 1 k-grid mesh for a rectangular unit-cell. For mechanical property, the structure model was based on rectangular unit-cell, which is periodic in the x-y plane. When the lattice was strained under a specific loading condition, the lattice constants in other directions were fully relaxed. The strain was defined as ? = (a - a0)/a0, while the strain along out-of-plane direction was defined as ?z = (t -t0)/t0, where a0and t0were the lattice constant and buckling height of the nanosheet, respectively, and a, t were the corresponding values at the strained states. The electric polarizations were computed by using the Berry phase method33.

    3 Results and discussions

    Fig. 1 (a) Top and (b-e) side views of monolayer ABP2X6(A = Ag, Cu; B = Bi, In; X = S, Se) in 3 × 3 × 1 supercell lattice structure in honeycomb unit cell.The purple, green, grey, and pink balls represent B, X, A, and P atoms, respectively.The rectangular blue shade displays the unit-cell adopted for the calculation of mechanical property, which contains two ABP2X6 formula units in Fig. 1a.Fig. 1b presents the PX3-PX3 configuration, with the angle being α between P-P bond and X atoms. Color online.

    Fig. 1 presents the top view (Fig. 1a) and side views (Fig.1c-e) structures of single layer of monolayer ABP2X6, which consists of two layers of X atoms, with A, B and P-P atoms sitting between X layers forming an angle of α (Fig. 1b). A+and B3+ions in ABP2X6shift to opposite directions with different displacements to form the anti-ferroelectric distortion mode (Fig. 1c-d). The A+ion off-center along z direction is much greater than that of the B3+ion (Fig. 1c). A spontaneous polarization is generated vertical to the layers, resulting in a FE ordering, denoting as P ↑ (Fig. 1c), which is the most stable state. When B3+ion is predominantly in the upper site, and the A+ion is slightly displaced downward from the octahedral center, the polarization turning over, denoting as P ↓ (Fig. 1d).If the two off-center A-B sites are equally aligned, this would lead to the appearance of the paraelectric state (Fig. 1e). Here taking ABP2X6(A = Ag, Cu; B = Bi, In; X = S, Se) for example, the lattice parameters and out-of-plane FE polarization are 0.658 nm, 4.2 × 10-12C·m-1for CuInP2S6,0.659 nm, 3.09 × 10-12C·m-1for CuBiP2Se6, 0.640 nm, 2.37 ×10-12C·m-1for AgBiP2S6, and 0.669 nm, 1.71 × 10-12C·m-1for AgBiP2Se6 (0.675 nm and 1.20 × 10-12C·m-1)21,respectively.

    Having investigated the structure of ABP2X6(A = Ag, Cu;B = Bi, In; X = S, Se) monolayers, we next study their electric properties. Fig. 2 gives the band structure of monolayer ABP2X6 calculated by PBE (black line) and HSE (red line)methods, respectively. Indirect bandgaps are predicted along high symmetry path in the first Brillouin zone by adopting the honeycomb lattice unit cell (Fig. 2a-d), and PBE gives smaller value for bandgap compared with HSE methods34-38. PBE gives bandgaps of 1.63, 1.29, 2.25, and 1.48 eV for CuInP2S6,CuBiP2Se6, AgBiP2S6, and AgBiP2Se6 (1.47 eV21),respectively, while HSE method estimates larger values, which are 2.73, 2.17, 3.00, and 2.31 eV for CuInP2Se6, CuBiP2Se6,AgBiP2S6, and AgBiP2Se6(2.31 eV21), respectively. Thus,monolayers ABP2X6are semiconductors, which might be ideal photocatalyst21. Also,we found that the main contributions of the CBM are p orbitals of X and B atoms, while the VBM is due to the hybridization of p orbital of X atoms and d orbital of A atoms (Fig. 2e). Considering that there are three short and three long A/B-X bonds due to the A-B off-center displacement, together with the d-p orbital hybridization, it is expected that the main reason for the distorted FE structure in ABP2X6 monolayers is the Jahn-Teller effect39. Given the particular structure of monolayers ABP2X6 (A = Ag, Cu; B =Bi, In; X = S, Se), it can be assumed that they might exhibit novel mechanical properties. To probe the mechanical properties of monolayer ABP2X6, we apply uniaxial strain in x and y (Fig. 3) directions, respectively. And we found that there is a phase transition between FE and paraelectric under uniaxial strain of approximately 10% along x or 13% along y for monolayer ABP2X6.Thus, we constraint our uniaxial strain within -5% to +5% in x (εx) and y (εy) (Fig. 3) directions,respectively to investigate its mechanical property. The inplane changes x with y or y with x are identical for monolayer ABP2X6, and the lattice parameter along x decreases with the increasing of strain along y, and vice versa. The values of positive Poisson’s ratio along x (νx) and along y (νy) are almost the same, indicating its in-plane isotropy mechanical behaviour (black lines in Fig. 3). For the out-of-plane direction, under compressive strain, the buckling height decreases with the increasing strain (red lines in Fig. 3),however, when it comes to tensile strain, it presents NPR for both directions (blue lines marked by cyan ellipses in Fig. 3).Remarkably, the out-of-plane NPR values for ABP2X6monolayers in both x- and y-directions are quite high compared with black phosphorous (-0.027)4, borophene (-0.04)9, and SnSe (-0.17)6. Comparing the NPR values along y direction(AgBiP2S6(-0.805) < AgBiP2Se6(-0.778) < CuBiP2Se6(-0.670) < CuInP2S6 (-0.060)), we can draw an interesting conclusion that the heavier A, B atoms are and the lighter X atoms are, the more obvious NPR effect can be acquired.This is in consistent with a general belief that the values of the Poisson’s ratio (ν) for covalent materials are smaller than the metallic materials. In this case, monolayer AgBiP2S6has the largest absolute Poisson’s value, indicating an increase of metal-metal bonding when the d-orbital metal goes from group IIB (In) to group VB (Bi) and from Cu to Ag.

    Fig. 2 Calculated band structure of monolayer ABP2X6 in a honeycomb lattice unit-cell with PBE (black line) and HSE methods (red line).(a-d) Band structures of CuInP2S6, CuBiP2Se6, AgBiP2S6, and AgBiP2Se6, respectively. (e-h) Orbital resolved band structure of CuInP2S6, CuBiP2Se6,AgBiP2S6, and AgBiP2Se6 monolayer. The CBM is contributed by s/p orbital of In/Bi atom (green/yellow) and Se atom (red), and VBM is contributed by the hybridization of p orbital of Se (red) and d orbital of Ag/Cu atom (blue). The Fermi level is set at the energy zero point. Color online.

    Fig. 3 Poisson’s ratios for CuInP2S6 (a-b), CuBiP2Se6 (c-d), AgBiP2S6 (e-f), and AgBiP2Se6 (g-h) as a function of strain applied along the x and y axes (-5% - 5%).The axes x, y, and z correspond to the in-plane lateral and thickness directions, respectively. The black lines represent the in-plane Poisson’s ratio. The red lines represent out-of plane Poisson’s ratio under compressive strain, and the blue lines marked by cyan ellipses represent NPR along out-of plane direction under tensile strain. Color online.

    Then we move to investigate the origin of the NPR from the mechanical aspect. Taking monolayer AgBiP2Se6as an example, when tensile (+5%) or compressive (-5%) strain is applied along y direction, the lattice parameter along x decreases (a = 1.129 nm) or increases significantly (a = 1.188 nm) compared with that of strain-free lattice parameter (a0=1.158 nm). Both tensile and compressive strain effectively affect the pucker of single-layer AgBiP2Se6sheets, which enlarge the angle α (Fig. 1b) between pillar like P-P bonds and top layer Se atom, from 105.29° to 106.92°/105.71°. This corresponds to the increase of the buckling height, from strainfree buckling height t0= 0.359 nm to t = 0.374 nm/0.373 nm under +5% or -5% strain. Thus, when external operations are exerted to monolayer AgBiP2Se6, tensile strain or compressive strain, they will significantly increase the buckling height,which refers to positive Poisson’s ratio for compressive strain,while for tensile strain it leads to out-of-plane NPR.

    Fig. 4 Linear changes in out-of plane polarizations of the CuInP2S6,CuBiP2Se6, AgBiP2S6, and AgBiP2Se6 monolayer under uniaxial strain(y) between -3% and 3%, giving its e13 values (unit: 10-12 C·m-1).The inset shows top view of the rectangular unit cell structure of ABP2X6 monolayer.

    Considering that external strain would generate significant structural changes, the off-center displacement between A and B atoms should be affected, which would alter the ferroelectric polarization subsequently. Thus piezoelectric effect is expected to occur, which couples the electrical polarization(Pi) and strain (εjk) tensor described by third-rank tensors eijk =?Pi/?εjk, where i, j, and k correspond to the x, y, and z directions40.Then we study the changes of polarization under strain base on DFT calculations. Taking monolayer AgBiP2Se6as an example, uniaxial strain is applied along the y direction up to 3% and the polarization is estimated by using the Berry-phase method33. Fig. 4 presents out-of-plane polarization changes with the uniaxial strain along y direction. The value of e13 for CuInP2S6, CuBiP2Se6, AgBiP2S6, AgBiP2Se6monolayer are calculated to be -3.95 × 10-12, -5.68 × 10-12, -3.94 × 10-12,-2.71 × 10-12C·m-1, which are comparable to the only experimentally confirmed 2D out-of-plane piezoelectric Janus system (piezoelectric coefficient -3.8 × 10-12C·m-1)41,42. The out-of-plane piezoelectricity and FE in monolayer ABP2X6 can be used for circuit designs in device application.

    4 Conclusions

    In conclusion, we have studied the electric, mechanical, and electromechanical properties of ABP2X6 monolayers based on first-principles theory. They are wide bandgap semiconductors. In addition, ABP2X6monolayers harbour structure induced auxetic behaviour within FE phase. The auxetic effect in the puckered structure exists in both x and y directions, indicating the atoms alignment is sensitive to external strain. The uniaxial strain further affects the A-B offcenter displacement, and ABP2X6 monolayers also exhibit outof-plane piezoelectric polarizations. These findings expand the 2D out-of-plane piezoelectrics and NPR families. The superior electronic properties, along with the NPR, make monolayer ABP2X6promising materials for the design of nanoelectromechanical devices.

    Acknowledgement: D.A. acknowledges the computer resources provided by high-performance computer time from computing facility at the Queensland University of Technology, NCI National Facility, and The Pawsey Supercomputing Centre through the National Computational Merit Allocation Scheme supported by the Australian Government and the Government of Western Australia.

    猜你喜歡
    昆士蘭州布里斯班昆士蘭
    感受2032年奧運(yùn)主辦城市
    看世界(2021年18期)2021-10-02 08:50:18
    9月份澳大利亞布里斯班港煤炭出口量同比下降38.72%
    澳大利亞昆士蘭州警察局的圣誕節(jié)
    襪子手偶
    PersonalSpaceandtheImpactofEyeContact
    看誰快
    澳大利亞學(xué)前兒童水教育述評——以昆士蘭州“學(xué)習(xí)生命之水”教育項(xiàng)目為例
    布里斯班加速G20峰會部署打造完美商務(wù)旅游目的地
    旅游世界(2014年5期)2014-07-18 03:33:36
    澳大利亞布里斯班:與重慶企業(yè)全面合作
    重慶與世界(2014年1期)2014-07-01 08:28:26
    “戲水”
    人妻夜夜爽99麻豆av| 婷婷色综合大香蕉| 我的老师免费观看完整版| www.色视频.com| 欧美日韩精品成人综合77777| 久久久精品欧美日韩精品| 男女国产视频网站| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜日本视频在线| 又粗又硬又长又爽又黄的视频| 欧美精品国产亚洲| 久久久久九九精品影院| 色视频www国产| 国产成人精品一,二区| 欧美97在线视频| 女的被弄到高潮叫床怎么办| 91狼人影院| 日韩av在线免费看完整版不卡| 大码成人一级视频| 老司机影院成人| 99热6这里只有精品| 国产色爽女视频免费观看| 中文字幕久久专区| 国产成人午夜福利电影在线观看| 国产又色又爽无遮挡免| 久久久久久久久久久免费av| 欧美精品人与动牲交sv欧美| 22中文网久久字幕| 日韩人妻高清精品专区| 亚洲欧美精品自产自拍| 人人妻人人看人人澡| 老女人水多毛片| 老女人水多毛片| 国产欧美日韩一区二区三区在线 | 啦啦啦啦在线视频资源| 国产精品伦人一区二区| 内地一区二区视频在线| 在线观看人妻少妇| 久热这里只有精品99| 久久久久久久久久久免费av| 亚洲av二区三区四区| 人妻夜夜爽99麻豆av| 亚洲精品视频女| 亚洲欧洲国产日韩| 久久久国产一区二区| 成人国产麻豆网| 久久热精品热| 日日啪夜夜撸| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久| 免费高清在线观看视频在线观看| 黄片无遮挡物在线观看| 亚洲欧洲国产日韩| 五月玫瑰六月丁香| 国产高清国产精品国产三级 | 一级毛片我不卡| 99热这里只有是精品在线观看| 97在线人人人人妻| 午夜视频国产福利| 国产午夜福利久久久久久| 蜜臀久久99精品久久宅男| 日本wwww免费看| 看非洲黑人一级黄片| 国产爱豆传媒在线观看| 亚洲成色77777| 免费av观看视频| 国产伦理片在线播放av一区| 国产免费福利视频在线观看| 国产高清三级在线| 热99国产精品久久久久久7| 蜜桃亚洲精品一区二区三区| 中文精品一卡2卡3卡4更新| 国产伦在线观看视频一区| 婷婷色综合www| 日本与韩国留学比较| 免费黄频网站在线观看国产| 免费看不卡的av| 成年版毛片免费区| 国产伦在线观看视频一区| 国语对白做爰xxxⅹ性视频网站| 久久精品人妻少妇| 亚洲精品乱码久久久v下载方式| 九色成人免费人妻av| 黄色一级大片看看| 人妻少妇偷人精品九色| 免费播放大片免费观看视频在线观看| 精品视频人人做人人爽| 国精品久久久久久国模美| 交换朋友夫妻互换小说| 18禁动态无遮挡网站| 日本猛色少妇xxxxx猛交久久| 五月开心婷婷网| 少妇人妻精品综合一区二区| 日韩制服骚丝袜av| 欧美高清成人免费视频www| 亚洲婷婷狠狠爱综合网| 神马国产精品三级电影在线观看| 精品人妻一区二区三区麻豆| 青春草亚洲视频在线观看| 最近中文字幕2019免费版| 久久99热6这里只有精品| 亚洲精品乱久久久久久| 久久鲁丝午夜福利片| 观看免费一级毛片| 免费大片黄手机在线观看| a级一级毛片免费在线观看| 久久精品国产鲁丝片午夜精品| 久久99热6这里只有精品| 久久久久精品性色| 成人亚洲精品av一区二区| av国产精品久久久久影院| 黄片无遮挡物在线观看| 小蜜桃在线观看免费完整版高清| 婷婷色综合www| 亚洲国产av新网站| 久久久久国产网址| 麻豆精品久久久久久蜜桃| 又粗又硬又长又爽又黄的视频| 三级男女做爰猛烈吃奶摸视频| 欧美丝袜亚洲另类| 日韩一区二区三区影片| 在线观看一区二区三区激情| 日日啪夜夜爽| 中文资源天堂在线| 国产免费一级a男人的天堂| 午夜福利在线观看免费完整高清在| 色综合色国产| 欧美+日韩+精品| 欧美高清成人免费视频www| 精品视频人人做人人爽| 久久久久国产精品人妻一区二区| 少妇的逼好多水| 国产毛片a区久久久久| 在线 av 中文字幕| 在线观看三级黄色| 一级毛片黄色毛片免费观看视频| 欧美成人午夜免费资源| av国产精品久久久久影院| 国产精品福利在线免费观看| 成人午夜精彩视频在线观看| 2021少妇久久久久久久久久久| 日日撸夜夜添| 99视频精品全部免费 在线| 久久久久久久大尺度免费视频| 一级毛片久久久久久久久女| av在线观看视频网站免费| 成人午夜精彩视频在线观看| 简卡轻食公司| 色哟哟·www| 成人毛片a级毛片在线播放| 亚洲在线观看片| 国产在视频线精品| 99热网站在线观看| av天堂中文字幕网| 久久精品国产a三级三级三级| 国产成人免费无遮挡视频| 亚洲精品成人久久久久久| 免费看光身美女| 91精品国产九色| 啦啦啦中文免费视频观看日本| 中文欧美无线码| 日本熟妇午夜| 中文字幕制服av| 国产成人免费无遮挡视频| 在现免费观看毛片| 国产亚洲精品久久久com| 18禁裸乳无遮挡免费网站照片| 最后的刺客免费高清国语| 最后的刺客免费高清国语| 国产中年淑女户外野战色| 日本av手机在线免费观看| 在线观看一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产大屁股一区二区在线视频| 日韩免费高清中文字幕av| av又黄又爽大尺度在线免费看| 亚洲av欧美aⅴ国产| 亚洲精华国产精华液的使用体验| 亚洲精品第二区| 18禁在线播放成人免费| 3wmmmm亚洲av在线观看| 国产精品国产三级国产av玫瑰| 久久精品综合一区二区三区| 男男h啪啪无遮挡| 免费看日本二区| 久久久精品免费免费高清| 国产成人午夜福利电影在线观看| av在线蜜桃| 秋霞伦理黄片| 一级av片app| 黄色怎么调成土黄色| 亚洲av成人精品一二三区| 你懂的网址亚洲精品在线观看| 成人欧美大片| 欧美丝袜亚洲另类| 91久久精品国产一区二区成人| 美女国产视频在线观看| 两个人的视频大全免费| kizo精华| 亚洲不卡免费看| 亚洲最大成人手机在线| 国产精品爽爽va在线观看网站| 亚洲天堂av无毛| 一个人看的www免费观看视频| 老女人水多毛片| 在线免费观看不下载黄p国产| 在线观看美女被高潮喷水网站| 国产精品av视频在线免费观看| 国产av码专区亚洲av| 午夜视频国产福利| 中文字幕制服av| 久久久色成人| 国产一区二区亚洲精品在线观看| 国产 一区精品| 国产老妇女一区| 免费av不卡在线播放| 美女高潮的动态| 最后的刺客免费高清国语| 夫妻午夜视频| 欧美日韩精品成人综合77777| 免费观看av网站的网址| 男女啪啪激烈高潮av片| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 少妇的逼好多水| 黄色怎么调成土黄色| 精品久久久精品久久久| 午夜福利视频精品| 国产高清国产精品国产三级 | 老司机影院毛片| 国产精品人妻久久久久久| av黄色大香蕉| 日韩一区二区三区影片| 性色avwww在线观看| 成人漫画全彩无遮挡| 成人国产av品久久久| 久久精品国产自在天天线| 国产精品久久久久久精品电影| 国产亚洲91精品色在线| 精品一区在线观看国产| 国产黄片视频在线免费观看| 春色校园在线视频观看| 午夜福利视频精品| 久久综合国产亚洲精品| 日韩大片免费观看网站| 久久国产乱子免费精品| 亚洲av欧美aⅴ国产| 亚洲成色77777| av在线亚洲专区| 日韩电影二区| 日日啪夜夜爽| 免费看日本二区| 黄色视频在线播放观看不卡| 91久久精品国产一区二区成人| 亚洲精品国产成人久久av| 99久久中文字幕三级久久日本| 国产精品偷伦视频观看了| 日本-黄色视频高清免费观看| 亚洲国产日韩一区二区| 少妇的逼水好多| 亚洲天堂国产精品一区在线| 免费看日本二区| 亚洲欧美一区二区三区国产| 男男h啪啪无遮挡| 免费大片18禁| 精品久久国产蜜桃| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 亚洲激情五月婷婷啪啪| 三级男女做爰猛烈吃奶摸视频| 国产精品99久久久久久久久| 日韩欧美一区视频在线观看 | 一级毛片黄色毛片免费观看视频| 日韩国内少妇激情av| 波多野结衣巨乳人妻| 国产高清三级在线| 直男gayav资源| 欧美成人精品欧美一级黄| 亚洲欧美日韩另类电影网站 | 国产综合精华液| 日本欧美国产在线视频| 极品教师在线视频| 国产日韩欧美在线精品| 日本熟妇午夜| 免费播放大片免费观看视频在线观看| 久久99蜜桃精品久久| 亚洲精品乱码久久久久久按摩| 亚洲欧美精品自产自拍| 精品国产露脸久久av麻豆| 一个人看的www免费观看视频| 亚洲国产日韩一区二区| 高清视频免费观看一区二区| 赤兔流量卡办理| 可以在线观看毛片的网站| 又黄又爽又刺激的免费视频.| av天堂中文字幕网| 亚洲精品久久久久久婷婷小说| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 小蜜桃在线观看免费完整版高清| 九草在线视频观看| 午夜福利在线在线| 午夜激情久久久久久久| 亚洲高清免费不卡视频| 免费在线观看成人毛片| 免费在线观看成人毛片| 建设人人有责人人尽责人人享有的 | 午夜福利视频1000在线观看| 一级毛片我不卡| 精品久久久精品久久久| 丰满少妇做爰视频| 性插视频无遮挡在线免费观看| 久久99热这里只频精品6学生| 色视频在线一区二区三区| 午夜亚洲福利在线播放| 午夜亚洲福利在线播放| 免费观看性生交大片5| 亚洲色图综合在线观看| 国产av国产精品国产| 一二三四中文在线观看免费高清| 久久97久久精品| 女人十人毛片免费观看3o分钟| 久久精品久久精品一区二区三区| 黄色怎么调成土黄色| 啦啦啦中文免费视频观看日本| 91在线精品国自产拍蜜月| av国产精品久久久久影院| 免费观看无遮挡的男女| 亚洲精品影视一区二区三区av| 天天躁日日操中文字幕| 国模一区二区三区四区视频| 亚洲综合精品二区| 毛片女人毛片| 亚洲精品日本国产第一区| 黄色视频在线播放观看不卡| 久久精品夜色国产| 建设人人有责人人尽责人人享有的 | 欧美高清成人免费视频www| 日韩成人伦理影院| 亚洲国产日韩一区二区| 黄色日韩在线| 国产有黄有色有爽视频| 寂寞人妻少妇视频99o| 亚洲av欧美aⅴ国产| 国产精品三级大全| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 黄色日韩在线| 日韩不卡一区二区三区视频在线| 69人妻影院| 美女视频免费永久观看网站| 精品人妻一区二区三区麻豆| av专区在线播放| 国产探花极品一区二区| 三级经典国产精品| 制服丝袜香蕉在线| 国产极品天堂在线| 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频 | 亚洲久久久久久中文字幕| 国产综合懂色| 可以在线观看毛片的网站| 高清视频免费观看一区二区| 亚洲色图av天堂| 日本-黄色视频高清免费观看| 嫩草影院精品99| 久久久久国产精品人妻一区二区| 少妇高潮的动态图| 国产精品一及| 97精品久久久久久久久久精品| 亚洲欧美日韩东京热| 亚洲天堂av无毛| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 精品久久久久久久久亚洲| 国产高清有码在线观看视频| 国产精品一区www在线观看| 中文字幕制服av| 联通29元200g的流量卡| 日本熟妇午夜| 三级国产精品欧美在线观看| 国产一区二区三区av在线| 一级毛片 在线播放| 久久久精品欧美日韩精品| 18禁在线无遮挡免费观看视频| 熟女人妻精品中文字幕| 久久久久久久国产电影| 一级爰片在线观看| 精品少妇黑人巨大在线播放| 插逼视频在线观看| 亚洲精品,欧美精品| 国产精品一及| 舔av片在线| 最后的刺客免费高清国语| 久久久久性生活片| 亚洲精品一区蜜桃| 在线播放无遮挡| 人体艺术视频欧美日本| 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 男女国产视频网站| 18禁裸乳无遮挡免费网站照片| 国产乱来视频区| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| 亚洲精品乱码久久久久久按摩| 亚洲美女视频黄频| 嫩草影院精品99| 日本一二三区视频观看| 香蕉精品网在线| 精品久久久久久久人妻蜜臀av| 人人妻人人澡人人爽人人夜夜| 亚洲一区二区三区欧美精品 | 少妇人妻精品综合一区二区| 97在线人人人人妻| 伦精品一区二区三区| 国产高潮美女av| 亚洲国产av新网站| 国产综合精华液| 国产人妻一区二区三区在| 亚洲精品一区蜜桃| 搞女人的毛片| 中文字幕av成人在线电影| 亚洲av男天堂| 久久97久久精品| 国产精品伦人一区二区| 91久久精品电影网| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影 | 最新中文字幕久久久久| 久久国内精品自在自线图片| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 一级爰片在线观看| 三级男女做爰猛烈吃奶摸视频| 精华霜和精华液先用哪个| 丰满乱子伦码专区| 在线 av 中文字幕| 老女人水多毛片| 老司机影院毛片| 少妇裸体淫交视频免费看高清| 国产伦精品一区二区三区四那| 我的女老师完整版在线观看| 成年av动漫网址| 国产成人freesex在线| 国产精品国产三级专区第一集| 国产男女内射视频| 大香蕉97超碰在线| 亚洲精品影视一区二区三区av| 免费观看无遮挡的男女| 免费看日本二区| 国产成人一区二区在线| 汤姆久久久久久久影院中文字幕| 精品久久国产蜜桃| 在线 av 中文字幕| 精品久久久噜噜| 亚洲电影在线观看av| 99久久中文字幕三级久久日本| 欧美成人a在线观看| 国产精品蜜桃在线观看| 国产探花极品一区二区| 日韩欧美精品v在线| 青春草亚洲视频在线观看| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 国产乱人视频| 丰满乱子伦码专区| 久久精品夜色国产| 国产精品国产av在线观看| 亚洲一区二区三区欧美精品 | 欧美极品一区二区三区四区| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 亚洲成人一二三区av| 亚洲,欧美,日韩| 国产一区二区三区av在线| 在线观看美女被高潮喷水网站| 美女高潮的动态| 精品少妇黑人巨大在线播放| 精品人妻视频免费看| 免费观看性生交大片5| 欧美极品一区二区三区四区| 伦理电影大哥的女人| 国产精品av视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 你懂的网址亚洲精品在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 六月丁香七月| 极品少妇高潮喷水抽搐| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 简卡轻食公司| 欧美老熟妇乱子伦牲交| 亚洲欧美日韩无卡精品| 午夜免费鲁丝| 高清毛片免费看| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 亚洲国产精品国产精品| 久久国产乱子免费精品| 在线免费十八禁| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 精品视频人人做人人爽| 亚洲怡红院男人天堂| 国产亚洲一区二区精品| 大话2 男鬼变身卡| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 成人特级av手机在线观看| 国产69精品久久久久777片| 国产毛片a区久久久久| 中文精品一卡2卡3卡4更新| 91精品伊人久久大香线蕉| 久久久久久久久久人人人人人人| 午夜老司机福利剧场| 日本熟妇午夜| 久久影院123| 久久精品国产亚洲av涩爱| 亚洲aⅴ乱码一区二区在线播放| 国产高清不卡午夜福利| 18禁裸乳无遮挡免费网站照片| 亚洲av日韩在线播放| 亚洲国产精品成人久久小说| 亚洲精品自拍成人| 亚洲精品中文字幕在线视频 | 少妇熟女欧美另类| 日日啪夜夜撸| 免费看日本二区| 最新中文字幕久久久久| 又爽又黄a免费视频| 国产精品久久久久久精品电影| 观看免费一级毛片| 精品午夜福利在线看| 久久这里有精品视频免费| 久久久精品94久久精品| 国产精品不卡视频一区二区| 欧美一区二区亚洲| 免费看光身美女| 一区二区三区免费毛片| 国内精品美女久久久久久| 少妇 在线观看| 哪个播放器可以免费观看大片| 丝瓜视频免费看黄片| 精品午夜福利在线看| 看黄色毛片网站| 亚洲精品久久午夜乱码| 久久久久久久久久成人| 免费大片18禁| 大香蕉久久网| 国产黄片视频在线免费观看| kizo精华| 青青草视频在线视频观看| 日韩欧美一区视频在线观看 | 亚洲欧美日韩东京热| 91精品伊人久久大香线蕉| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 神马国产精品三级电影在线观看| 国产一级毛片在线| 久久久成人免费电影| 男人添女人高潮全过程视频| 听说在线观看完整版免费高清| 国产毛片a区久久久久| 好男人视频免费观看在线| 亚洲精品aⅴ在线观看| 狂野欧美白嫩少妇大欣赏| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 国产欧美另类精品又又久久亚洲欧美| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 亚洲成人av在线免费| 亚洲av一区综合| 99精国产麻豆久久婷婷| 国产 精品1| 欧美日韩视频精品一区| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 99re6热这里在线精品视频| 国产成人a∨麻豆精品| 寂寞人妻少妇视频99o| 亚洲欧美日韩另类电影网站 | 亚洲第一区二区三区不卡| 99热6这里只有精品| 午夜福利在线观看免费完整高清在| 免费在线观看成人毛片| 午夜福利高清视频| 蜜桃亚洲精品一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美变态另类bdsm刘玥| av在线播放精品| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 久久久午夜欧美精品| 亚洲久久久久久中文字幕| 午夜激情久久久久久久| 欧美+日韩+精品| 一级毛片我不卡| 国产高潮美女av| 久热久热在线精品观看| 日日撸夜夜添| 亚洲av中文字字幕乱码综合| 久久99热这里只频精品6学生| av.在线天堂| 建设人人有责人人尽责人人享有的 | 国产大屁股一区二区在线视频| 欧美另类一区| 成人免费观看视频高清|