• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單層和雙層二硫化鉬化學(xué)氣相沉積生長(zhǎng)的動(dòng)力學(xué)蒙特卡羅模擬研究

    2019-10-14 07:56:48陳帥高峻峰SRINIVASANBharathi張永偉
    物理化學(xué)學(xué)報(bào) 2019年10期
    關(guān)鍵詞:二硫化鉬蒙特卡羅單層

    陳帥,高峻峰,SRINIVASAN Bharathi M.,張永偉

    新加坡科技研究局高性能計(jì)算研究院,新加坡 138632

    1 Introduction

    Two-dimensional (2D) materials, such as graphene,phosphorene, transition metal dichalcogenides (TMDs), have attracted a great deal of attention due to their fascinating lattice structures and unusual physical properties1-4. 2D MoS2, a member in the TMD family, is a semiconductor with a large band gap, high on/off ratio and high mobility5-7, promising for many interesting electronic and energy applications. However, layer number of 2D MoS2can drastically change its physical properties. For example, monolayer MoS2 is a direct band gap semiconductor with a band gap of ~1.9 eV8; while bi-layer MoS2is an indirect band gap semiconductor with a reduced band gap of ~1.6 eV8. In addition, the change in layer number may also tune the charge mobility and photoelectric properties.Nowadays, monolayer and multilayer MoS2have been grown via chemical vapor deposition (CVD) experimentally9, but how to accurately and robustly control the number of layers remains a challenge. Clearly, addressing this issue would enable robust control of their physical properties and thus facilitate their applications9.

    Fabrication techniques, such as mechanical exfoliation9-11and liquid exfoliation12-14, have been frequently used to produce layered MoS2samples. However, these fabrication techniques are limited by their scalability and lack of precise control of layer number. CVD has the advantage of the controllable synthesis of large-area 2D MoS215-20, and is widely recognized as a superior synthesis technique. However, CVD is well-known for its notorious difficulty in extending across reactors in different laboratories. Often, subtle changes in reactor parameters and growth conditions may confound reproducibility. To address this challenge, it is highly desirable to develop a theoretical tool that is able to make insightful predictions on the growth of MoS2and provide useful guidelines to control CVD synthesis.

    We note that significant theoretical efforts have been made to understand the CVD growth of graphene21-34. However, only a few studies have been performed to model TMDs growth due to their more complex compound structures35-40. Recently, Ye et al.37established an analytic thermodynamic criterion for the vertical growth (bilayer) versus in-plane lateral growth(monolayer) of MoS2 with regard to the sizes of both layers, van der Waals (vdW) interaction energies, and edge energies of 2D layers, which provided useful guidelines for the growth of bilayer MoS2. However, the conditions to permit or prohibit the growth of bilayer MoS2remain unclear. Hence, it is highly desirable to develop a phase diagram which is able to delineate the permitted or prohibited growth regime of bilayer MoS2 in terms of growth temperature and adatom flux.

    Usually, the second layer of MoS2starts to nucleate when the first layer is sufficient large. Therefore, there is a need to develop a computational method that is able to reproduce the growth kinetics in large scale. It is well-known that kinetic Mote Carlo(kMC) method has the advantage of much longer time scale and larger length scale. Moreover, kMC simulations can be directly correlated with experimental growth conditions, such as growth temperature and adatom flux, to understand underlying growth mechanisms and predict growth phase diagrams. Hence, kMC simulations have been used to reproduce the experimental growth behaviors and further reveal the growth mechanism of 2D materials under different conditions, for example, the growth of monolayer graphene and monolayer TMDs38-40. However, a detailed kMC model that is able to describe the mono- and bilayer growth of MoS2, currently, is still unavailable.

    In this work, we aim to develop a kMC model to make insightful predictions on the mono- and bi-layer growth of MoS2.First, we proposed and formulated our kMC model of bilayer MoS2growth, and then employed the analytic thermodynamic criterion37to calibrate the kMC model. With the calibrated model, the size and morphology evolutions of bilayer MoS2at different growth temperatures and adatom fluxes were analyzed.Then, the conditions for the permitted or prohibited growth of the bilayer MoS2in terms of growth temperature and adatom flux were revealed, which match well with the experimental observations. Lastly, a phase diagram on the permitted or prohibited growth of the bilayer MoS2was predicted. The present study not only unveils the growth conditions for monoand bi-layer MoS2 growth, but also provides guidelines for controllable growth of MoS2with desired number of layers.

    2 Method

    Fig. 1 Schematic illustration of (a) the bilayer MoS2 model and (b)growth procedures at MoS2 edge.The growth starts from a kink nucleation at the zigzag edge and proceeds with kink propagation in kMC simulation. Mo atoms at layer 1, Mo atoms at layer 2, and all S atoms are represented by the orange, purple and white spheres,respectively. Color online.

    Our kMC simulation model is illustrated in Fig. 1a, in which hexagonal MoS2lattice (lattice constant a = 0.318 nm) with bilayer structures grown on a substrate is used41. An initial triangular domain of the first layer (layer 1) with an edge length of L1and a smaller triangular domain of the second layer (layer 2) with an edge length of L2are introduced at the center of the substrate surface. Starting from the bilayer nucleus, the growth of MoS2is made by the attachments of molybdenum and sulfur adatoms to the edges of both the layer 1 and layer 2. To form the triangular MoS2 with S-terminated zigzag edge15,18, in our simulation, we assume sulfur source is sufficient. Once the molybdenum adatom is attached to the edge, its neighboring sulfur sites are quickly filled. Our model is also applicable to simulate the conditions when molybdenum source is sufficient.In that case, once the sulfur adatom is attached to the edge, its neighboring molybdenum sites are quickly filled.

    Ye et al.37reported that the growth of the MoS2is governed by the distribution of the adatom concentration. The growth of layer 1 is permitted when the adatom concentration on the substrate far from the edge of layer 1 (C0) is larger than that at the edge of layer 1 (C1-). However, if C0 is not larger than C1-,the growth of layer 1 is prohibited due to the lack of feeding stock. Similarly, the growth of layer 2 is permitted when the adatom concentration on layer 1 far from the edge of layer 2(C1+) is larger than that at the edge of layer 2 (C2). Otherwise,the growth of layer 2 is prohibited. In our simulations, we assume that the Schwoebel barrier is absent. Therefore, the adatom concentration at the edge of layer 1 (C1-) is equal to the adatom concentration on layer 1 far from the edge of layer 2(C1+), i.e., C1-= C1+= C1. Meanwhile, the occurrence for attachment to the edge is also determined by the energy barrier,whose rate can be calculated by the transition state theory.Therefore, we proposed the following occurrence rate for the growth of layer 1 when C0 > C1 and layer 2 when C1 > C2.

    The subscript n = 1, 2 refers to the layer 1 and layer 2,respectively. If the adatom concentration Cn-1≤ Cn, the occurrence rate Pn= 0. v is the order of the frequency of atomic vibration (1012s-1). En is the energy barrier for the attachment to the edge of layer n. It has been reported that the attachment of W adatom is mainly determined by the bond energy of W-Se (2.38 eV), which is used to simulate the growth of WSe2on different substrates38. Therefore, in our simulations, we assume E1= E2.kbis the Boltzmann constant, and T is the temperature.

    Based on Ye et al.’s work37, the adatom concentrations on the edge of layer 1 and layer 2 can be expressed as

    Crefis the reference adatom concentration, which is taken to be Cref= F × Ω × τ. F is the rate of adatom supply that accounts for the precursor decomposition and adsorption rate. It is a dimensionless number, often called adatom flux. Ω is the concentration of atomic sites in the 2D layer (1020m-2), and τ is the effective lifetime of adatoms due to desorption.ε1and ε2are the binding energies per unit area of monolayer and bilayer,respectively, accounting for both in-plane bonding within the formed layers and across-layer vdW interactions. γnis the edge energy per unit length, and η is the structural parameter determined by the shape of the domain. L1 and L2 are the edge lengths of layer 1 and layer 2, respectively.

    Based on the adatom concentration at the edge of layer 1, we proposed the adatom concentration on the substrate far from the edge of layer 1 to be

    kFis a parameter which is determined by the system and kF< 1(more detailed discussion on this is given in Sections 3.1 and 3.3). L0is the edge length of the nucleus. Here, the adatom concentration on the substrate far from the edge of layer 1 should be lower than that required to induce new nucleation. If there exists a Schwoebel barrier at the edge of layer 1, the adatom concentration at the edge of layer 1 on substrate (C1-) will be not equal to the adatom concentration on layer 1 far from the edge of layer 2 (C1+), i.e. C1-> C1+or C1-< C1+. In calibrating our kMC model with the analytic thermodynamic criterion, the parameter kFcould be tuned to change the value of C0to maintain the relative dominance between the adatom concentration differences for layer 1 and layer 2, i.e. C0- C1-and C1+- C2.Therefore, the assumption that the Schwoebel barrier is absent will only change the value of kF but will not affect the conclusions.

    It has been reported that the morphology of MoS2 domain in experiments always maintains a triangular shape with compact edges15-17. The underlying mechanism to achieve compact edges has been unveiled as fast kink propagation after kink nucleation28. Based on the above analyses, we proposed the following growth process of a triangular shape with compact edges in our simulations: the growth starts from a kink nucleation at the zigzag edge and proceeds with kink propagation (cf. Fig. 1b). The kink is nucleated by the initial attachments of adatoms to the zigzag edge, while the kink is propagated by the further attachments of adatoms to the active armchair site near the kink. It was previously reported that the difference in the energy barriers for the attachment to the zigzag edge and the armchair edge was ~0.3 eV for graphene by firstprinciples calculations42. In addition, the difference in the energy barriers for the attachment to the zigzag edge and the armchair edge was 0.23 eV for WSe2by first-principles calculations43. Therefore, in our kMC simulations, the difference in the energy barrier between the kink nucleation EK-Nand the kink propagation EK-Pis chosen as EK-N- EK-P= 0.3 eV. Thus, the overall growth rates are determined by the kink nucleation EK-N. The value of EK-Ncan be deduced from the experimental growth rate (more detailed discussion on this is given in Section 3.1). Because the energy barrier for the attachment of adatoms to the armchair edge is 0.2-0.3 eV lower than that to the zigzag edge42,43, the fast growing armchair edges will lose out to the slow growing zigzag edges. The compact triangular MoS2domains observed in experiments also indicate that the zigzag edge is dominated15-17. In addition, many experimental and simulation studies have indicated that S source is always sufficient, resulting in the formation of S-terminated zigzag edge15,18. Therefore, in our simulation, S-terminated zigzag edge is used. This kMC model can also be applied to other edges, such as Mo-terminated zigzag edge or armchair edge. In this scenario, the energy barrier of the kink nucleation should be chosen according to the edge type and edge structure.

    3 Results and discussion

    3.1 KMC model formulation and calibration based on analytic thermodynamic criterion

    In Section 2, we proposed the occurrence rate for the growth of layer 1 and layer 2 in our kMC model. In this section, we made efforts to obtain the values of parameters in Eqs. 1 to 4.Fortunately, Ye et al.’s37reported the values of most parameters in our kMC model when proposing their analytic thermodynamic criterion, such as the adatom flux (F = 1.0 × 10-3),concentration of atomic sites Ω = 1020m-2, effective lifetime of adatoms (τ = 10 s), growth temperature (T = 1000 K), binding energies (Δε = 500 meV·nm-2, ε1 = 20Δε, ε2 = 2ε1 + Δε),structural parameter (η = 2 3 for an equilateral triangle), and edge energy (γ1= γ2= 10 eV·nm-1). Up to now, the unknown parameters in our kMC model are the edge length of nucleus(L0), initial edge lengths of layer 1 and layer 2 (L1and L2), energy barrier of kink nucleation (EK-N) and system parameter (kF).

    Xue et al.44studied the initial nucleation of MoxSy clusters on the Au(111) surface by using first-principles calculations, and reported that the 2D three-atom-thick layer structures could be stabilized only after the number of Mo atoms exceeded 12. Since the edge length of MoS2flake is ~2 nm when the number of Mo atoms is 12, in our kMC simulation, the value of L0is set to be 2 nm. In Ye et al.’s37study, the initial edge length of layer 2 was fixed to be 50 nm and layer 1 was changed from 80 to 130 nm(cf. Fig. 2d). To calibrate our kMC Model based on Ye et al.’s analytic thermodynamic criterion37, the initial edge length of layer 2 in our kMC model was also set to be 50 nm and layer 1 was varied from 80 to 130 nm (cf. Fig. 2a to 2c).

    As above analyses, the growth occurs at layer 1 or layer 2 is governed by the adatom concentration difference (C0-C1versus C1-C2) and energy barrier of kink nucleation (EK-N), which can be described by Eq. 1 in our kMC model. When the above energetic data (binding energy, edge energy, etc.) and structure parameters (edge lengths of nucleus, layer 1 and layer 2) are chosen, the growths of layer 1 and layer 2 are determined by the parameter (kF) and the energy barrier (EK-N). With these in hands,we carried out a series of kMC simulations by tuning the values of kFand EK-Nto compare the size evolutions in our simulations with those from Ye et al.’s calculations37.

    Fig. 2 Size evolution of layer 2 (L2) with different initial sizes of layer 1 (L1 = 80 nm, 90 nm, 100 nm, 110 nm, 120 nm and 130 nm) when(a) kF = 0.145, (b) kF = 0.155, and (c) kF = 0.165. (d) Size evolution of layer 2 with different initial sizes of layer 1 in Ye et al.’s 37 calculations based on analytic thermodynamic criterion. Copyright from Ref. 37.

    The results show that when the value of kFis 0.155 and the value of EK-N is 1.7 eV, the domain evolutions of layer 2 (cf. Fig.2b) with different initial sizes of layer 1 (L1= 80, 90, 100, 110,120, 130 nm) match well with those in Ye et al.’s calculations37(cf. Fig. 2d). This signifies that our kMC model with this set of parameters is capable to reproduce the growth of bilayer MoS2.When the initial edge length of layer 1 is 80 to 100 nm, the growth of layer 2 is permitted and its domain continuously increases from 50 to 80 nm. When the initial edge length of layer 1 is from 110 to 130 nm, however, the growth of layer 2 is prohibited after initial growth. This indicates that the growth rate of layer 2 strongly depends on the size of layer 1 (L1) for a given size of layer 2 (L2). The growth of layer 2 monotonically decreases with increasing the size of layer 1 (L1), and may even become prohibited at a maximum value of L1.

    In our kMC simulations, the growth of layer 2 is determined by the competition between the adatom concentration difference of layer 1 and layer 2 (C0-C1versus C1-C2). When the value of kF decreases to 0.145, the adatom concentration difference of layer 1 (C0-C1) is reduced because the value of C0 decreases (cf.Eq. 4). Therefore, the adatom concentration difference of layer 2(C1-C2) is relatively superior to that of layer 1 (C0-C1), leading to the acceleration on the growth of layer 2. Layer 2 continuously grows when the initial edge length of layer 1 is 80 to 130 nm (cf.Fig. 2a). When the value of kF increases to 0.165, the adatom concentration gradient of layer 1 is increased because the value of C0increases (cf. Eq. 4). In this case, the adatom concentration difference of layer 2 (C1-C2) is relatively inferior to that of layer 1 (C0-C1), resulting in the prohibition of the growth of layer 2.The growth of layer 2 is prohibited when the initial edge length of layer 1 is from 90 to 130 nm (cf. Fig. 2c).

    Clearly, the growth competition between layer 1 and layer 2 is determined by the parameter (kF), not the energy barrier of kink nucleation (EK-N). The value of EK-Nonly changes the overall time line, and thus does not affect the conclusion on whether the growth occurs at layer 1 or layer 2. The overall growth time increased with increasing the value of EK-N. In our kMC simulations, the time line when EK-Nis 1.7 eV (cf. Fig. 2b) agrees well with that of Ye et al.’s calculations37(cf. Fig. 2d).Therefore, in the following simulations, the value of EK-Nis fixed at 1.7 eV and the value of kFis set to 0.155 when the adatom flux is 1.0 × 10-3.

    3.2 Morphology evolution of bilayer MoS2 in growth process

    In Section 3.1, the size evolutions of layer 2 (L2) with different initial sizes of layer 1 (L1 = 80 nm, 90 nm, 100 nm, 110 nm, 120 nm and 130 nm) were analyzed and calibrated by Ye et al.’s calculations37. As a result, our kMC model with this set of parameters is capable to reproduce the growth of bilayer MoS2.In this section, more detailed analyses on the morphology evolutions of both layer 1 and layer 2 were carried out. The morphology evolutions of the bilayer MoS2, when the initial size of layer 1 is 80 nm and 130 nm, are shown in Fig. 3a, b,separately. In the whole growth processes of bilayer MoS2, the morphologies of layer 1 and layer 2 maintain triangular shapes with compact edges, which is consistent with the kinknucleation-propagation mechanism in our kMC model. The evolutions on the sizes of the triangles marked in Fig. 3a, b indicate the effect of the initial sizes on the growth of bilayer MoS2.

    Fig. 3 Size and morphology evolutions of bilayer MoS2 growth processes when the initial size of layer 2 is 50 nm and that of layer 1 is (a) 80 nm and (b) 130 nm.Orange and purple domains represent layer 1 and layer 2, respectively. Color online.

    Fig. 3a shows that layer 1 grows dramatically from 80 to 259 nm with increasing the time from 0 to 2.4 s. Together with the growth of layer 1, layer 2 continuously increases from 50 nm to 80 nm, which indicates that the growth of layer 2 is permitted.This is corresponding to the experimental fabrication of bilayer MoS2. When the initial size of layer 1 is 130 nm, however, it exhibits an opposite trend for layer 2. When layer 1 increases from 130 to 259 nm with the time increasing from 0 to 1.6 s,layer 2 grows only slightly, from 50 to 51 nm initially from 0 to 0.4 s and then ceased to grow after 0.4 s. This is corresponding to the experimental synthesis of monolayer MoS2.

    3.3 Permitted or prohibited growth affected by growth temperature and adatom flux

    For the CVD synthesis method, subtle changes in the growth conditions may cause a huge difference in the growth of MoS2 domain. To verify the robustness of our kMC model, more simulations with varying growth temperatures and adatom fluxes were carried out. The size evolutions of layer 2 at different growth temperatures (950, 975, 1000, 1025 and 1050 K) with initial layer 1 of 100 nm are shown in Fig. 4a. The results indicate that an increase in growth temperature promotes the growth of layer 2. The growth of layer 2 is permitted when the growth temperature is high (from 1000 to 1050 K), while the growth of layer 2 is prohibited when the growth temperature is low (from 950 to 975 K). These simulation results match well with Ye et al.’s experimental observations37, where only monolayer MoS2 was synthesized at the growth temperature of 973 K (cf. Fig. 4c); second layer of MoS2was formed at some places on top of the first layer when the growth temperature increased to 1023 K; and a complete bilayer MoS2was fabricated when the growth temperature further increased to 1073 K.

    Experimental results37shown in Fig. 4d indicate that the adatom flux has larger influence on the adatom concentration gradient of layer 1 than that of layer 2. With decreasing the adatom flux, the adatom concentration gradient of layer 1 decreases more dramatically than that of layer 2. Therefore, in our simulations, the value of kFis tuned to simulate the variation of the relative dominance between the adatom concentration gradient of layer 1 and that of layer 2 with the adatom flux. In the following simulations, the adatom flux F decreases from 1.8 ×10-3to 0.6 × 10-3, and the value of kFis assumed to linearly decrease with decreasing the flux F (kF = 0.145 + k × F, k = 10).The size evolutions of layer 2 at different adatom fluxes (0.6 ×10-3, 1.0 × 10-3, 1.4 × 10-3and 1.8 × 10-3) when the initial size of layer 1 is 100 nm are shown in Fig. 4b. The simulation results indicate that the decrease of the adatom flux accelerates the growth of layer 2. The growth of layer 2 is prohibited when the adatom flux is high (1.4 × 10-3to 1.8 × 10-3), while the growth of layer 2 is permitted when the adatom flux is low (0.6 × 10-3to 1.0 × 10-3). These simulation results also match well with Ye et al.’s experimental observations37. They discovered that at the Ar gas flow rate of 150 standard cubic centimeter per minute(sccm), only monolayer MoS2was synthesized (cf. Fig. 4d).When the Ar gas flow rate decreased to 70 sccm, however, layer 2 was formed at some positions on top of layer 1. When the Ar flow rate further decreased to 20 sccm, a complete bilayer MoS2was fabricated. These comparisons between our simulation results and Ye et al.’s experiments37further verify that our kMC model is capable to reproduce the CVD growth of monolayer and bilayer MoS2.

    3.4 Phase diagram on permitted or prohibited growth of bilayer MoS2

    Fig. 4 Size evolution of layer 2 at (a) different growth temperatures (950, 975, 1000, 1025 and 1050 K) and(b) different adatom fluxes (0.6 × 10-3, 1.0 × 10-3, 1.4 × 10-3 and 1.8 × 10-3). Experimental observations of MoS2 layers at (c) different growth temperatures (973, 1023 and 1073 K) and (d) different flow rates of Ar gas (150, 70 and 20 sccm).Copyright from Ref. 37.

    Fig. 5 Phase diagram on permitted or prohibited growth of bilayer MoS2 with varying growth temperature (950, 975,1000, 1025 and 1050 K) and adatom flux (0.2 × 10-3,0.6 × 10-3, 1.0 × 10-3, 1.4 × 10-3 and 1.8 × 10-3).

    To further provide guideline to the experimental synthesis of MoS2with desired number of layers, a phase diagram with varying growth temperatures and adatom fluxes is produced in Fig. 5. The red symbol “×” denotes the prohibited growth of layer 2 at the corresponding growth temperature and adatom flux, while the green symbol “○” denotes the permitted growth of layer 2 at the corresponding experimental condition. For example, at the growth temperature of 950 K, MoS2 always grows as monolayer. When the growth temperature increases to 1000 K, either monolayer or bilayer MoS2can be synthesized by controlling the adatom flux (monolayer: 1.4 × 10-3to 1.8 × 10-3,bilayer: 0.2 × 10-3to 1.0 × 10-3). If the growth temperature is even higher (1025 or 1050 K), MoS2 always grows in bilayer form without the need to adjust the adatom flux.

    To unveil the underlying mechanism that the growth of bilayer MoS2is promoted by the increase of growth temperature or the decrease of adatom flux, variations of the adatom concentrations C1and C2with time at different growth temperatures (975 and 1000 K) and different adatom fluxes (1.0 × 10-3and 0.6 × 10-3)were further analyzed and plotted in Fig. 6. Fig. 6a indicates that the adatom concentration C1is larger than C2initially at both 975 K and 1000 K, promoting the growth of bilayer MoS2. Then,both the adatom concentration C1and C2decreased as the bilayer MoS2grew. The difference between the adatom concentration C1 (blue rhombus) and C2 (blue triangle) decreased drastically to zero at the growth temperature of 975 K, prohibiting the growth of bilayer MoS2. When the temperature increased to 1000 K,however, the difference between the adatom concentration C1(red rhombus) and C2(red triangle) maintained constant after 1 s, permitting the growth of bilayer MoS2. Hence, the increase of temperature enables the adatom concentration C2to decrease accordingly with the adatom concentration C1, resulting in a consistent difference in adatom concentration to promote the growth of bilayer MoS2. This is the underlying mechanism that the growth of bilayer MoS2can be promoted by the increase of temperature. Similarly, the decrease of adatom flux from 1.0 ×10-3(blue curves in Fig. 6a) to 0.6 × 10-3(blue curve in Fig. 6b)lowers the value of kF, resulting in the decrease of C0. Then, the decrease of C0 lowers the concentration gradient of layer 1,decelerating the growth of layer 1. Furthermore, the decelerated growth of layer 1 reduces the difference between the adatom concentration C1(blue rhombus) and C2(blue triangle) to zero,permitting the growth of bilayer MoS2.

    Fig. 6 Variations of adatom concentrations C1 and C2 with time (a) when the growth temperature is 975 K and 1000 K and the adatom flux is 1.0 × 10-3, and (b) when the growth temperatures is 975 K and the adatom flux is 0.6 × 10-3. Color online.

    Compared with Ye et al.’s research37, our work has the following contributions: We presented a new kinetical Monte Carlo model for the CVD growth of MoS2 and calibrated the model by using existing thermodynamic models and experimental results. We revealed the underlying mechanism that the growth of bilayer MoS2can be promoted by the increase of growth temperature or the decrease of adatom flux.Specifically, the growth temperature enables the adatom concentration C2 to decrease with the adatom concentration C1,resulting in a consistent adatom concentration difference to promote the growth of bilayer MoS2; while the decrease of adatom flux decelerated the difference between the adatom concentration C1and C2to zero, permitting the growth of bilayer MoS2. Importantly, we presented a phase diagram (cf. Fig. 5) in the growth temperature and adatom flux space to predict the growth of bilayer MoS2, which may guide the experimental CVD fabrication of mono- and bi-layer MoS2.

    4 Conclusions

    In this work, we developed a kMC model to study the CVD growth kinetics and underlying mechanisms of mono- and bilayer MoS2. First, we formulated and calibrated our kMC model by an analytic thermodynamic criterion37. With the calibrated model, we successfully reproduced the mono- and bi-layer growth of MoS2under different growth conditions. We found that the growth rate of layer 2 strongly depends on the size of layer 1 and monotonically decreases with increasing the size of layer 1, and may even become prohibited at a maximum size of layer 1. Then, the size and morphology evolutions of the bilayer MoS2growth processes were analyzed. In the whole growth processes of bilayer MoS2, the morphologies of layer 1 and layer 2 maintained triangular shapes with compact edges.Furthermore, the permitted or prohibited growth of bilayer MoS2 in terms of growth temperature and adatom flux was analyzed.The increase of the growth temperature or the decrease of the adatom flux promotes the growth of layer 2, which agrees well with experimental observation37. Lastly, a phase diagram on permitted or prohibited growth of bilayer MoS2in terms of growth temperature and adatom flux was predicted. The underlying mechanism that the growth of bilayer MoS2can be promoted by the increase of growth temperature or the decrease of adatom flux was further revealed. Hence, our study here not only unveils the conditions of the mono- and bi-layer growth of MoS2, but also provides guidelines for the controllable growth of MoS2with desired number of layers.

    猜你喜歡
    二硫化鉬蒙特卡羅單層
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    二硫化鉬基異質(zhì)結(jié)催化劑可見(jiàn)光降解有機(jī)污染物的研究進(jìn)展
    熱壓法制備二硫化鉬陶瓷靶材工藝研究
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    利用蒙特卡羅方法求解二重積分
    二硫化鉬改性鋁合金活塞微弧氧化膜層的研究
    單層小波分解下圖像行列壓縮感知選擇算法
    新型單層布置汽輪發(fā)電機(jī)的研制
    鋁合金微弧氧化制備含二硫化鉬的減磨膜層
    探討蒙特卡羅方法在解微分方程邊值問(wèn)題中的應(yīng)用
    亚洲av中文字字幕乱码综合| 国语自产精品视频在线第100页| 日本撒尿小便嘘嘘汇集6| 非洲黑人性xxxx精品又粗又长| 中文在线观看免费www的网站| 久久精品亚洲精品国产色婷小说| 午夜影院日韩av| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 国产97色在线日韩免费| 久久精品亚洲精品国产色婷小说| 精品久久久久久,| 欧美日韩中文字幕国产精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 亚洲电影在线观看av| 99久久久亚洲精品蜜臀av| 免费av不卡在线播放| 俺也久久电影网| av视频在线观看入口| 毛片女人毛片| 免费在线观看日本一区| 麻豆久久精品国产亚洲av| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 亚洲国产精品久久男人天堂| 国产精品国产高清国产av| av中文乱码字幕在线| 少妇的逼好多水| 精品久久久久久久末码| 日韩欧美国产在线观看| 国产精品亚洲一级av第二区| 男女床上黄色一级片免费看| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 99精品欧美一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 亚洲男人的天堂狠狠| 国产成+人综合+亚洲专区| av天堂在线播放| 久久精品综合一区二区三区| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看 | 69av精品久久久久久| xxxwww97欧美| 少妇熟女aⅴ在线视频| 亚洲精品在线观看二区| 一个人免费在线观看电影| 日本黄色片子视频| 少妇高潮的动态图| 一进一出好大好爽视频| 午夜福利在线观看吧| 内地一区二区视频在线| 全区人妻精品视频| 19禁男女啪啪无遮挡网站| 国产淫片久久久久久久久 | 国内精品久久久久精免费| 亚洲电影在线观看av| 黄色成人免费大全| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 国产伦精品一区二区三区四那| 日本黄大片高清| 久久这里只有精品中国| 好男人电影高清在线观看| 欧美bdsm另类| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 一本综合久久免费| 男女午夜视频在线观看| 亚洲熟妇熟女久久| 国产亚洲精品久久久com| 久久国产精品人妻蜜桃| 亚洲 国产 在线| 国产免费av片在线观看野外av| 搡老妇女老女人老熟妇| 国产伦人伦偷精品视频| 午夜福利成人在线免费观看| 欧美日韩精品网址| 国产一区在线观看成人免费| 免费人成视频x8x8入口观看| 国产综合懂色| 九九在线视频观看精品| 日本精品一区二区三区蜜桃| 舔av片在线| 97超级碰碰碰精品色视频在线观看| 很黄的视频免费| 国产亚洲精品一区二区www| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 国产精品 国内视频| xxxwww97欧美| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 久久亚洲精品不卡| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色| 小蜜桃在线观看免费完整版高清| 午夜福利高清视频| 中文字幕人妻丝袜一区二区| 桃红色精品国产亚洲av| 两个人看的免费小视频| 好男人电影高清在线观看| 深夜精品福利| 亚洲五月天丁香| 亚洲成a人片在线一区二区| 夜夜躁狠狠躁天天躁| 国产黄片美女视频| 亚洲真实伦在线观看| 变态另类丝袜制服| 黄片大片在线免费观看| 一区二区三区国产精品乱码| 日本黄大片高清| 免费av毛片视频| 少妇裸体淫交视频免费看高清| 精品一区二区三区视频在线 | 国产精品98久久久久久宅男小说| 国产午夜精品久久久久久一区二区三区 | 一级毛片女人18水好多| 色综合婷婷激情| 长腿黑丝高跟| 最近在线观看免费完整版| 性欧美人与动物交配| 国产激情偷乱视频一区二区| 日韩欧美 国产精品| 亚洲内射少妇av| 俺也久久电影网| av视频在线观看入口| 国产成人啪精品午夜网站| 欧美日韩精品网址| 国产精品久久久久久精品电影| 欧美zozozo另类| 国产精品永久免费网站| 精品人妻偷拍中文字幕| 观看美女的网站| 亚洲国产中文字幕在线视频| ponron亚洲| 噜噜噜噜噜久久久久久91| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| 丁香欧美五月| 久9热在线精品视频| 级片在线观看| 国产精品综合久久久久久久免费| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 亚洲精品国产精品久久久不卡| 久久久久性生活片| 在线播放无遮挡| 美女免费视频网站| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| 亚洲人成网站高清观看| 亚洲精品亚洲一区二区| 露出奶头的视频| 蜜桃亚洲精品一区二区三区| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕 | 亚洲电影在线观看av| 午夜福利18| 欧美黑人巨大hd| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 不卡一级毛片| 色吧在线观看| 可以在线观看的亚洲视频| 欧洲精品卡2卡3卡4卡5卡区| 91字幕亚洲| 观看美女的网站| 夜夜夜夜夜久久久久| 精品一区二区三区av网在线观看| 亚洲真实伦在线观看| 国产一区二区激情短视频| 久久性视频一级片| 夜夜夜夜夜久久久久| 色综合婷婷激情| 亚洲专区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清专用| 午夜日韩欧美国产| 婷婷精品国产亚洲av在线| 欧美zozozo另类| 最近在线观看免费完整版| 99热这里只有是精品50| 国内少妇人妻偷人精品xxx网站| 久久精品91蜜桃| avwww免费| 好男人在线观看高清免费视频| 国产又黄又爽又无遮挡在线| 亚洲最大成人中文| 久久精品影院6| 一本一本综合久久| 一个人看视频在线观看www免费 | 精品午夜福利视频在线观看一区| 岛国在线观看网站| 99在线人妻在线中文字幕| 久久久国产成人免费| 制服人妻中文乱码| 成人av一区二区三区在线看| 88av欧美| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 老司机在亚洲福利影院| 香蕉av资源在线| x7x7x7水蜜桃| 欧美绝顶高潮抽搐喷水| 变态另类丝袜制服| 美女 人体艺术 gogo| av福利片在线观看| 一二三四社区在线视频社区8| 亚洲成a人片在线一区二区| 国产午夜精品论理片| 国产私拍福利视频在线观看| 国产精品嫩草影院av在线观看 | 香蕉丝袜av| 色视频www国产| 国产精品亚洲美女久久久| 日本 av在线| 亚洲精品影视一区二区三区av| 观看免费一级毛片| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| 9191精品国产免费久久| 一a级毛片在线观看| 最近在线观看免费完整版| 国产av麻豆久久久久久久| 麻豆久久精品国产亚洲av| 国产av不卡久久| 久久久久九九精品影院| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| 免费在线观看亚洲国产| 最新中文字幕久久久久| 午夜免费激情av| 搞女人的毛片| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 青草久久国产| 一个人看视频在线观看www免费 | 精品无人区乱码1区二区| 波多野结衣巨乳人妻| 国产极品精品免费视频能看的| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 麻豆久久精品国产亚洲av| 中文字幕人妻丝袜一区二区| 三级毛片av免费| 国产亚洲精品一区二区www| 99精品欧美一区二区三区四区| 一级作爱视频免费观看| 国产探花在线观看一区二区| 欧美黄色片欧美黄色片| 亚洲一区高清亚洲精品| 国产亚洲精品久久久久久毛片| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 国产老妇女一区| 免费av观看视频| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 熟妇人妻久久中文字幕3abv| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 欧美日本视频| 国产高清视频在线观看网站| 首页视频小说图片口味搜索| 亚洲成人久久性| 九色成人免费人妻av| 熟女少妇亚洲综合色aaa.| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 首页视频小说图片口味搜索| 一级黄色大片毛片| 久久精品影院6| 成人18禁在线播放| 国产爱豆传媒在线观看| 精品久久久久久久末码| 天堂影院成人在线观看| 女人高潮潮喷娇喘18禁视频| 男插女下体视频免费在线播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女视频黄频| 国产单亲对白刺激| 国产极品精品免费视频能看的| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 精品国产美女av久久久久小说| 免费观看的影片在线观看| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久,| 久久草成人影院| 亚洲精品亚洲一区二区| 亚洲五月婷婷丁香| 亚洲一区二区三区不卡视频| 久久久精品欧美日韩精品| 一进一出抽搐动态| 两个人的视频大全免费| 欧美激情在线99| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 欧美乱色亚洲激情| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 亚洲精品日韩av片在线观看 | 国产真实乱freesex| 久久久久精品国产欧美久久久| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| bbb黄色大片| 亚洲人成网站在线播放欧美日韩| 观看美女的网站| 中出人妻视频一区二区| 又黄又粗又硬又大视频| 天堂动漫精品| 婷婷丁香在线五月| 老熟妇仑乱视频hdxx| 青草久久国产| 国产一区二区三区视频了| 偷拍熟女少妇极品色| 国产伦精品一区二区三区四那| 欧美av亚洲av综合av国产av| 一级黄片播放器| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 黄色丝袜av网址大全| 国产午夜精品久久久久久一区二区三区 | 国产一区二区三区视频了| 国产精品女同一区二区软件 | 男女之事视频高清在线观看| 桃色一区二区三区在线观看| 在线观看免费视频日本深夜| 久久亚洲真实| 久久精品亚洲精品国产色婷小说| 久久久精品欧美日韩精品| 天堂影院成人在线观看| 午夜影院日韩av| 久久性视频一级片| 国产伦一二天堂av在线观看| 午夜福利免费观看在线| 可以在线观看毛片的网站| 无遮挡黄片免费观看| 在线看三级毛片| 特级一级黄色大片| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 精品人妻一区二区三区麻豆 | 一区二区三区国产精品乱码| 国产一区二区在线观看日韩 | 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点| 亚洲精品美女久久久久99蜜臀| 亚洲精品456在线播放app | 看黄色毛片网站| 国产真人三级小视频在线观看| 天天躁日日操中文字幕| 在线a可以看的网站| 乱人视频在线观看| 老司机深夜福利视频在线观看| 天堂动漫精品| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 熟女人妻精品中文字幕| 国产亚洲精品av在线| 90打野战视频偷拍视频| 久久伊人香网站| 亚洲精品一区av在线观看| 午夜激情福利司机影院| 我的老师免费观看完整版| 亚洲国产色片| 黄色日韩在线| 性色avwww在线观看| 欧美日韩国产亚洲二区| 午夜亚洲福利在线播放| 国产伦精品一区二区三区四那| 大型黄色视频在线免费观看| 中国美女看黄片| 久久香蕉精品热| 欧美午夜高清在线| 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av | 亚洲av第一区精品v没综合| 99热精品在线国产| 丰满的人妻完整版| 两人在一起打扑克的视频| 亚洲国产高清在线一区二区三| 国产亚洲av嫩草精品影院| 亚洲va日本ⅴa欧美va伊人久久| 男女之事视频高清在线观看| 少妇的逼水好多| 久久久久久大精品| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 国产一区二区在线av高清观看| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| 黄色丝袜av网址大全| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式 | 少妇人妻精品综合一区二区 | 成熟少妇高潮喷水视频| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 国产真实伦视频高清在线观看 | 中文字幕人成人乱码亚洲影| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 俺也久久电影网| 老熟妇乱子伦视频在线观看| 最近最新免费中文字幕在线| 亚洲最大成人中文| 成人无遮挡网站| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 在线观看舔阴道视频| 日本a在线网址| 国产欧美日韩精品一区二区| 精品久久久久久久毛片微露脸| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区| 亚洲精品456在线播放app | 精品无人区乱码1区二区| 69av精品久久久久久| 国产精品电影一区二区三区| 日韩欧美一区二区三区在线观看| 欧美大码av| 午夜a级毛片| 中文字幕人妻熟人妻熟丝袜美 | 可以在线观看的亚洲视频| 小说图片视频综合网站| 久久九九热精品免费| h日本视频在线播放| 美女cb高潮喷水在线观看| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 久久久精品大字幕| 神马国产精品三级电影在线观看| 国产精品嫩草影院av在线观看 | 波多野结衣高清作品| 女警被强在线播放| 午夜影院日韩av| 亚洲av熟女| 757午夜福利合集在线观看| 国模一区二区三区四区视频| 成年版毛片免费区| 成年人黄色毛片网站| 手机成人av网站| 毛片女人毛片| 国产三级中文精品| 午夜激情欧美在线| 中文字幕人成人乱码亚洲影| 久久九九热精品免费| 97碰自拍视频| 久久久国产成人免费| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 日本五十路高清| 亚洲欧美精品综合久久99| 亚洲 国产 在线| 国产精品久久久久久久久免 | 国产野战对白在线观看| x7x7x7水蜜桃| 婷婷六月久久综合丁香| 99热这里只有精品一区| 国产av不卡久久| 9191精品国产免费久久| 露出奶头的视频| 欧美不卡视频在线免费观看| 露出奶头的视频| 国产精品一区二区三区四区免费观看 | 一夜夜www| 亚洲第一欧美日韩一区二区三区| 久久精品国产清高在天天线| 窝窝影院91人妻| 亚洲精品美女久久久久99蜜臀| 欧美高清成人免费视频www| 99国产精品一区二区蜜桃av| www日本在线高清视频| www.www免费av| 激情在线观看视频在线高清| 禁无遮挡网站| 亚洲成人免费电影在线观看| 中文字幕精品亚洲无线码一区| www日本在线高清视频| 国产亚洲精品久久久com| 精品人妻1区二区| 国产麻豆成人av免费视频| 精华霜和精华液先用哪个| 国产高清三级在线| 日韩欧美三级三区| 国产亚洲精品一区二区www| or卡值多少钱| 久久久久国产精品人妻aⅴ院| 亚洲av免费高清在线观看| 亚洲成人免费电影在线观看| 97超级碰碰碰精品色视频在线观看| 我的老师免费观看完整版| 首页视频小说图片口味搜索| 国产野战对白在线观看| 国产成人啪精品午夜网站| 九色成人免费人妻av| 国产探花在线观看一区二区| 91在线精品国自产拍蜜月 | 露出奶头的视频| 网址你懂的国产日韩在线| 天天添夜夜摸| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 亚洲一区二区三区色噜噜| 性欧美人与动物交配| 日韩欧美精品v在线| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 国产在线精品亚洲第一网站| 天堂动漫精品| 少妇熟女aⅴ在线视频| 毛片女人毛片| 亚洲电影在线观看av| 日本黄色片子视频| 日韩免费av在线播放| 免费看日本二区| 97碰自拍视频| 欧美另类亚洲清纯唯美| 好男人电影高清在线观看| 国产中年淑女户外野战色| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 天堂动漫精品| 久久人妻av系列| 国产精品精品国产色婷婷| 99视频精品全部免费 在线| 日本 欧美在线| 国内少妇人妻偷人精品xxx网站| 校园春色视频在线观看| 国产精品av视频在线免费观看| 看片在线看免费视频| www.999成人在线观看| 欧美精品啪啪一区二区三区| 欧美日韩一级在线毛片| 三级国产精品欧美在线观看| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 校园春色视频在线观看| 国产精品三级大全| av专区在线播放| 老鸭窝网址在线观看| 黄色日韩在线| 欧美日韩福利视频一区二区| 久久婷婷人人爽人人干人人爱| av黄色大香蕉| 日韩欧美免费精品| 日本黄色视频三级网站网址| 成人av在线播放网站| 欧美bdsm另类| 成人鲁丝片一二三区免费| 天堂动漫精品| 欧美不卡视频在线免费观看| 中国美女看黄片| 日本黄大片高清| 午夜激情福利司机影院| 精品电影一区二区在线| 久久久久精品国产欧美久久久| 深爱激情五月婷婷| 在线观看舔阴道视频| 国产亚洲精品久久久com| 精华霜和精华液先用哪个| 国产成人啪精品午夜网站| 嫩草影院精品99| 午夜日韩欧美国产| 国产亚洲av嫩草精品影院| 在线视频色国产色| 亚洲男人的天堂狠狠| 噜噜噜噜噜久久久久久91| 99视频精品全部免费 在线| 亚洲国产色片| 日韩欧美一区二区三区在线观看| 国产亚洲精品综合一区在线观看| 乱人视频在线观看| 色哟哟哟哟哟哟| 亚洲人与动物交配视频| 国产一区在线观看成人免费| 窝窝影院91人妻| 黄色视频,在线免费观看| 亚洲一区二区三区色噜噜| 国产美女午夜福利| 男人舔女人下体高潮全视频| 欧美高清成人免费视频www| 国产黄色小视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品乱码久久久v下载方式 | svipshipincom国产片| 亚洲成人精品中文字幕电影| 免费观看精品视频网站| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩综合久久久久久 | a级一级毛片免费在线观看| 91久久精品国产一区二区成人 | 五月伊人婷婷丁香| 免费看日本二区| 身体一侧抽搐|