• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同氧化硅前驅(qū)體熔鹽反應(yīng)制備莫來石晶須

    2019-10-09 08:50:18馬雪冬韓霽昌
    無機化學學報 2019年10期
    關(guān)鍵詞:氧化硅旱區(qū)莫來石

    馬雪冬 韓霽昌 杜 煒 王 偉*,,3

    (1長安大學環(huán)境科學與工程學院,旱區(qū)地下水文與生態(tài)效應(yīng)教育部重點實驗室,西安 710054)

    (2國土資源部退化及未利用土地整治工程重點實驗室,西安 710075)

    (3長安大學,陜西省土地整治重點實驗室,西安 710054)

    0 Introduction

    Mullite is a strong candidate material for advanced structural applications at high temperature,because of its low thermal expansion,low thermal conductivity,high temperature creep resistance,good chemical and thermal stability[1].Mullite is the only stable compound in the Al2O3-SiO2system at atmosphere pressure,and it is a peritectic phase,but under certain conditions it can solidify metastable without prior alumina nucleation.The crystal structure of mullite is orthorhombic and is generally viewed as a defect from sillimanite,Al2O3.SiO2.The mullite structure consists of chains of edge-sharing AlO6octahedra running parallel to the caxis.These chains are cross-linked by alternating(Si,Al)O4tetrahedra forming chains,which also run parallel to the c-axis[2].Each octahedron shares two oxygen atoms,along an edge,with the octahedron just above it.And the tetrahedra share corner atoms in both the ab-plane (forming the double-chain)and the c-axis. Because the tetrahedrally coordinated aluminium and silicon are no longer present in the ratio of 1∶1,these sites necessarily become chemically disordered.Furthermore,crystal structure analysis have identified the presence of a second tetrahedral site-displaced from the original by approximately 0.13 nm,whch is presumably occupied by cations that have lost bridging O atoms[3].Ghate et al.firstly reported kinetics of mullite about densification and grain growth[4].They assumed that diffusion of Si4+controlled densification and grain growth process.Some research literatures revealthatthe needle-like shape is common to mullite formed in the presence of a liquid,whereas sintering of Al2O3-SiO2compounds in the absence of liquid cerated aggregates or agglomerations of mullite.In the case of acicular grain growth,mullite whiskers grow in the c-axis direction and are bounded by (110)surfaces.It is believed that the prismatic (110)planes have a lower surface energy than c-axis growth,and thus,mullite grains grow in the[001]direction for thermodynamic reasons[5].

    Ceramic whiskers are commonly used as reinforcements in metal matrix composites(MMCS)and ceramic matrix composites (CMCS). For toughening of MMCS,it is required that high stresses are needed to fracture fibers at the tip of composite cracks and that the stress concentrations at the crack tips are as low as possible.In the whisker reinforced composites,high whisker stiffness implies high modulus at low temperature,which means both high modulusand high creep resistance undertimedependent deformation conditions at high temperature[6].Mullite whiskers have unique properties which result from their near-perfect structure,and it can be used to improve the mechanicalstrength,the creep resistance,chemical stability and thermal properties[7-8].Numerous methods have been developed to produce mullite whiskers[9-12],and most of them are expensive.Wang et al.synthesized CeO2-doped mullite whiskers using sol-gel process[13],and the mullitization activation energies calculated based on non-isothermal differential scanning calorimetry (DSC)are 473 and 722 kJ.mol-1for the 2%(n/n)CeO2-doped and undoped samples,respectively.Kong et al.[14-15]obtained the anisotropic microstructure of mullite ceramics by high-energy ball milling method.Wang et al.[16-17]prepared mulllite whiskers with diameters ranging from 30 to 150 nm and lengths of over several microns through molten salts reactions.Mullite whiskers were also obtained by means of the thermal decomposition of natural colorless topaz doped with rare earth oxides[18].Molten salt reaction has been employed to synthesis ceramic powders because itdecreases reaction temperature and gives powders of homogeneous morphology[19-20]. Molten salts provide liquid environment in which the nucleation and growth of grains are dependent on the dissolution of chemical reagents in the molten flux.Yang et al.prepared highly ordered mullite nanowhiskers using B2O3-doped molten salt synthesis method,and the reaction mechanism is attributed to local concentration gradient[21].Zhu et al.studied the mullite growth mechanism using aluminum sulfate and silica as raw materials in molten sodium sulfate by the differential scanning calorimetry[22].Zhang et al.synthesized mullite whiskers with Al2(SO4)3and Al(OH)3as alumina precursors by molten salt synthesis,and experimental result indicate that amorphous Al2O3is beneficial for the formation of mullite[23].When amorphous Al2O3is produced by the decomposition reaction of Al2(SO4)3,the total reaction processes are comprehensive and complicate paths included solid-liquid-gas phase transformation,the thermal pyrolysis mechanism of aluminum sulfate have been researched somewhat,but the decomposition reaction hasn′t been extensively investigated from the thermodynamic and kinetic view.

    Herein,mullite whiskers were prepared using kieselguhr or silica fume as silica precursors in molten salt system,and α-Al2O3was also obtained in Na2SO4flux through decomposition reaction of aluminum sulfate without silica involved in comprehensive reactions.Silica fume emerges as a byproduct from the melting ferrosilicon alloy,and this solid waste presents serious problems of storing and environmental pollution.Kieselguhr is a kind of siliceous sedimentary rock originated from ancient biologicalcells,which can be used asthermal insulation materials,filler sand catalyst carriers in industry field. Although chemical composition,morphology and structure have great differences,SiO2is the mainly ingredients forsilica fume and kieselguhr.Influence on the resulting product can be shown through differentsilica sources selecting,interesting for this contrast,the same product(mullite whiskers)was fabricated in our experiments.Decomposition kinetics of aluminum sulfate was explored using dynamic thermal analysis at different heating rates(β)of 5,10 and 15 K.min-1,respectively.Moreover,amorphous Al2O3can be transformed into mullite phase because mullite is more stable state for Al2O3-SiO2eutectic phase while silica precursors are used as raw materials.

    1 Experimental

    1.1 Preparation

    Selected silica fume (Xi′an Linyuan silica fume Ltd.)and kieselguhr(Tianjin Bodi Chemical Co.,Ltd.)were used as the silica precursors to fabricate mullite whiskers,and physical parameters of kieselguhr and silica fume are listed in Table 1.Al2(SO4)3and Na2SO4were weighed accurately according to the molar ratio of SiO2,Al2(SO4)3and Na2SO4(nSiO2∶nAl2O3∶nNa2SO4=6∶1∶10).The mixture was grinded in a ceramic mortar for 20 minutes,and then heated to final temperature of 800℃ (or 900℃)for 2 h.The samples were washed with hot water to remove sodium sulfate (non reacting solvent).Then,white mullite powders were obtained after filtration,washed and dried.

    Amorphous alumina,composition ofmullite(3Al2O3.2SiO2),came from the pyrolysis of Al2(SO4)3in this experiment.In order to investigate the influence of aluminum sulfate,the product of Al2(SO4)3decomposition was obtained in molten salt system,and the preparation process is described as follows:Firstly,Al2(SO4)3and Na2SO4were weighed accurately according to molar ratio of Al2(SO4)3to Na2SO4being 1∶5,andthe mixed powder(Al2(SO4)3+Na2SO4)was grinded in a ceramic mortar for 20 min.Subsequently,the mixed powders was placed in the bottom of alumina crucible and slowly heated to 900℃for 2 h and then cooled down to room temperature in a furnace.Finally,the product was obtained after boiling in distilled water,filtration and drying.

    Table 1 Physical parameters of kieselguhr and silica fume

    1.2 Characterization

    Crystalline phase of the sample was examined by using X-ray diffractometer(XRD,D/MAX-RA),with monochromated Cu Kα radiation (λ=0.154 18 nm)operating at 40 kV and 30 mA,scanning range(2θ)from 10°to 80°.Scanning electronic microscope(SEM,S-4800)coupled with energy dispersive spectrometer(EDS,INCA-350)was used to characterize and analyze the microstructure,which was operated at 20 kV and 20 mA.High-resolution TEM (HRTEM)and selected area electron diffraction (SAED)were conducted on the JEOL-2100F to characterize the microstructures of the whiskers.The sizes and distributions of particles were analyzed usingMalvern laserparticle size analyzer (Mastersizer 2000).The decomposition of Al2(SO4)3was performed in a simultaneous thermogravimetry and differential scanning calorimetry(TGDSC)(STA 449F5,Netzsch,Germany).About 15 mg of sample was taken in a platinum crucible and heated from 300 to 1 273 K in nitrogen environment with a constant flow rate of 40 mL.min-1(with 99.99%purity)at different heating rates(β)being 5,10 and 15 K.min-1.

    2 Results and discussion

    2.1 XRD analysis

    Fig.1 shows XRD patterns of final products using silica fume(or kieselguhr)as raw materials for molten salt synthesis.Mullite phase has been formed in the samples heated at 800 and 900℃,since there exist several strong peaks at 2θ=16.52°,26.32°,31.08°,33.36°,35.36°,40.92°and 49.52°,which are attributed to the(111),(210),(001),(220),(111),(121)and(311)planes of the orthorhombic type(mullite)phase,respectively[24].A series of peaks are showed in Fig.1a at 28.03°,38.08°,39.63°,40.72°and 46.91°,which can be ascribed to the(211),(202),(022),(220)and(131)planes of Al2SiO5,respectively.In addition,some weak peaks in Fig.1(b)were also checked out,which result from the impurities of kieselguhr.

    Fig.1 XRD patterns of mullite powders synthesized by silica fume(a)and kieselguhr(b)

    2.2 SEM analysis

    TheSEM photographsandEDSspectraof prepared mullite whiskers are shown in Fig.2.It can be seen that the morphologies of samples (Fig.2a~b)synthesized at 800℃are not perfect in comparison with the samples (Fig.2c,2e)synthesized at 900℃.No matter which SiO2-containing material is used,mullite whiskers will grow better at higher temperatures.Although the chemical composition of silica fume and kieselguhr is different,the final product is mullite(3Al2O3.2SiO2)whiskers.It is well known that edge-shared AlO6octahedral chains align in the cdirection and are crosslinked by corner-shared(Si,Al)O4tetrahedra in unit cell of mullite crystal[25].And the mullite crystal growth may be faster in crystallographic direction parallelto the c-axis than in other directions,resulting in a high degree of orientation.The whiskers that prepared at 800 and 900℃both possess nanometer-sized diameters and micrometersized lengths.The corresponding EDS spectra of the whiskers fabricated from silica fume in Fig.2(d)and kieselguhr in Fig.2(f)indicate that the sample consist of Al,Si,O,Na,S and C.Moreover,the quantitative analysis shows that their average atomic ratio(nAl∶nSi∶nO=6 ∶2 ∶13)approximates the stoichiometric ratio of mullite.The signals of elemental Na,S and C came from molten saltsmedia (Na2SO4)and carbonconductive tape for sample uploading.

    Fig.2 SEM micrographs and EDS spectra of the mullite whiskers prepared from silica fume at 800℃(a),kieselguhr at 800℃(b),silica fume at 900℃(c~d)and kieselguhr at 900℃(e~f)

    2.3 TEM analysis

    Fig.3 shows TEM image,HRTEM image and SAED pattern of the samples prepared from silica fume and kieselguhr.It can be seen that the average diameter of mullite whiskers was in a range of 50~150 nm and the length was over several microns.The selected-area electron diffraction patterns from the mullite whiskers in Fig.3(a,c)can be indexed to the orthorhombic structure.HRTEM image showed that the spacing was 0.539 nm,in accordance with(110)crystal plane spacing of mullite,which indicates that the mullite crystal grows along c-axis firstly and develops into fibrous microstructure[26].

    Fig.3 TEM images(left)and HRTEM images(right)of mullite whiskers prepared from silica fume(a~b)and kieselguhr(c~d)at 900℃

    2.4 TG-DSC,XRD,SEM and particle size distributions analysis for aluminum sulfate decomposition

    It can be seen that mullite whiskers formed in Al2(SO4)3+Na2SO4molten salts system using Kieselguhr or silica fume as silica precursors.If silica is not existed in molten sulfate flux,what will be happened in the system?According to some literatures[23],the decomposition reaction of Al2(SO4)3take place firstly and amorphous γ-Al2O3forms above 700 ℃ .In the second step,the γ-Al2O3subsequently reacted with silica and transformed into other product.Therefore,two interesting questions are how the Al2(SO4)3is decomposed in sodium sulfate (non-reactive solvent)and how to analyze the resulting product to confirm this decomposition reaction mechanism.

    Fig.4(a)shows the TG-DSC curve of aluminum sulfate octadecahydrate pyrolysis.It can be seen that the weight loss mainly takes place in the following three main ranges.The first weight loss (23.59%)is attributed to the dissociation of absorbed water from 75 to 150℃,and one endothermic peak appeared in theDSC curve simultaneously.Thesecond one occured between 150 and 400℃and the relevant weight loss ratio was 16.56%,which is ascribed to the removing of intramolecular crystal water.The third one(Weight loss:37.60%)happened in a temperature range from 700 to 900℃,corresponding to an endothermic peak on the DSC curve,indicating that the decomposition of aluminum sulfate[23].

    The synthesized product is characterized by X-ray diffraction (XRD)to determine phase.As can be seen from Fig.4(b),all of the diffraction peaks can be assigned to rhombohedral α-Al2O3(PDF No.46-1212).No residue or contaminant has been detected,indicating the high purity of the sample[27].Fig.4(c)presents the SEM image of α-Al2O3particles,from which the α-Al2O3is seen to be several hundred nanometers in diameter.Fig.4(d)shows the size distribution of assynthesized α-Al2O3particles.The average diameter was found to be 400~500 nm.Sodium sulfate is a kind of high temperature solvent medium,which is beneficial for ion diffusion and stable phase growth.Amorphous alumina from Al2(SO4)3decomposition transformed into α-Al2O3due to the lack of silica precursor.

    Fig.4 (a)TG-DSC curves of aluminum sulfate octadecahydrate decomposition;(b)XRD pattern of as-synthesized α-Al2O3powders;(c)SEM morphology of as-synthesized α-Al2O3powders;(d)Particle size distributions for α-Al2O3powders

    2.5 TEM analysis of as-synthesized α-Al2O3powder

    Fig.5 shows TEM image,HRTEM image and SAED pattern of the as-synthesized α-Al2O3powder.It can be seen that the width of this powder was in a range of 400~600 nm and the length was over one micron.The selected-area electron diffraction patterns in Fig.5(a)can be indexed to the rhombohedral crystal system.HRTEM image shows that the crystal plane spacing is 0.237 9 nm,in accordance with(110)crystal plane spacing of α-Al2O3,which confirms that α-Al2O3powder is formed in Al2(SO4)3-Na2SO4molten salt system.

    Fig.5 (a)TEM image of individual α-Al2O3powder after ultrasonic treatment;(b)HRTEM image of the powder

    2.6 Thermodynamic analysis

    The utilization ofaluminum sulfate thermal pyrolysis to prepare mullite whiskers has been researched somewhat[28],but the decomposition process hasn′t intensively been investigated from thermodynamic and kinetics point of view.Almost all the literatures think that amorphous γ-Al2O3firstly forms in the liquid after decomposition of Al2(SO4)3according to reaction(2)[29-30].But α-Al2O3also forms as confirmed by the above mentioned characterization,indicating that α-Al2O3phase derives from the decomposition reaction (1).According to traditional knowledge,the higher temperature is necessary for α-Al2O3phase formation[31].Thus,we try to explain α-Al2O3formation through the thermal pyrolysis of Al2(SO4)3in high temperature solventmedium (Na2SO4)from the thermodynamic view.

    The decomposition of Al2(SO4)3is controlled by pressure and temperature.For the reaction path(1)and (2),their free energy changes with temperature are shown in Fig.6,which is derived from ΔG=ΔG?+ΔnRTln(p/p?)with ΔG?=ΔH?-TΔS?.As pressure and temperature are two interrelated variables about the reaction free energy change,the effect of pressure on the reaction free energy change is weak and the reaction free energy change(ΔG)can be calculated in p=p?condition.Therefore,when p=p?(constant pressure),ΔG=ΔG?=ΔH?-TΔS?with ΔH?=ΔH?f(α-Al2O3or γ-Al2O3)+3ΔH?f(SO3)-ΔH?

    f(Al2(SO4)3)and ΔS?=S?

    (α-Al2O3or γ-Al2O3)+3S?(SO3)-S?(Al2(SO4)3).The data of ΔH?and S?are obtained from the reference[32].The

    ffree energy changes(ΔG)of reaction(1)and reaction(2)with temperature are shown in Fig.6.The reaction path (1)could not happen in the lower temperature range (G>0),and the reaction would process vigorously when the temperature is up to 993 K(ΔG<0). With the similar changing tendency, the equilibrium point of reaction path(2)is 1 023 K,and this chemical equilibrium could exist according to positive direction at higher temperature range(>1 023 K).It is well known that alumina exists in various stable and metastable phases[33],such as alumina hydrate(Al2O3.nH2O),transition state alumina(β-Al2O3, θ-Al2O3,η-Al2O3,γ-Al2O3,etc.)and stable phase alumina(α-Al2O3).Among them,the firsttwo typesare metastable phases.The metastable phases(β-Al2O3,θ-Al2O3,η-Al2O3,γ-Al2O3,etc.)can be converted into α-Al2O3by high temperature sintering irreversibly.

    Fig.6 Changes of free energy ΔG for reactions(1)and(2)depending on temperature

    It can been seen that γ-Al2O3is a kind of metastable phase for alumina,in addition,γ-Al2O3could be transformed into more stable mullite phase when some silica sources coexist in molten salt system.The reaction of mullite formation can be described as reaction(3).

    Where γ-Al2O3comes from the decomposition of Al2(SO4)3,and γ-Al2O3subsequently transforms into mullite through Eq.(3),which is a commonly accepted mechanism of mullite formation.The mixture of γ-Al2O3and SiO2is converted in a liquid molten salts environment,especially when they are intrinsic mixed in a molecular level.The reaction kinetic need not be considered because the diffusion paths of ingredient is so fast through the L-S growth mechanism[34].Free energy change of reaction (3)reveal that mullite formation is a spontaneous process(Fig.7).Therefore,reaction(1),(2)and(3)should be considered together,and the decomposition of aluminum sulfate is the most important controlling step.

    Fig.7 Change of free energy ΔG for reactions(3)depending on temperature

    In the Al2(SO4)3-Na2SO4molten salts,aluminum sulfate decomposition and transformation into γ-Al2O3determine the growth rate of mullite whiskers.The γ-Al2O3is more active in the molten salts system because the combination reaction (3)involves mullite formation.Atthe same time,mullite whiskers formation reaction can consume γ-Al2O3and SiO2,which accelerate the progress of reaction (2).The mullite whiskers growth mechanism can be described asfollows:aluminum cationsfirstly exsitwhen temperature increase to the eutectic point(Al2(SO4)3-Na2SO4),and then amorphous γ-Al2O3is produced by the decomposition reaction of Al2(SO4)3.Subsequently,SiO2coming from silica fume or kieselguhr can be dissolved in sulfate flux and the mullite nuclei are formed in this process.Then,mullite crystal grow quickly along the specific prismatic planes because it is the lowest surface energy barrier.The silica is consumed continuously in accordance with the abovementioned combination reaction(3).

    It is well known that the diffusion of Si4+controlls densification and grain growth process of mullite whiskers[4].Some literatures reveal that the needle-like shape is common to mullite formed in the presence of a liquid environment,and molten salts system provide a high ionic conductivity environment for crystal growth.Mullite whiskers growth requires the supply of silica species.In the absence of silica taking part in reactions,α-Al2O3formsasthe productofthe decomposition of Al2(SO4)3,while silica fume(or kieselguhr)is used as the starting reactant,then reaction(3)takes place in molten salts system,which eventually affects the decomposition of aluminum sulfate and the growth of mullite whiskers.

    2.7 Kinetic analysis

    Fig.8 Plot of DTG vs T(a),ln(β/Tp2)vs 1/Tp(b)for Al2(SO4)3decomposition reaction

    In non-isothermal decomposition study,kinetic parameters are easily calculated from thermo-kinetic analysis.Among the integral methods,Kissinger-Akahira-Suno method gives more accurate apparent activation energy(Ea)as compared to other methods[35-36].Therefore,different heating rates(β)of 5,10 and 15 K.min-1were selected to measure in this experiment and the apparent activation energy of Al2(SO4)3decomposition reaction wascalculated usingKissinger-Akahira-Suno method.The equation is expressed as follows:Where Eais the apparent activation energy and R is the gas constant,T denotes temperature,Tpis the peak temperature of DTG curves(Fig.8a)and β is the heating rate(β=dT/dt).Peak temperatures(Tp)appeared at 1 116,1 141 and 1 159 K,which were ascribed to β=5,10 and 15 K.min-1,respectively.With the different heating rates,the plots(Fig.8b)of ln(β/Tp2)against 1/Tpgave a straight line,and the slope of the corresponding line gave the value of apparent activation energy(Table 2).The apparent activation energy of Al2(SO4)3decomposition reaction is 257.2 kJ.mol-1.

    Table 2 Decomposition peak temperature and apparent activation energy for main decomposition of Al2(SO4)3

    3 Conclusions

    Mullite whiskers had been prepared by molten salt synthesis,and α-Al2O3was formed in sulfate flux without silica species taking part in molten salt reactions.Aluminum sulfate decomposition and mullite formation reaction pathshad been studied with thermodynamic and kinetic view.The main conclusions are summarized as follows:

    (1)Mullite whiskers are single crystalline and possess uniform morphology with 200~400 nm in diameter and several microns in length.HRTEM image reveals that the interplanar spacing of 0.539 nm is in accordance with the spacing of the(110)crystal plane of mullite.

    (2)According to the thermodynamic calculation,aluminum sulfate decomposition reaction is the most important controlling step,and α-Al2O3form in sulfate flux at 720℃without silica species introducing in raw materials.

    (3)The apparent activation energy(Ea)of Al2(SO4)3decomposition is 257.2 kJ.mol-1which is calculated through Kissinger-Akahira-Suno method with various heating rates(β=5,10 and 15 K.min-1).

    猜你喜歡
    氧化硅旱區(qū)莫來石
    莫來石晶須生長機理及研究進展
    陶瓷學報(2020年6期)2021-01-26 00:38:08
    堇青石-莫來石質(zhì)陶瓷板的試驗性研究
    山東陶瓷(2020年5期)2020-03-19 01:35:28
    納米η-Al2O3粉與不同硅源原位合成莫來石的研究
    陶瓷學報(2019年6期)2019-10-27 01:18:22
    高純度莫來石晶須的制備與分散
    陶瓷學報(2019年6期)2019-10-27 01:18:20
    一種含有適量硅和氧的氧化硅的制備方法
    納米氧化硅對RAW264.7細胞的DNA損傷作用
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    寒旱區(qū)水工混凝土結(jié)構(gòu)常見病害及修復(fù)技術(shù)
    鋁合金氣缸套及制作方法
    鋁加工(2014年1期)2014-12-05 00:47:52
    華北寒旱區(qū)3種根莖作物初霜后光合特性及水分利用
    少妇高潮的动态图| 悠悠久久av| 欧美性猛交╳xxx乱大交人| 女同久久另类99精品国产91| 亚洲最大成人中文| 又黄又爽又刺激的免费视频.| 男人狂女人下面高潮的视频| 亚洲狠狠婷婷综合久久图片| 波多野结衣高清作品| 九九久久精品国产亚洲av麻豆| 免费在线观看影片大全网站| 91狼人影院| 中文字幕久久专区| 性插视频无遮挡在线免费观看| 国内揄拍国产精品人妻在线| 亚洲真实伦在线观看| 国产精品国产高清国产av| 啦啦啦啦在线视频资源| 久久国内精品自在自线图片| 听说在线观看完整版免费高清| 亚洲自偷自拍三级| 精品久久久久久,| 成人av一区二区三区在线看| 日韩欧美在线乱码| 国产色爽女视频免费观看| 久久久色成人| 欧美zozozo另类| a级毛片a级免费在线| 深夜精品福利| 精华霜和精华液先用哪个| 又粗又爽又猛毛片免费看| 三级国产精品欧美在线观看| 国语自产精品视频在线第100页| 免费看光身美女| 少妇的逼水好多| 国产又黄又爽又无遮挡在线| 97超级碰碰碰精品色视频在线观看| 中国美女看黄片| 岛国在线免费视频观看| 免费大片18禁| 精品久久国产蜜桃| 高清日韩中文字幕在线| 在线观看一区二区三区| 无遮挡黄片免费观看| 91久久精品电影网| 夜夜看夜夜爽夜夜摸| 国产精品国产高清国产av| 亚洲va日本ⅴa欧美va伊人久久| 日韩强制内射视频| 欧美极品一区二区三区四区| 婷婷亚洲欧美| 国产精品免费一区二区三区在线| 国产精品国产高清国产av| 99热精品在线国产| 亚洲人成网站在线播| 国产精品伦人一区二区| 中出人妻视频一区二区| 久久精品国产亚洲网站| 在现免费观看毛片| 久久午夜亚洲精品久久| 日韩欧美精品免费久久| 亚洲av熟女| 最近视频中文字幕2019在线8| 国产成年人精品一区二区| 男人舔女人下体高潮全视频| 国产精品福利在线免费观看| 国产精品久久久久久久电影| 麻豆成人av在线观看| 欧美日本视频| 中文字幕久久专区| 亚洲欧美激情综合另类| 日韩av在线大香蕉| 国产精品日韩av在线免费观看| 午夜福利欧美成人| 精品人妻视频免费看| 亚洲精品一区av在线观看| 日韩中文字幕欧美一区二区| 国产高清不卡午夜福利| 看免费成人av毛片| 婷婷精品国产亚洲av| 黄色日韩在线| 久久精品91蜜桃| 日本黄大片高清| 一区二区三区高清视频在线| 两个人的视频大全免费| 一进一出抽搐gif免费好疼| 免费在线观看影片大全网站| 两个人的视频大全免费| 欧美激情国产日韩精品一区| 免费人成在线观看视频色| 精品国内亚洲2022精品成人| 真实男女啪啪啪动态图| 又黄又爽又刺激的免费视频.| 欧美潮喷喷水| 色5月婷婷丁香| 免费看光身美女| 成人永久免费在线观看视频| 人妻制服诱惑在线中文字幕| 伦理电影大哥的女人| 一个人看的www免费观看视频| 国产白丝娇喘喷水9色精品| av.在线天堂| 免费不卡的大黄色大毛片视频在线观看 | 美女高潮的动态| 国产成人av教育| 无人区码免费观看不卡| 亚洲人与动物交配视频| 国内精品宾馆在线| 一本久久中文字幕| 男人的好看免费观看在线视频| 日韩欧美精品免费久久| 亚洲四区av| 欧美色视频一区免费| 日韩欧美精品免费久久| 国产亚洲av嫩草精品影院| av女优亚洲男人天堂| 性色avwww在线观看| 国产成人影院久久av| 国产精品嫩草影院av在线观看 | 国产久久久一区二区三区| 一本精品99久久精品77| 男女那种视频在线观看| 成年免费大片在线观看| 韩国av在线不卡| 两人在一起打扑克的视频| 成年免费大片在线观看| 日本撒尿小便嘘嘘汇集6| 成人av在线播放网站| 亚洲精品粉嫩美女一区| 久久中文看片网| 国产乱人视频| 国产高清视频在线播放一区| 悠悠久久av| 久久久久久九九精品二区国产| 三级男女做爰猛烈吃奶摸视频| 欧美三级亚洲精品| 91午夜精品亚洲一区二区三区 | 国内精品宾馆在线| 国产精品一区www在线观看 | 国语自产精品视频在线第100页| 九九在线视频观看精品| 国产精品一区二区性色av| av中文乱码字幕在线| 亚洲精品亚洲一区二区| 久久人人精品亚洲av| av中文乱码字幕在线| 男女下面进入的视频免费午夜| 日本色播在线视频| 人人妻人人澡欧美一区二区| 日韩精品青青久久久久久| 97碰自拍视频| 国产主播在线观看一区二区| 亚洲精品亚洲一区二区| 久久热精品热| 久久精品久久久久久噜噜老黄 | 国产亚洲精品综合一区在线观看| 亚洲人成网站在线播| 啦啦啦啦在线视频资源| 精品无人区乱码1区二区| 女人被狂操c到高潮| 欧美极品一区二区三区四区| av在线老鸭窝| 级片在线观看| 亚洲在线观看片| 国产在视频线在精品| 国产高清三级在线| 日韩大尺度精品在线看网址| 九色国产91popny在线| 日韩大尺度精品在线看网址| 午夜免费男女啪啪视频观看 | 能在线免费观看的黄片| 在线免费观看的www视频| 丰满的人妻完整版| 少妇的逼好多水| 国产免费av片在线观看野外av| 国产 一区精品| 特级一级黄色大片| 特级一级黄色大片| 亚洲午夜理论影院| 男女那种视频在线观看| 女人被狂操c到高潮| 欧美成人免费av一区二区三区| 特大巨黑吊av在线直播| 老师上课跳d突然被开到最大视频| 99热这里只有精品一区| 午夜福利成人在线免费观看| 女的被弄到高潮叫床怎么办 | 成年女人看的毛片在线观看| 在线a可以看的网站| 日韩一本色道免费dvd| 久久久久久九九精品二区国产| 亚洲自拍偷在线| 亚洲成av人片在线播放无| 白带黄色成豆腐渣| 在线观看av片永久免费下载| www日本黄色视频网| 午夜福利欧美成人| 在线观看一区二区三区| 亚洲熟妇中文字幕五十中出| 哪里可以看免费的av片| 九九热线精品视视频播放| 一夜夜www| 国产精品久久久久久av不卡| 91在线精品国自产拍蜜月| 制服丝袜大香蕉在线| 69人妻影院| 国产淫片久久久久久久久| 成熟少妇高潮喷水视频| 日日摸夜夜添夜夜添小说| 国产精品98久久久久久宅男小说| 91午夜精品亚洲一区二区三区 | 久久午夜亚洲精品久久| 欧美成人免费av一区二区三区| 日韩欧美在线乱码| 免费看光身美女| 成人av一区二区三区在线看| 亚洲精品日韩av片在线观看| 天堂√8在线中文| 久久亚洲真实| 麻豆精品久久久久久蜜桃| 精品人妻一区二区三区麻豆 | 国产精品精品国产色婷婷| 久久久久久久精品吃奶| 国产精品一区www在线观看 | 色噜噜av男人的天堂激情| 国产精品国产三级国产av玫瑰| 亚洲av第一区精品v没综合| 亚洲国产色片| 精品99又大又爽又粗少妇毛片 | 国产精品一及| 黄色视频,在线免费观看| 欧美激情在线99| 午夜福利视频1000在线观看| 亚洲成a人片在线一区二区| av黄色大香蕉| 麻豆av噜噜一区二区三区| 又粗又爽又猛毛片免费看| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| 色综合站精品国产| 桃红色精品国产亚洲av| 欧美极品一区二区三区四区| 国产精品电影一区二区三区| 久久久久久久久久成人| 悠悠久久av| 男女做爰动态图高潮gif福利片| a级毛片免费高清观看在线播放| 亚洲精品久久国产高清桃花| 成年免费大片在线观看| 成人美女网站在线观看视频| 国产精品98久久久久久宅男小说| 亚洲欧美日韩无卡精品| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 国产精品永久免费网站| 成人永久免费在线观看视频| 99国产极品粉嫩在线观看| 亚洲18禁久久av| 国产高清有码在线观看视频| 亚洲人与动物交配视频| 黄色丝袜av网址大全| 人妻制服诱惑在线中文字幕| 亚洲自拍偷在线| 亚洲精品国产成人久久av| 亚洲四区av| 国产av一区在线观看免费| 亚洲国产精品合色在线| 国产免费一级a男人的天堂| 国产男靠女视频免费网站| 久久久久久大精品| 好男人在线观看高清免费视频| 欧美中文日本在线观看视频| 老女人水多毛片| 搞女人的毛片| 波多野结衣高清无吗| 国内揄拍国产精品人妻在线| 日本爱情动作片www.在线观看 | 国国产精品蜜臀av免费| 久久久国产成人免费| 日日夜夜操网爽| 国产视频一区二区在线看| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 亚洲成人久久爱视频| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在 | 色综合亚洲欧美另类图片| 91在线精品国自产拍蜜月| 国产日本99.免费观看| 联通29元200g的流量卡| 99久久久亚洲精品蜜臀av| www.色视频.com| 亚洲av第一区精品v没综合| 99热这里只有是精品在线观看| 国产午夜精品论理片| 午夜福利在线在线| 欧洲精品卡2卡3卡4卡5卡区| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品久久男人天堂| 国内精品一区二区在线观看| 村上凉子中文字幕在线| 欧美性猛交黑人性爽| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 国产白丝娇喘喷水9色精品| 国产精品福利在线免费观看| 国内毛片毛片毛片毛片毛片| 别揉我奶头~嗯~啊~动态视频| 久久久久久久亚洲中文字幕| 亚洲国产高清在线一区二区三| 高清日韩中文字幕在线| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 国产精品自产拍在线观看55亚洲| 俺也久久电影网| 午夜久久久久精精品| 又紧又爽又黄一区二区| 99久久精品热视频| 亚洲va在线va天堂va国产| 国产 一区 欧美 日韩| 精品福利观看| 一级a爱片免费观看的视频| 嫩草影院新地址| 国产精品久久久久久久久免| 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 日本免费a在线| 欧美高清性xxxxhd video| 全区人妻精品视频| 免费电影在线观看免费观看| 99久久精品国产国产毛片| 国产精品一区二区免费欧美| 欧美日韩综合久久久久久 | 嫩草影院精品99| 国产亚洲av嫩草精品影院| 成人综合一区亚洲| 国产一区二区三区视频了| 国产乱人视频| 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| 精品日产1卡2卡| 亚洲国产精品合色在线| 婷婷色综合大香蕉| 日韩av在线大香蕉| 久久国产精品人妻蜜桃| 我的老师免费观看完整版| 长腿黑丝高跟| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| 成人国产一区最新在线观看| 欧美一区二区国产精品久久精品| 亚洲欧美激情综合另类| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 精品乱码久久久久久99久播| 国产精品一区www在线观看 | 欧美一区二区国产精品久久精品| 午夜激情欧美在线| 看黄色毛片网站| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 中文字幕免费在线视频6| av天堂中文字幕网| 色吧在线观看| a在线观看视频网站| 窝窝影院91人妻| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 99热6这里只有精品| 少妇高潮的动态图| 国产蜜桃级精品一区二区三区| 91在线精品国自产拍蜜月| 国产精品永久免费网站| 精品一区二区三区视频在线观看免费| 国产亚洲91精品色在线| 久久午夜福利片| 啦啦啦观看免费观看视频高清| 久久久久久九九精品二区国产| 成人特级av手机在线观看| 无人区码免费观看不卡| 中国美白少妇内射xxxbb| 少妇丰满av| 高清毛片免费观看视频网站| 日本一本二区三区精品| 国产三级中文精品| 午夜亚洲福利在线播放| 亚洲第一电影网av| 国产女主播在线喷水免费视频网站 | 亚洲精华国产精华精| 亚洲在线自拍视频| 日韩人妻高清精品专区| 国产黄色小视频在线观看| 亚洲第一电影网av| 国产精品一区二区性色av| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| 22中文网久久字幕| 91在线精品国自产拍蜜月| 尤物成人国产欧美一区二区三区| av专区在线播放| 久久香蕉精品热| 有码 亚洲区| 亚洲精品久久国产高清桃花| 干丝袜人妻中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久性| 精品乱码久久久久久99久播| 在线免费观看不下载黄p国产 | 成年女人永久免费观看视频| 如何舔出高潮| 永久网站在线| 制服丝袜大香蕉在线| 国产高清三级在线| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 成人特级黄色片久久久久久久| 窝窝影院91人妻| 波多野结衣高清无吗| 国产成人影院久久av| 亚洲av中文字字幕乱码综合| 色噜噜av男人的天堂激情| 精品人妻熟女av久视频| 久久久久国产精品人妻aⅴ院| 国产精品一区二区三区四区久久| 欧美3d第一页| 一级黄色大片毛片| 色综合站精品国产| 国内久久婷婷六月综合欲色啪| 一进一出抽搐gif免费好疼| 国产精品久久久久久av不卡| 窝窝影院91人妻| 男人舔女人下体高潮全视频| 毛片一级片免费看久久久久 | 中文字幕久久专区| 亚洲国产精品sss在线观看| 亚洲最大成人手机在线| netflix在线观看网站| 免费av毛片视频| 51国产日韩欧美| 婷婷精品国产亚洲av| 国产精品日韩av在线免费观看| 精品99又大又爽又粗少妇毛片 | 亚洲四区av| 国产午夜精品论理片| 亚洲av.av天堂| 99热这里只有是精品在线观看| 国产精品1区2区在线观看.| 男女边吃奶边做爰视频| 亚洲精品乱码久久久v下载方式| 老熟妇仑乱视频hdxx| 99久久无色码亚洲精品果冻| 99热精品在线国产| 日韩精品有码人妻一区| 久久久国产成人免费| 国产精品国产高清国产av| 国产精品三级大全| 成熟少妇高潮喷水视频| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 亚洲中文字幕一区二区三区有码在线看| 黄色视频,在线免费观看| 男女那种视频在线观看| 少妇人妻一区二区三区视频| 毛片女人毛片| 久久久久久久久久成人| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 一进一出抽搐gif免费好疼| www.www免费av| 天堂av国产一区二区熟女人妻| 欧美成人a在线观看| 久久久久久久久中文| 精品一区二区免费观看| xxxwww97欧美| 三级国产精品欧美在线观看| 色播亚洲综合网| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 精品人妻1区二区| 麻豆成人午夜福利视频| 日本成人三级电影网站| 一级毛片久久久久久久久女| 十八禁国产超污无遮挡网站| eeuss影院久久| 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 18禁在线播放成人免费| av专区在线播放| 香蕉av资源在线| 91麻豆av在线| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| 久久精品国产亚洲av涩爱 | 99在线视频只有这里精品首页| 国内久久婷婷六月综合欲色啪| 精品福利观看| 村上凉子中文字幕在线| 亚州av有码| 欧美激情在线99| 成人综合一区亚洲| 亚洲精品日韩av片在线观看| 欧美3d第一页| av天堂在线播放| 最近最新免费中文字幕在线| 国产探花在线观看一区二区| 日韩精品青青久久久久久| 亚洲av一区综合| 色5月婷婷丁香| 欧美精品国产亚洲| 国产在线精品亚洲第一网站| 草草在线视频免费看| 免费在线观看成人毛片| 国产女主播在线喷水免费视频网站 | 亚洲在线观看片| 亚洲av.av天堂| 久久精品国产亚洲av天美| 黄片wwwwww| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 久久久久九九精品影院| 久99久视频精品免费| 全区人妻精品视频| videossex国产| 亚洲专区国产一区二区| 久久亚洲真实| 不卡视频在线观看欧美| 狠狠狠狠99中文字幕| 久久久久久久久久成人| 免费看美女性在线毛片视频| 日韩在线高清观看一区二区三区 | 成年人黄色毛片网站| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 白带黄色成豆腐渣| 性插视频无遮挡在线免费观看| 日韩国内少妇激情av| 日韩欧美免费精品| 国产成人a区在线观看| 亚洲av免费在线观看| 日本一本二区三区精品| 深夜精品福利| 亚洲在线观看片| 亚洲av成人av| 国产色婷婷99| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩黄片免| 久久午夜亚洲精品久久| 午夜福利在线观看免费完整高清在 | 欧美潮喷喷水| 久久精品综合一区二区三区| 欧美潮喷喷水| 综合色av麻豆| 国产精品一区二区免费欧美| 久久久久久久久大av| 国内久久婷婷六月综合欲色啪| 久久久久久久久大av| 国产又黄又爽又无遮挡在线| 日韩欧美三级三区| 日本一本二区三区精品| 美女高潮喷水抽搐中文字幕| 黄色欧美视频在线观看| 日韩欧美精品v在线| 两人在一起打扑克的视频| 精品人妻1区二区| xxxwww97欧美| 成人三级黄色视频| 中出人妻视频一区二区| 亚洲自拍偷在线| 久99久视频精品免费| 在线观看66精品国产| 91久久精品国产一区二区成人| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 三级毛片av免费| 国产精品综合久久久久久久免费| 午夜爱爱视频在线播放| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 亚洲自拍偷在线| 亚洲欧美精品综合久久99| 久久精品久久久久久噜噜老黄 | 亚洲男人的天堂狠狠| 色噜噜av男人的天堂激情| 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 校园春色视频在线观看| 国产精品av视频在线免费观看| 午夜久久久久精精品| 十八禁网站免费在线| 国产精品野战在线观看| 久久精品影院6| 中文字幕高清在线视频| 国产黄a三级三级三级人| 成人欧美大片| a级毛片免费高清观看在线播放| 天堂影院成人在线观看| 久久中文看片网| 精品久久久久久久人妻蜜臀av| 欧美性猛交黑人性爽| 亚洲,欧美,日韩| 成人午夜高清在线视频| 熟女电影av网| 国产淫片久久久久久久久|