• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同氧化硅前驅(qū)體熔鹽反應(yīng)制備莫來石晶須

    2019-10-09 08:50:18馬雪冬韓霽昌
    無機化學學報 2019年10期
    關(guān)鍵詞:氧化硅旱區(qū)莫來石

    馬雪冬 韓霽昌 杜 煒 王 偉*,,3

    (1長安大學環(huán)境科學與工程學院,旱區(qū)地下水文與生態(tài)效應(yīng)教育部重點實驗室,西安 710054)

    (2國土資源部退化及未利用土地整治工程重點實驗室,西安 710075)

    (3長安大學,陜西省土地整治重點實驗室,西安 710054)

    0 Introduction

    Mullite is a strong candidate material for advanced structural applications at high temperature,because of its low thermal expansion,low thermal conductivity,high temperature creep resistance,good chemical and thermal stability[1].Mullite is the only stable compound in the Al2O3-SiO2system at atmosphere pressure,and it is a peritectic phase,but under certain conditions it can solidify metastable without prior alumina nucleation.The crystal structure of mullite is orthorhombic and is generally viewed as a defect from sillimanite,Al2O3.SiO2.The mullite structure consists of chains of edge-sharing AlO6octahedra running parallel to the caxis.These chains are cross-linked by alternating(Si,Al)O4tetrahedra forming chains,which also run parallel to the c-axis[2].Each octahedron shares two oxygen atoms,along an edge,with the octahedron just above it.And the tetrahedra share corner atoms in both the ab-plane (forming the double-chain)and the c-axis. Because the tetrahedrally coordinated aluminium and silicon are no longer present in the ratio of 1∶1,these sites necessarily become chemically disordered.Furthermore,crystal structure analysis have identified the presence of a second tetrahedral site-displaced from the original by approximately 0.13 nm,whch is presumably occupied by cations that have lost bridging O atoms[3].Ghate et al.firstly reported kinetics of mullite about densification and grain growth[4].They assumed that diffusion of Si4+controlled densification and grain growth process.Some research literatures revealthatthe needle-like shape is common to mullite formed in the presence of a liquid,whereas sintering of Al2O3-SiO2compounds in the absence of liquid cerated aggregates or agglomerations of mullite.In the case of acicular grain growth,mullite whiskers grow in the c-axis direction and are bounded by (110)surfaces.It is believed that the prismatic (110)planes have a lower surface energy than c-axis growth,and thus,mullite grains grow in the[001]direction for thermodynamic reasons[5].

    Ceramic whiskers are commonly used as reinforcements in metal matrix composites(MMCS)and ceramic matrix composites (CMCS). For toughening of MMCS,it is required that high stresses are needed to fracture fibers at the tip of composite cracks and that the stress concentrations at the crack tips are as low as possible.In the whisker reinforced composites,high whisker stiffness implies high modulus at low temperature,which means both high modulusand high creep resistance undertimedependent deformation conditions at high temperature[6].Mullite whiskers have unique properties which result from their near-perfect structure,and it can be used to improve the mechanicalstrength,the creep resistance,chemical stability and thermal properties[7-8].Numerous methods have been developed to produce mullite whiskers[9-12],and most of them are expensive.Wang et al.synthesized CeO2-doped mullite whiskers using sol-gel process[13],and the mullitization activation energies calculated based on non-isothermal differential scanning calorimetry (DSC)are 473 and 722 kJ.mol-1for the 2%(n/n)CeO2-doped and undoped samples,respectively.Kong et al.[14-15]obtained the anisotropic microstructure of mullite ceramics by high-energy ball milling method.Wang et al.[16-17]prepared mulllite whiskers with diameters ranging from 30 to 150 nm and lengths of over several microns through molten salts reactions.Mullite whiskers were also obtained by means of the thermal decomposition of natural colorless topaz doped with rare earth oxides[18].Molten salt reaction has been employed to synthesis ceramic powders because itdecreases reaction temperature and gives powders of homogeneous morphology[19-20]. Molten salts provide liquid environment in which the nucleation and growth of grains are dependent on the dissolution of chemical reagents in the molten flux.Yang et al.prepared highly ordered mullite nanowhiskers using B2O3-doped molten salt synthesis method,and the reaction mechanism is attributed to local concentration gradient[21].Zhu et al.studied the mullite growth mechanism using aluminum sulfate and silica as raw materials in molten sodium sulfate by the differential scanning calorimetry[22].Zhang et al.synthesized mullite whiskers with Al2(SO4)3and Al(OH)3as alumina precursors by molten salt synthesis,and experimental result indicate that amorphous Al2O3is beneficial for the formation of mullite[23].When amorphous Al2O3is produced by the decomposition reaction of Al2(SO4)3,the total reaction processes are comprehensive and complicate paths included solid-liquid-gas phase transformation,the thermal pyrolysis mechanism of aluminum sulfate have been researched somewhat,but the decomposition reaction hasn′t been extensively investigated from the thermodynamic and kinetic view.

    Herein,mullite whiskers were prepared using kieselguhr or silica fume as silica precursors in molten salt system,and α-Al2O3was also obtained in Na2SO4flux through decomposition reaction of aluminum sulfate without silica involved in comprehensive reactions.Silica fume emerges as a byproduct from the melting ferrosilicon alloy,and this solid waste presents serious problems of storing and environmental pollution.Kieselguhr is a kind of siliceous sedimentary rock originated from ancient biologicalcells,which can be used asthermal insulation materials,filler sand catalyst carriers in industry field. Although chemical composition,morphology and structure have great differences,SiO2is the mainly ingredients forsilica fume and kieselguhr.Influence on the resulting product can be shown through differentsilica sources selecting,interesting for this contrast,the same product(mullite whiskers)was fabricated in our experiments.Decomposition kinetics of aluminum sulfate was explored using dynamic thermal analysis at different heating rates(β)of 5,10 and 15 K.min-1,respectively.Moreover,amorphous Al2O3can be transformed into mullite phase because mullite is more stable state for Al2O3-SiO2eutectic phase while silica precursors are used as raw materials.

    1 Experimental

    1.1 Preparation

    Selected silica fume (Xi′an Linyuan silica fume Ltd.)and kieselguhr(Tianjin Bodi Chemical Co.,Ltd.)were used as the silica precursors to fabricate mullite whiskers,and physical parameters of kieselguhr and silica fume are listed in Table 1.Al2(SO4)3and Na2SO4were weighed accurately according to the molar ratio of SiO2,Al2(SO4)3and Na2SO4(nSiO2∶nAl2O3∶nNa2SO4=6∶1∶10).The mixture was grinded in a ceramic mortar for 20 minutes,and then heated to final temperature of 800℃ (or 900℃)for 2 h.The samples were washed with hot water to remove sodium sulfate (non reacting solvent).Then,white mullite powders were obtained after filtration,washed and dried.

    Amorphous alumina,composition ofmullite(3Al2O3.2SiO2),came from the pyrolysis of Al2(SO4)3in this experiment.In order to investigate the influence of aluminum sulfate,the product of Al2(SO4)3decomposition was obtained in molten salt system,and the preparation process is described as follows:Firstly,Al2(SO4)3and Na2SO4were weighed accurately according to molar ratio of Al2(SO4)3to Na2SO4being 1∶5,andthe mixed powder(Al2(SO4)3+Na2SO4)was grinded in a ceramic mortar for 20 min.Subsequently,the mixed powders was placed in the bottom of alumina crucible and slowly heated to 900℃for 2 h and then cooled down to room temperature in a furnace.Finally,the product was obtained after boiling in distilled water,filtration and drying.

    Table 1 Physical parameters of kieselguhr and silica fume

    1.2 Characterization

    Crystalline phase of the sample was examined by using X-ray diffractometer(XRD,D/MAX-RA),with monochromated Cu Kα radiation (λ=0.154 18 nm)operating at 40 kV and 30 mA,scanning range(2θ)from 10°to 80°.Scanning electronic microscope(SEM,S-4800)coupled with energy dispersive spectrometer(EDS,INCA-350)was used to characterize and analyze the microstructure,which was operated at 20 kV and 20 mA.High-resolution TEM (HRTEM)and selected area electron diffraction (SAED)were conducted on the JEOL-2100F to characterize the microstructures of the whiskers.The sizes and distributions of particles were analyzed usingMalvern laserparticle size analyzer (Mastersizer 2000).The decomposition of Al2(SO4)3was performed in a simultaneous thermogravimetry and differential scanning calorimetry(TGDSC)(STA 449F5,Netzsch,Germany).About 15 mg of sample was taken in a platinum crucible and heated from 300 to 1 273 K in nitrogen environment with a constant flow rate of 40 mL.min-1(with 99.99%purity)at different heating rates(β)being 5,10 and 15 K.min-1.

    2 Results and discussion

    2.1 XRD analysis

    Fig.1 shows XRD patterns of final products using silica fume(or kieselguhr)as raw materials for molten salt synthesis.Mullite phase has been formed in the samples heated at 800 and 900℃,since there exist several strong peaks at 2θ=16.52°,26.32°,31.08°,33.36°,35.36°,40.92°and 49.52°,which are attributed to the(111),(210),(001),(220),(111),(121)and(311)planes of the orthorhombic type(mullite)phase,respectively[24].A series of peaks are showed in Fig.1a at 28.03°,38.08°,39.63°,40.72°and 46.91°,which can be ascribed to the(211),(202),(022),(220)and(131)planes of Al2SiO5,respectively.In addition,some weak peaks in Fig.1(b)were also checked out,which result from the impurities of kieselguhr.

    Fig.1 XRD patterns of mullite powders synthesized by silica fume(a)and kieselguhr(b)

    2.2 SEM analysis

    TheSEM photographsandEDSspectraof prepared mullite whiskers are shown in Fig.2.It can be seen that the morphologies of samples (Fig.2a~b)synthesized at 800℃are not perfect in comparison with the samples (Fig.2c,2e)synthesized at 900℃.No matter which SiO2-containing material is used,mullite whiskers will grow better at higher temperatures.Although the chemical composition of silica fume and kieselguhr is different,the final product is mullite(3Al2O3.2SiO2)whiskers.It is well known that edge-shared AlO6octahedral chains align in the cdirection and are crosslinked by corner-shared(Si,Al)O4tetrahedra in unit cell of mullite crystal[25].And the mullite crystal growth may be faster in crystallographic direction parallelto the c-axis than in other directions,resulting in a high degree of orientation.The whiskers that prepared at 800 and 900℃both possess nanometer-sized diameters and micrometersized lengths.The corresponding EDS spectra of the whiskers fabricated from silica fume in Fig.2(d)and kieselguhr in Fig.2(f)indicate that the sample consist of Al,Si,O,Na,S and C.Moreover,the quantitative analysis shows that their average atomic ratio(nAl∶nSi∶nO=6 ∶2 ∶13)approximates the stoichiometric ratio of mullite.The signals of elemental Na,S and C came from molten saltsmedia (Na2SO4)and carbonconductive tape for sample uploading.

    Fig.2 SEM micrographs and EDS spectra of the mullite whiskers prepared from silica fume at 800℃(a),kieselguhr at 800℃(b),silica fume at 900℃(c~d)and kieselguhr at 900℃(e~f)

    2.3 TEM analysis

    Fig.3 shows TEM image,HRTEM image and SAED pattern of the samples prepared from silica fume and kieselguhr.It can be seen that the average diameter of mullite whiskers was in a range of 50~150 nm and the length was over several microns.The selected-area electron diffraction patterns from the mullite whiskers in Fig.3(a,c)can be indexed to the orthorhombic structure.HRTEM image showed that the spacing was 0.539 nm,in accordance with(110)crystal plane spacing of mullite,which indicates that the mullite crystal grows along c-axis firstly and develops into fibrous microstructure[26].

    Fig.3 TEM images(left)and HRTEM images(right)of mullite whiskers prepared from silica fume(a~b)and kieselguhr(c~d)at 900℃

    2.4 TG-DSC,XRD,SEM and particle size distributions analysis for aluminum sulfate decomposition

    It can be seen that mullite whiskers formed in Al2(SO4)3+Na2SO4molten salts system using Kieselguhr or silica fume as silica precursors.If silica is not existed in molten sulfate flux,what will be happened in the system?According to some literatures[23],the decomposition reaction of Al2(SO4)3take place firstly and amorphous γ-Al2O3forms above 700 ℃ .In the second step,the γ-Al2O3subsequently reacted with silica and transformed into other product.Therefore,two interesting questions are how the Al2(SO4)3is decomposed in sodium sulfate (non-reactive solvent)and how to analyze the resulting product to confirm this decomposition reaction mechanism.

    Fig.4(a)shows the TG-DSC curve of aluminum sulfate octadecahydrate pyrolysis.It can be seen that the weight loss mainly takes place in the following three main ranges.The first weight loss (23.59%)is attributed to the dissociation of absorbed water from 75 to 150℃,and one endothermic peak appeared in theDSC curve simultaneously.Thesecond one occured between 150 and 400℃and the relevant weight loss ratio was 16.56%,which is ascribed to the removing of intramolecular crystal water.The third one(Weight loss:37.60%)happened in a temperature range from 700 to 900℃,corresponding to an endothermic peak on the DSC curve,indicating that the decomposition of aluminum sulfate[23].

    The synthesized product is characterized by X-ray diffraction (XRD)to determine phase.As can be seen from Fig.4(b),all of the diffraction peaks can be assigned to rhombohedral α-Al2O3(PDF No.46-1212).No residue or contaminant has been detected,indicating the high purity of the sample[27].Fig.4(c)presents the SEM image of α-Al2O3particles,from which the α-Al2O3is seen to be several hundred nanometers in diameter.Fig.4(d)shows the size distribution of assynthesized α-Al2O3particles.The average diameter was found to be 400~500 nm.Sodium sulfate is a kind of high temperature solvent medium,which is beneficial for ion diffusion and stable phase growth.Amorphous alumina from Al2(SO4)3decomposition transformed into α-Al2O3due to the lack of silica precursor.

    Fig.4 (a)TG-DSC curves of aluminum sulfate octadecahydrate decomposition;(b)XRD pattern of as-synthesized α-Al2O3powders;(c)SEM morphology of as-synthesized α-Al2O3powders;(d)Particle size distributions for α-Al2O3powders

    2.5 TEM analysis of as-synthesized α-Al2O3powder

    Fig.5 shows TEM image,HRTEM image and SAED pattern of the as-synthesized α-Al2O3powder.It can be seen that the width of this powder was in a range of 400~600 nm and the length was over one micron.The selected-area electron diffraction patterns in Fig.5(a)can be indexed to the rhombohedral crystal system.HRTEM image shows that the crystal plane spacing is 0.237 9 nm,in accordance with(110)crystal plane spacing of α-Al2O3,which confirms that α-Al2O3powder is formed in Al2(SO4)3-Na2SO4molten salt system.

    Fig.5 (a)TEM image of individual α-Al2O3powder after ultrasonic treatment;(b)HRTEM image of the powder

    2.6 Thermodynamic analysis

    The utilization ofaluminum sulfate thermal pyrolysis to prepare mullite whiskers has been researched somewhat[28],but the decomposition process hasn′t intensively been investigated from thermodynamic and kinetics point of view.Almost all the literatures think that amorphous γ-Al2O3firstly forms in the liquid after decomposition of Al2(SO4)3according to reaction(2)[29-30].But α-Al2O3also forms as confirmed by the above mentioned characterization,indicating that α-Al2O3phase derives from the decomposition reaction (1).According to traditional knowledge,the higher temperature is necessary for α-Al2O3phase formation[31].Thus,we try to explain α-Al2O3formation through the thermal pyrolysis of Al2(SO4)3in high temperature solventmedium (Na2SO4)from the thermodynamic view.

    The decomposition of Al2(SO4)3is controlled by pressure and temperature.For the reaction path(1)and (2),their free energy changes with temperature are shown in Fig.6,which is derived from ΔG=ΔG?+ΔnRTln(p/p?)with ΔG?=ΔH?-TΔS?.As pressure and temperature are two interrelated variables about the reaction free energy change,the effect of pressure on the reaction free energy change is weak and the reaction free energy change(ΔG)can be calculated in p=p?condition.Therefore,when p=p?(constant pressure),ΔG=ΔG?=ΔH?-TΔS?with ΔH?=ΔH?f(α-Al2O3or γ-Al2O3)+3ΔH?f(SO3)-ΔH?

    f(Al2(SO4)3)and ΔS?=S?

    (α-Al2O3or γ-Al2O3)+3S?(SO3)-S?(Al2(SO4)3).The data of ΔH?and S?are obtained from the reference[32].The

    ffree energy changes(ΔG)of reaction(1)and reaction(2)with temperature are shown in Fig.6.The reaction path (1)could not happen in the lower temperature range (G>0),and the reaction would process vigorously when the temperature is up to 993 K(ΔG<0). With the similar changing tendency, the equilibrium point of reaction path(2)is 1 023 K,and this chemical equilibrium could exist according to positive direction at higher temperature range(>1 023 K).It is well known that alumina exists in various stable and metastable phases[33],such as alumina hydrate(Al2O3.nH2O),transition state alumina(β-Al2O3, θ-Al2O3,η-Al2O3,γ-Al2O3,etc.)and stable phase alumina(α-Al2O3).Among them,the firsttwo typesare metastable phases.The metastable phases(β-Al2O3,θ-Al2O3,η-Al2O3,γ-Al2O3,etc.)can be converted into α-Al2O3by high temperature sintering irreversibly.

    Fig.6 Changes of free energy ΔG for reactions(1)and(2)depending on temperature

    It can been seen that γ-Al2O3is a kind of metastable phase for alumina,in addition,γ-Al2O3could be transformed into more stable mullite phase when some silica sources coexist in molten salt system.The reaction of mullite formation can be described as reaction(3).

    Where γ-Al2O3comes from the decomposition of Al2(SO4)3,and γ-Al2O3subsequently transforms into mullite through Eq.(3),which is a commonly accepted mechanism of mullite formation.The mixture of γ-Al2O3and SiO2is converted in a liquid molten salts environment,especially when they are intrinsic mixed in a molecular level.The reaction kinetic need not be considered because the diffusion paths of ingredient is so fast through the L-S growth mechanism[34].Free energy change of reaction (3)reveal that mullite formation is a spontaneous process(Fig.7).Therefore,reaction(1),(2)and(3)should be considered together,and the decomposition of aluminum sulfate is the most important controlling step.

    Fig.7 Change of free energy ΔG for reactions(3)depending on temperature

    In the Al2(SO4)3-Na2SO4molten salts,aluminum sulfate decomposition and transformation into γ-Al2O3determine the growth rate of mullite whiskers.The γ-Al2O3is more active in the molten salts system because the combination reaction (3)involves mullite formation.Atthe same time,mullite whiskers formation reaction can consume γ-Al2O3and SiO2,which accelerate the progress of reaction (2).The mullite whiskers growth mechanism can be described asfollows:aluminum cationsfirstly exsitwhen temperature increase to the eutectic point(Al2(SO4)3-Na2SO4),and then amorphous γ-Al2O3is produced by the decomposition reaction of Al2(SO4)3.Subsequently,SiO2coming from silica fume or kieselguhr can be dissolved in sulfate flux and the mullite nuclei are formed in this process.Then,mullite crystal grow quickly along the specific prismatic planes because it is the lowest surface energy barrier.The silica is consumed continuously in accordance with the abovementioned combination reaction(3).

    It is well known that the diffusion of Si4+controlls densification and grain growth process of mullite whiskers[4].Some literatures reveal that the needle-like shape is common to mullite formed in the presence of a liquid environment,and molten salts system provide a high ionic conductivity environment for crystal growth.Mullite whiskers growth requires the supply of silica species.In the absence of silica taking part in reactions,α-Al2O3formsasthe productofthe decomposition of Al2(SO4)3,while silica fume(or kieselguhr)is used as the starting reactant,then reaction(3)takes place in molten salts system,which eventually affects the decomposition of aluminum sulfate and the growth of mullite whiskers.

    2.7 Kinetic analysis

    Fig.8 Plot of DTG vs T(a),ln(β/Tp2)vs 1/Tp(b)for Al2(SO4)3decomposition reaction

    In non-isothermal decomposition study,kinetic parameters are easily calculated from thermo-kinetic analysis.Among the integral methods,Kissinger-Akahira-Suno method gives more accurate apparent activation energy(Ea)as compared to other methods[35-36].Therefore,different heating rates(β)of 5,10 and 15 K.min-1were selected to measure in this experiment and the apparent activation energy of Al2(SO4)3decomposition reaction wascalculated usingKissinger-Akahira-Suno method.The equation is expressed as follows:Where Eais the apparent activation energy and R is the gas constant,T denotes temperature,Tpis the peak temperature of DTG curves(Fig.8a)and β is the heating rate(β=dT/dt).Peak temperatures(Tp)appeared at 1 116,1 141 and 1 159 K,which were ascribed to β=5,10 and 15 K.min-1,respectively.With the different heating rates,the plots(Fig.8b)of ln(β/Tp2)against 1/Tpgave a straight line,and the slope of the corresponding line gave the value of apparent activation energy(Table 2).The apparent activation energy of Al2(SO4)3decomposition reaction is 257.2 kJ.mol-1.

    Table 2 Decomposition peak temperature and apparent activation energy for main decomposition of Al2(SO4)3

    3 Conclusions

    Mullite whiskers had been prepared by molten salt synthesis,and α-Al2O3was formed in sulfate flux without silica species taking part in molten salt reactions.Aluminum sulfate decomposition and mullite formation reaction pathshad been studied with thermodynamic and kinetic view.The main conclusions are summarized as follows:

    (1)Mullite whiskers are single crystalline and possess uniform morphology with 200~400 nm in diameter and several microns in length.HRTEM image reveals that the interplanar spacing of 0.539 nm is in accordance with the spacing of the(110)crystal plane of mullite.

    (2)According to the thermodynamic calculation,aluminum sulfate decomposition reaction is the most important controlling step,and α-Al2O3form in sulfate flux at 720℃without silica species introducing in raw materials.

    (3)The apparent activation energy(Ea)of Al2(SO4)3decomposition is 257.2 kJ.mol-1which is calculated through Kissinger-Akahira-Suno method with various heating rates(β=5,10 and 15 K.min-1).

    猜你喜歡
    氧化硅旱區(qū)莫來石
    莫來石晶須生長機理及研究進展
    陶瓷學報(2020年6期)2021-01-26 00:38:08
    堇青石-莫來石質(zhì)陶瓷板的試驗性研究
    山東陶瓷(2020年5期)2020-03-19 01:35:28
    納米η-Al2O3粉與不同硅源原位合成莫來石的研究
    陶瓷學報(2019年6期)2019-10-27 01:18:22
    高純度莫來石晶須的制備與分散
    陶瓷學報(2019年6期)2019-10-27 01:18:20
    一種含有適量硅和氧的氧化硅的制備方法
    納米氧化硅對RAW264.7細胞的DNA損傷作用
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    寒旱區(qū)水工混凝土結(jié)構(gòu)常見病害及修復(fù)技術(shù)
    鋁合金氣缸套及制作方法
    鋁加工(2014年1期)2014-12-05 00:47:52
    華北寒旱區(qū)3種根莖作物初霜后光合特性及水分利用
    国产伦精品一区二区三区视频9| 免费人成在线观看视频色| 欧美日韩综合久久久久久| 亚洲国产精品专区欧美| 美女cb高潮喷水在线观看| av网站免费在线观看视频| 我要看黄色一级片免费的| 最新的欧美精品一区二区| 亚洲av不卡在线观看| av一本久久久久| 91精品一卡2卡3卡4卡| 最近的中文字幕免费完整| 免费久久久久久久精品成人欧美视频 | 一区在线观看完整版| 18+在线观看网站| 久久久久久久久久久丰满| 青春草国产在线视频| a级毛片黄视频| 国产视频首页在线观看| 亚洲精品,欧美精品| 色网站视频免费| 免费黄频网站在线观看国产| 秋霞在线观看毛片| 精品少妇久久久久久888优播| av免费在线看不卡| 最新的欧美精品一区二区| .国产精品久久| 两个人免费观看高清视频| 亚洲美女搞黄在线观看| 色婷婷久久久亚洲欧美| 亚洲欧洲日产国产| 在线观看免费日韩欧美大片 | av一本久久久久| 国产一区二区在线观看av| 国产有黄有色有爽视频| 麻豆成人av视频| 午夜免费男女啪啪视频观看| av女优亚洲男人天堂| 91精品伊人久久大香线蕉| 日韩av免费高清视频| 人人妻人人澡人人看| 亚洲国产精品一区二区三区在线| 午夜视频国产福利| 丰满饥渴人妻一区二区三| 男女边吃奶边做爰视频| 欧美日韩精品成人综合77777| 高清在线视频一区二区三区| 亚洲国产av新网站| 欧美最新免费一区二区三区| h视频一区二区三区| 韩国av在线不卡| 美女福利国产在线| 免费久久久久久久精品成人欧美视频 | 2018国产大陆天天弄谢| 国产成人午夜福利电影在线观看| 春色校园在线视频观看| 国产一区二区三区av在线| 亚洲人成网站在线播| 久久久精品94久久精品| 午夜福利网站1000一区二区三区| 日日啪夜夜爽| 国产日韩一区二区三区精品不卡 | 99热全是精品| 欧美日韩精品成人综合77777| tube8黄色片| 免费大片18禁| 精品国产一区二区久久| 美女主播在线视频| 日产精品乱码卡一卡2卡三| 日韩电影二区| 妹子高潮喷水视频| 国产高清有码在线观看视频| 久久 成人 亚洲| 搡老乐熟女国产| 多毛熟女@视频| 日韩强制内射视频| 国产男女内射视频| 亚洲精品色激情综合| www.色视频.com| 26uuu在线亚洲综合色| 日本vs欧美在线观看视频| 欧美xxⅹ黑人| 女性生殖器流出的白浆| 国产欧美亚洲国产| 免费少妇av软件| 晚上一个人看的免费电影| 夜夜骑夜夜射夜夜干| xxx大片免费视频| 夜夜看夜夜爽夜夜摸| 精品久久久噜噜| 人妻系列 视频| 日韩 亚洲 欧美在线| 一本一本综合久久| 国产亚洲精品久久久com| 午夜福利影视在线免费观看| 熟女人妻精品中文字幕| 国精品久久久久久国模美| 国产精品一区二区在线不卡| 黑人高潮一二区| 少妇丰满av| 一区二区三区精品91| 母亲3免费完整高清在线观看 | 精品一品国产午夜福利视频| 亚洲不卡免费看| 亚洲成人一二三区av| 欧美精品亚洲一区二区| 亚洲国产最新在线播放| 久久久久久久精品精品| 综合色丁香网| 男女国产视频网站| 国产男人的电影天堂91| 亚洲欧洲国产日韩| 欧美人与性动交α欧美精品济南到 | 久久精品国产a三级三级三级| 九色亚洲精品在线播放| 成年人午夜在线观看视频| 2018国产大陆天天弄谢| 97超视频在线观看视频| 亚州av有码| 成人国产麻豆网| 免费人妻精品一区二区三区视频| 亚洲精品一二三| 少妇的逼水好多| 一区二区日韩欧美中文字幕 | 亚洲天堂av无毛| 国产精品久久久久久久电影| 王馨瑶露胸无遮挡在线观看| 18禁在线播放成人免费| 国产综合精华液| 国产老妇伦熟女老妇高清| 在线 av 中文字幕| 国产视频内射| 亚洲国产最新在线播放| 国产欧美另类精品又又久久亚洲欧美| 亚洲伊人久久精品综合| 国产成人精品在线电影| 丁香六月天网| 欧美 日韩 精品 国产| 中文乱码字字幕精品一区二区三区| 午夜老司机福利剧场| 一区二区三区乱码不卡18| 男人爽女人下面视频在线观看| 国产黄色视频一区二区在线观看| 一级黄片播放器| 啦啦啦啦在线视频资源| 日日啪夜夜爽| 午夜影院在线不卡| 成人免费观看视频高清| 亚洲精品亚洲一区二区| 免费高清在线观看日韩| 伦精品一区二区三区| 国产在线视频一区二区| 成人综合一区亚洲| 亚洲精品456在线播放app| 伦理电影免费视频| av天堂久久9| 午夜免费鲁丝| 国产黄片视频在线免费观看| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 人人澡人人妻人| 亚洲欧美日韩卡通动漫| 嫩草影院入口| 国产精品一区www在线观看| 国产精品99久久99久久久不卡 | 中文精品一卡2卡3卡4更新| 国产精品人妻久久久影院| 中文精品一卡2卡3卡4更新| 日本猛色少妇xxxxx猛交久久| a级毛片免费高清观看在线播放| 男女国产视频网站| 18禁在线播放成人免费| 成人18禁高潮啪啪吃奶动态图 | 男男h啪啪无遮挡| 一区二区三区免费毛片| 国模一区二区三区四区视频| 99九九在线精品视频| 一本久久精品| 秋霞在线观看毛片| 欧美3d第一页| 久久久久久人妻| 午夜福利视频在线观看免费| 热99久久久久精品小说推荐| 午夜免费观看性视频| 国产精品人妻久久久久久| 亚洲,欧美,日韩| 国产熟女欧美一区二区| 天堂中文最新版在线下载| 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 99视频精品全部免费 在线| 国产精品.久久久| 99国产综合亚洲精品| 边亲边吃奶的免费视频| 交换朋友夫妻互换小说| 亚洲精品久久久久久婷婷小说| 国产午夜精品久久久久久一区二区三区| videosex国产| 91精品一卡2卡3卡4卡| h视频一区二区三区| 亚洲精品一二三| 国产精品.久久久| 亚洲第一区二区三区不卡| 在线天堂最新版资源| 亚洲欧美一区二区三区黑人 | 少妇人妻久久综合中文| 又大又黄又爽视频免费| 最近最新中文字幕免费大全7| 欧美少妇被猛烈插入视频| 亚洲四区av| 婷婷色av中文字幕| 高清毛片免费看| 日本91视频免费播放| 国产成人精品一,二区| 欧美一级a爱片免费观看看| 久久久久久久亚洲中文字幕| 国产免费又黄又爽又色| 午夜免费男女啪啪视频观看| 高清视频免费观看一区二区| 精品少妇黑人巨大在线播放| 中国美白少妇内射xxxbb| 美女国产高潮福利片在线看| 亚洲国产最新在线播放| 51国产日韩欧美| 黑人巨大精品欧美一区二区蜜桃 | 一本久久精品| 夜夜骑夜夜射夜夜干| 热re99久久精品国产66热6| 午夜福利视频在线观看免费| 亚洲三级黄色毛片| .国产精品久久| 一区二区三区精品91| 亚洲av.av天堂| 丰满迷人的少妇在线观看| 一区二区三区四区激情视频| xxxhd国产人妻xxx| 亚洲欧美日韩卡通动漫| 亚洲高清免费不卡视频| 另类精品久久| 女的被弄到高潮叫床怎么办| 免费少妇av软件| 欧美激情极品国产一区二区三区 | 99国产精品免费福利视频| 插逼视频在线观看| 亚洲av成人精品一二三区| 精品午夜福利在线看| 精品一区在线观看国产| 国产高清国产精品国产三级| 日本爱情动作片www.在线观看| videossex国产| 日韩亚洲欧美综合| 丝瓜视频免费看黄片| 赤兔流量卡办理| 成人亚洲精品一区在线观看| 最新的欧美精品一区二区| 夫妻午夜视频| 亚洲精品日本国产第一区| 成年av动漫网址| h视频一区二区三区| 精品酒店卫生间| 国产高清不卡午夜福利| 男女免费视频国产| 日韩中字成人| 777米奇影视久久| 精品久久蜜臀av无| 成人影院久久| 精品少妇内射三级| 亚洲欧美一区二区三区国产| 中文字幕制服av| 国产伦理片在线播放av一区| 亚洲av欧美aⅴ国产| 国产精品无大码| 一边亲一边摸免费视频| 午夜91福利影院| 另类精品久久| 少妇的逼水好多| 午夜福利网站1000一区二区三区| 国产黄频视频在线观看| 亚洲综合色网址| av国产精品久久久久影院| 下体分泌物呈黄色| 亚洲图色成人| 国产欧美亚洲国产| 日产精品乱码卡一卡2卡三| 五月玫瑰六月丁香| 欧美性感艳星| 老司机影院成人| 十八禁高潮呻吟视频| 99久久精品一区二区三区| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 韩国av在线不卡| 乱码一卡2卡4卡精品| 国产一区二区三区综合在线观看 | 秋霞在线观看毛片| 三上悠亚av全集在线观看| 午夜影院在线不卡| 亚洲在久久综合| 欧美xxⅹ黑人| 2022亚洲国产成人精品| 亚洲内射少妇av| 在线 av 中文字幕| 国产高清三级在线| 肉色欧美久久久久久久蜜桃| 美女主播在线视频| 国产黄片视频在线免费观看| 建设人人有责人人尽责人人享有的| 成人午夜精彩视频在线观看| 欧美xxⅹ黑人| 一边亲一边摸免费视频| 一级毛片我不卡| 中文字幕亚洲精品专区| 国产成人午夜福利电影在线观看| 国产精品久久久久久久电影| 一区二区av电影网| 中国国产av一级| 日韩一区二区三区影片| 国产成人午夜福利电影在线观看| 美女大奶头黄色视频| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 不卡视频在线观看欧美| 日产精品乱码卡一卡2卡三| 精品久久国产蜜桃| 高清不卡的av网站| 国产精品一二三区在线看| 老熟女久久久| 两个人免费观看高清视频| 日本-黄色视频高清免费观看| 亚洲av男天堂| 国产成人午夜福利电影在线观看| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 日本av手机在线免费观看| 如何舔出高潮| 国产成人freesex在线| 国产午夜精品久久久久久一区二区三区| 交换朋友夫妻互换小说| 亚洲综合色网址| 简卡轻食公司| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 99热国产这里只有精品6| 国精品久久久久久国模美| 国产一级毛片在线| 国产不卡av网站在线观看| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 国产免费一区二区三区四区乱码| 晚上一个人看的免费电影| 女人久久www免费人成看片| 精品国产一区二区久久| 国产黄片视频在线免费观看| 亚洲精品成人av观看孕妇| 国产精品不卡视频一区二区| 国产永久视频网站| 国产成人精品婷婷| av电影中文网址| 国产成人精品一,二区| 国产精品一国产av| 男男h啪啪无遮挡| 国产在线一区二区三区精| 黄色配什么色好看| 欧美精品一区二区大全| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 国产精品麻豆人妻色哟哟久久| 欧美人与善性xxx| 免费观看在线日韩| 久久久久精品久久久久真实原创| 男女高潮啪啪啪动态图| 天堂俺去俺来也www色官网| 午夜免费男女啪啪视频观看| 国产成人精品无人区| 久久久久人妻精品一区果冻| 超碰97精品在线观看| 九草在线视频观看| 中国三级夫妇交换| 中文字幕精品免费在线观看视频 | 日韩免费高清中文字幕av| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 丝袜脚勾引网站| 亚洲丝袜综合中文字幕| 天天操日日干夜夜撸| 丰满乱子伦码专区| 少妇熟女欧美另类| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美丝袜亚洲另类| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 在线观看美女被高潮喷水网站| 飞空精品影院首页| 看十八女毛片水多多多| 亚洲av.av天堂| 国产精品嫩草影院av在线观看| 国产日韩欧美在线精品| 久久热精品热| 丰满迷人的少妇在线观看| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 人人妻人人澡人人看| 一本久久精品| 另类亚洲欧美激情| 日产精品乱码卡一卡2卡三| 啦啦啦中文免费视频观看日本| 黑人巨大精品欧美一区二区蜜桃 | 97超碰精品成人国产| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 少妇精品久久久久久久| 满18在线观看网站| 免费av中文字幕在线| 秋霞在线观看毛片| 免费看光身美女| 国产国语露脸激情在线看| 一本久久精品| 午夜免费观看性视频| 91aial.com中文字幕在线观看| 美女内射精品一级片tv| 少妇被粗大的猛进出69影院 | a级片在线免费高清观看视频| 一区二区三区精品91| 最后的刺客免费高清国语| 亚洲三级黄色毛片| av在线观看视频网站免费| 美女福利国产在线| 精品视频人人做人人爽| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 久久精品久久精品一区二区三区| 伊人久久国产一区二区| 成人毛片60女人毛片免费| 黑人欧美特级aaaaaa片| 高清在线视频一区二区三区| 中文天堂在线官网| 久久人人爽av亚洲精品天堂| 日本欧美视频一区| 久久久久久久久久久久大奶| 国产成人免费观看mmmm| 久久国内精品自在自线图片| 少妇的逼水好多| 美女主播在线视频| 久久久久国产精品人妻一区二区| 不卡视频在线观看欧美| 国产精品人妻久久久影院| 韩国高清视频一区二区三区| 国产成人精品福利久久| 久久人人爽人人爽人人片va| 中文字幕亚洲精品专区| 伊人亚洲综合成人网| 中文字幕av电影在线播放| 99国产综合亚洲精品| 日韩人妻高清精品专区| 免费观看无遮挡的男女| av视频免费观看在线观看| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲网站| 日本免费在线观看一区| 91精品伊人久久大香线蕉| 考比视频在线观看| 日韩不卡一区二区三区视频在线| 国产 精品1| .国产精品久久| 国产视频首页在线观看| 91成人精品电影| 成人手机av| 99久国产av精品国产电影| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 中文字幕制服av| 亚洲精品日韩在线中文字幕| a 毛片基地| 亚洲欧美一区二区三区黑人 | 两个人免费观看高清视频| 国产欧美日韩综合在线一区二区| 在线 av 中文字幕| 欧美日韩综合久久久久久| 一区二区三区四区激情视频| av专区在线播放| 亚洲av男天堂| 在线观看www视频免费| 国产av精品麻豆| 午夜免费鲁丝| 美女中出高潮动态图| 国产熟女午夜一区二区三区 | 国产精品.久久久| 91久久精品国产一区二区三区| 亚洲精品国产av蜜桃| 国产精品 国内视频| 精品久久久精品久久久| 国产探花极品一区二区| 国产成人精品婷婷| 免费黄网站久久成人精品| 男女边摸边吃奶| 国语对白做爰xxxⅹ性视频网站| 久久av网站| 伦理电影免费视频| 久久久久久久亚洲中文字幕| 少妇丰满av| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看 | 99热网站在线观看| 性色av一级| 99国产综合亚洲精品| 各种免费的搞黄视频| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 国产欧美另类精品又又久久亚洲欧美| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 国产成人av激情在线播放 | 亚洲成人av在线免费| 中文字幕av电影在线播放| 国产毛片在线视频| 五月玫瑰六月丁香| 黑人巨大精品欧美一区二区蜜桃 | 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 精品久久久噜噜| 日本vs欧美在线观看视频| 啦啦啦啦在线视频资源| 美女大奶头黄色视频| 国产在视频线精品| 成人免费观看视频高清| 最近中文字幕高清免费大全6| 亚洲精品一二三| 国产亚洲欧美精品永久| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 国产69精品久久久久777片| 母亲3免费完整高清在线观看 | 亚洲美女搞黄在线观看| 欧美日韩成人在线一区二区| 欧美精品亚洲一区二区| 成年美女黄网站色视频大全免费 | 欧美人与善性xxx| av一本久久久久| 美女中出高潮动态图| 一级毛片 在线播放| 高清毛片免费看| 日本午夜av视频| 美女视频免费永久观看网站| 国产精品成人在线| 日韩 亚洲 欧美在线| 国产免费一级a男人的天堂| 夜夜骑夜夜射夜夜干| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 国产欧美亚洲国产| 18禁在线播放成人免费| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 国产视频内射| 日本与韩国留学比较| 秋霞在线观看毛片| 国产黄色免费在线视频| 亚洲精品第二区| 视频在线观看一区二区三区| 国产精品99久久99久久久不卡 | 色网站视频免费| 99九九在线精品视频| 国产av码专区亚洲av| 性色avwww在线观看| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 国产熟女欧美一区二区| 性色avwww在线观看| 色网站视频免费| av国产久精品久网站免费入址| 性高湖久久久久久久久免费观看| 卡戴珊不雅视频在线播放| 全区人妻精品视频| 国产精品久久久久成人av| 精品国产一区二区三区久久久樱花| 久久午夜福利片| .国产精品久久| 王馨瑶露胸无遮挡在线观看| 久久久国产精品麻豆| av国产精品久久久久影院| 日韩,欧美,国产一区二区三区| 国产高清有码在线观看视频| 亚洲精品美女久久av网站| 91在线精品国自产拍蜜月| 国产精品.久久久| 少妇猛男粗大的猛烈进出视频| 亚洲av二区三区四区| 性色avwww在线观看| 肉色欧美久久久久久久蜜桃| 免费日韩欧美在线观看| av.在线天堂| 曰老女人黄片| 亚洲一区二区三区欧美精品| 黄色视频在线播放观看不卡| 91aial.com中文字幕在线观看| 欧美成人午夜免费资源| 国产国拍精品亚洲av在线观看| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 精品午夜福利在线看| 久久久国产精品麻豆| 欧美丝袜亚洲另类| 亚洲欧洲日产国产| 性高湖久久久久久久久免费观看| 麻豆精品久久久久久蜜桃|