• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Stable Quantitative Trait Loci for Sheath Blight Resistance Using Recombinant Inbred Line

    2019-10-08 06:45:32ChenYuanZengYuxiangJiZhijuanLiangYanWenZhihuaYangChangdeng
    Rice Science 2019年5期

    Chen Yuan, Zeng Yuxiang, Ji Zhijuan, Liang Yan, Wen Zhihua, Yang Changdeng

    Identification of Stable Quantitative Trait Loci for Sheath Blight Resistance Using Recombinant Inbred Line

    Chen Yuan#, Zeng Yuxiang#, Ji Zhijuan, Liang Yan, Wen Zhihua, Yang Changdeng

    (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; These authors contributed equally to this work)

    To identify stable quantitative trait loci (QTLs) responsible for sheath blight resistance, a recombinant inbred line mapping population consisting of 219 lines was developed by crossing Lemont and Yangdao 4. Average disease rating, average lesion length, maximum disease rating and maximum lesion length were assayed in six different environments. A total of 128 minor effect QTLs were detected by multiple interval mapping. These QTLs explained less than 11.2% of the phenotypic variations individually, and 106 QTLs were clustered in 20 QTL-rich regions/putative loci. Significant QTL × environment interactions were detected at three putative loci (,and), indicating that these three loci were not stable. The other 17 stable loci (,,,,,,,,,,,,,,,and) provided a foundation for marker-assisted selection in breeding. Analysis of allelic effect on the 20 putative loci identified 7 highly stable loci, including,,,,,and.

    rice; sheath blight resistance; quantitative trait locus; recombinant inbred line

    Sheath blight disease is caused byKühn and is one of the three major diseases in rice (L.) (Park et al, 2008). In the past decade, sheath blight has become the most serious rice disease in China, with the losses caused by this disease exceeding those caused by rice blast or bacterial blight (Zuo et al, 2008, 2014a; Zeng et al, 2011). In addition, sheath blight is considered to be the most common rice disease in the southern United States (Groth and Bond, 2007), and it reduces rice yield by approximately 20% in India (Ghosh et al, 2016).

    Resistance to rice sheath blight is a quantitative trait controlled by quantitative trait loci (QTL). Many QTLs for sheath blight resistance on all the 12 rice chromosomes have been identified (Srinivasachary et al, 2011; Zeng et al, 2015a). Recombinant inbred line (RIL) or doubled-haploid mapping populations have been frequently used for detecting QTLs for sheath blight resistance (Pinson et al, 2005; Liu et al, 2009; Channamallikarjuna et al, 2010; Fu et al, 2011; Xu et al, 2011; Nelson et al, 2012; Liu et al, 2013). Because the phenotypic traits of different genotypes can be repeatedly evaluated in a specific mapping environment, the results obtained using RILs or doubled-haploid populations will be more precise and appropriate than the F2or BC1F1populations. At least two QTLs,qSB-11(Zuo et al, 2013) andqSB-9(Zuo et al, 2014b), have been fine-mapped. Genes with enhanced resistance to sheath blight disease have also been reported. Lin et al (1995) reported that overexpressing the rice chitinase genein transgenic rice plants increases sheath blight resistance. Overexpression of the rice thaumatin-like protein gene results in enhanced resistance to(Datta et al, 1999). Molla et al (2013) reported enhanced resistance to sheath blight disease upon overexpression of the rice() gene. Other genes related to rice sheath blight disease resistance include(Helliwell et al, 2013),(Wang H H et al, 2015),(Tonnessen et al, 2015),(Wang R et al, 2015; Chen et al, 2016),(Xue et al, 2016),(Gao et al, 2018) and(Yuan et al, 2018).

    Although many QTLs for sheath blight resistance have been identified using different mapping populations, they have seldom been used for marker-assisted selection because most of the resistance QTLs have only minor effects. Moreover, it is largely unknown whether the minor effect QTLs can be repeatedly detected in different mapping environments. This question is important because QTLs for sheath blight resistance are easily influenced by the environment. Here, we developed an RIL mapping population to map QTLs for sheath blight resistance.

    MATERIALS AND METHODS

    Mapping population

    Lemont, a sheath blight-susceptible Americancultivar, was crossed with Yangdao 4, a Chinesecultivar relatively resistant to sheath blight, to develop a RIL mapping population consisting of 219 lines. The RIL mapping population was sown in six different mapping environments (F6in May 2013, F9in May 2015, F11in May 2016, F13in May 2017, F15in May 2018, and F15in June 2018) to identify QTLs for sheath blight resistance. The mapping population was planted in the farm of the China National Rice Research Institute, Hangzhou (119o95E, 30o07N), China.

    Eighteen individual plants were planted for each of the 219 lines. The 18 plants per line were arranged in three rows with inter-row and within-row distances of 20 cm and 17 cm, respectively. The plot locations were completely randomized. Field management was performed as per the common practices in Hangzhou, but fungicides were not used. Pesticides were not used from 10 d before inoculation to the end of data recording.

    Evaluation of sheath blight resistance in RIL mapping population

    The inoculation method was conducted according to Zou et al (2000) with minor modifications. Truncated bamboo-toothpicks (2.0–2.5 cm long) were incubated withisolate ZJ03, which has been used in previous studies (Wen et al, 2015; Zeng et al, 2015b, 2017), on Petri plates containing potato dextrose agar medium in the dark at 28 oC. After 7 d of incubation, toothpicks covered with mycelia were used to penetrate the third leaf sheath, counting from the top, at the late-tillering stage of rice. At this growth stage, the second leaf sheath from the top is no longer elongating, therefore, the toothpick remains stable inside the third sheath (Xue et al, 2016). Sheath blight resistance was recorded at 30 d after inoculation.

    Two tillers of each of the three individual plants of each RIL located in the middle of the second row were inoculated, thus, six tillers were inoculated for each line. Four phenotypic traits related to sheath blight resistance were recorded, including maximum lesion length, average lesion length, maximum disease rating and average disease rating. Average lesion length was recorded from the culm of the six inoculated tillers, while maximum lesion length was represented by the most seriously affected tiller in each line. The average disease rating was obtained from the three inoculated plants, while the maximum disease rating was represented by the most seriously affected plant in each line. Disease rating was determined using the 0–9 visual rating system, where ‘0’ indicated that the plant was completely immune to the pathogen, ‘9’ indicated a dead or collapsed plant, and ‘5’ indicated that about 50% of the plant was diseased (Pinson et al, 2005).

    Construction of the genetic linkage map

    Polymorphic markers between Lemont and Yangdao 4 were screened from 1 047 insertion-deletion (InDel) markers (Zeng et al, 2013) and 548 simple sequence repeat (SSR) markers (http://www.gramene.org). A total of 208 polymorphic markers covering all the 12 rice chromosomes were used to construct a genetic linkage map representing a total of 2 228.0 cM, with an average of 11.4 cM between adjacent markers (Zeng et al, 2019).

    QTL analysis

    Multiple interval mapping (MIM) method was used to detect QTLs for sheath blight resistance in Windows QTL Cartographer 2.5 (https://brcwebportal.cos.ncsu.edu/qtlcart/ WQTLCart.htm). The MIM model has been described by Zeng et al (2016). The presence of three or more QTLs in the same marker interval was defined as a QTL cluster.

    Analysis of allele effect

    Each QTL cluster was considered to contain a putative sheath blight resistance QTL. The nearest marker to each putative QTL was used to evaluate its allele effect under the six mapping environments. In each putative QTL, we distinguished two groups of lines within the RIL population, one carrying the Lemont alleles and the other carrying the Yangdao 4 alleles, and compared the average sheath blight phenotypic values between the two groups.

    Statistical software

    Two-way analysis of variance (ANOVA) was performed using the general linear model (GLM) procedure in SAS 8.01 (SAS Institute, Cary, NC, USA) to examine QTL × environment interaction, using the nearest marker to represent the corresponding QTL. Average lesion length and average disease rating were used in the two-way ANOVA.

    RESULTS

    Correlation of phenotypic traits related to sheath blight resistance measured in different environments

    The maximum lesion length or maximum disease rating were highly correlated with the average lesion length or average disease rating (< 0.01) in each mapping environment (Table 1). Since these four traits were highly correlated with each other and the correlation coefficients (higher than 0.79) were very high in all the mapping environments, it was difficult to judge which trait was the most appropriate one to be used in QTL analysis. Therefore, all the four traits were applied. The distribution of the four phenotypic traits related to sheath blight resistance in the six mapping environments is presented in Supplemental Fig. 1.

    Table 1. Correlation coefficients among four sheath blight resistance related traits in recombinant inbred line populations.

    ADR, Average disease rating; MDR, Maximum disease rating; ALL, Average lesion length; MLL, Maximum lesion length.

    **, Significant at the 0.01 level.

    QTLs for sheath blight resistance identified by MIM

    Using MIM, a total of 128 QTLs related to sheath blight resistance were detected in the six mapping environments (Table 2). These QTLs were localized on 11 rice chromosomes (almost all except chromosome 6). All the 128 QTLs explained less than 11.2% of the phenotypic variation individually, indicating that the sheath blight resistance was controlled by minor effect QTLs.

    Five QTLs showed relatively large effects, which explained more than 10% of the phenotypic variation.detected in May 2018, anddetected in May 2016 explained 11.2% and 10.8% of the average disease rating variations, respectively.detected in May 2017 anddetected in May 2016 explained 11.1% and 10.1% of the average lesion length variations, respectively.detected in May 2016 explained 11.2% of the maximum lesion length variation. These five QTLs were located in three chromosome regions (Table 2).

    A total of 106 QTLs were clustered on 20 QTL-rich chromosome regions (Supplemental Fig. 2 and Supplemental Table 1). In this study, we focused on the 20 QTL-clusters consisting of at least three co-located QTLs.

    QTL × environment interaction

    The 20 QTL-clusters were considered as 20 putative loci. QTL × environment interaction was used to examine the stability of the 20 loci using two-way ANOVA. The nearest markers to each of the 20 putative loci were chosen to represent the 20 putative loci in the two-way ANOVA. Significant QTL × environment interactions were detected at three putative loci on chromosome 11 including(= 2.69,= 0.020),(= 2.61,= 0.023) and(= 2.55,= 0.027). No significant interaction was found among the other 17 putative loci (Supplemental Table 2), suggesting that the 17 putative QTLs were stable across different mapping environments. The 17 stable loci are,,,,,,,,,,,,,,,and

    Allele effects at the 20 QTL-clusters/putative loci

    Based on the four phenotypic traits, we further tested the allelic effect at the 20 putative loci during the six environments (Supplemental Table 3). Results suggested that allele effects were not stable at some loci. For example, at thelocus, plants carrying the Lemont allele were more resistant than those carrying the Yangdao 4 allele in May 2016, but plants carrying the Yangdao 4 allele were more resistant than those carrying the Lemont allele in May 2013 (Supplemental Table 3). Stable allele effects were only found in 7 of the 20 loci, including,,,,,and, indicating that these 7 loci were highly stable. The sheath blight-resistant alleles were originated from Yangdao 4 in six of the seven highly stable loci, whereas in, the sheath blight-resistant allele was originated from Lemont (Supplemental Table 3).

    DISCUSSION

    MIM method is more sensitive than composite interval mapping and can improve the precision and power of QTL mapping (Kao et al, 1999). In this study, the MIM detected a total of 128 QTLs, and none of these 128 QTLs explained more than 11.2% of the phenotypic variation, which further confirms previous reports that most of the sheath blight resistance QTLs have only minor effects (Zeng et al, 2015a).

    Three major rating methods were used to evaluate sheath blight resistance in previous QTL mapping studies, including disease rating, lesion height/length and percentage of lesion height/length (Zeng et al, 2015a). Disease rating employing the widely used 0–9 rating system is a subjective rating method. Measurement of lesion length/height is an objective rating method, which measures the absolute length/height of sheath blight lesions. The third rating method was not used in this study because it is a mixture of lesion height and plant height. QTLs detected in this study were compared with the previous study (Table 3).is adjacent to thelocus reported by Pinson et al (2005). Five previously reported QTLs,(Pan et al, 1999),(Zou et al, 2000),(Kunihiro et al, 2002),(Liu et al, 2009) and(Liu et al, 2013), are co-localized or overlapped withdetected in this study.is co-localized or overlapped with(Pan et al, 1999),(Zou et al, 2000),(Li et al, 2009) and(Liu et al, 2013).is adjacent to or overlapped with(Pinson et al, 2005; Tan et al, 2005),(Liu et al, 2009),(Nelson et al, 2012),(Liu et al, 2013),(Zuo et al, 2014b) and(Yadav et al, 2015).is co-localized with RG118 (Li et al, 1995),qSB-11(Zuo et al, 2013) and(Wen et al, 2015).is co-localized or overlapped with(Zou et al, 2000),(Channamallikarjuna et al, 2010),(Liu et al, 2013) and(Eizenga et al, 2013).is co-localized or overlapped with(Wang et al, 2012),(Eizenga et al, 2013) and(Wen et al, 2015) (Table 3). The same resistance allele might underline these co-locating loci.

    Table 2.Quantitative trait loci (QTLs) detected for sheath blight resistance in the Lemont/Yangdao 4 recombinant inbred line mapping population using multiple interval mapping method.

    2indicates proportion of phenotypic variance explained by the QTL.A positive additive effect indicates that the resistance allele originated from Yangdao 4, while a negative additive effect indicates that the resistance allele originated from Lemont.

    Table 3. Comparison of the quantitative trait loci (QTLs) detected in the present and previous studies.

    The physical position was determined by using the corresponding marker sequence as a query to BLAST against the rice genome sequence (IRGSP-1.0) in the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=OGP_4530_9512).

    Using MIM, we uncovered the genetic bases of sheath blight resistance in the Lemont/Yangdao 4 population. All the 128 detected QTLs were minor effect QTLs. We also confirmed that some minor effect QTLs were stable across different mapping environments by using two-way ANOVA and allelic effect analysis.

    acknowlegements

    This study was financially supported by National Key R&D Program (Grant No. 2016YFD0102102), Zhejiang Provincial Natural Science Foundation (Grant Nos. LY16C060002 and LQ17C130005) and Zhejiang Agricultural Key Breeding Project (Grant No. 2016C02050-4) in China.

    SUPPlemental DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    Supplemental Fig. 1. Frequency distributions of sheath blight resistance of the 219 recombinant inbred lines from Lemont/ Yangdao 4.

    Supplemental Fig. 2.Genetic linkage map and QTLs for sheath blight resistance detected in Lemont/Yangdao 4 recombinant inbred line mapping population.

    Supplemental Table 1. QTLs located as clusters on 20 QTL-rich chromosome regions.

    Supplemental Table 2. Two-way ANOVA used to detect QTL by environment interaction at 20 loci.

    Supplemental Table 3. Analysis of allele effect at the 20 QTL-clusters/putative loci in six environments.

    Channamallikarjuna V, Sonah H, Prasad M, Rao G J N, Chand S, Upreti H C, Singh N K, Sharma T R. 2010. Identification of major quantitative trait locifor sheath blight resistance in rice., 25(1): 155–166.

    Chen X J, Chen Y, Zhang L N, Xu B, Zhang J H, Chen Z X, Tong Y H, Zuo S M, Xu J Y. 2016. Overexpression ofenhances rice resistance to sheath blight., 100(2): 388–395.

    Chen Z X, Zhang Y F, Feng F, Feng M H, Jiang W, Ma Y Y, Pan C H, Hua H L, Li G S, Pan X B, Zuo S M. 2014. Improvement ofrice resistance to sheath blight by pyramidingqSB-9andqSB-7., 161: 118–127.

    Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G S, Muthukrishnan S, Datta S K. 1999. Over-expression of the cloned rice thaumatin-like protein () gene in transgenic rice plants enhances environmental friendly resistance tocausing sheath blight disease., 98: 1138–1145.

    Eizenga G C, Prasad B, Jackson A K, Jia M H. 2013. Identification of rice sheath blight and blast quantitative trait loci in two different/advanced backcross populations., 31(4): 889–907.

    Fu D, Chen L, Yu G H, Liu Y, Lou Q J, Mei H W, Xiong L, Li M S, Xu X Y, Luo L J. 2011. QTL mapping of sheath blight resistance in a deep-water rice cultivar., 180(2): 209–218.

    Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan D P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B, Xuan Y H. 2018. Inhibition offunction in mesophyll cells improves resistance of rice to sheath blight disease., 19(9): 2149–2161.

    Ghosh P, Sen S, Chakraborty J, Das S. 2016. Monitoring the efficacy of mutatedleaf lectin in transgenic rice against., 16: 24.

    Groth D E, Bond J A. 2007. Effects of cultivars and fungicides on rice sheath blight, yield, and quality., 91(12): 1647–1650.

    Helliwell E E, Wang Q, Yang Y N. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogensand., 11(1): 33–42.

    Jiang S F, Wang C J Z, Shu C W, Zhou E X. 2018. Cloning and expression analysis ofgene inAG-1 IA of rice sheath blight pathogen., 32(2): 111–118. (in Chinese with English abstract)

    Kao C H, Zeng Z B, Teasdale R D. 1999. Multiple interval mapping for quantitative trait loci., 152(3): 1203–1216.

    Kunihiro Y, Qian Q, Sato H, Teng S, Zeng D L, Fujimoto K, Zhu L H. 2002. QTL analysis of sheath blight resistance in rice (L.)., 29(1): 50–55. (in Chinese with English abstract)

    Li Z K, Pinson S R M, Marchetti M A, Stansel J W, Park W D. 1995. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to ?eld resistance to sheath blight ()., 91(2): 382–388.

    Li F, Cheng L R, Xu M R, Zhou Z, Zhang F, Sun Y, Zhou Y L, Zhu L H, Xu J L, Li Z K. 2009. QTL mining for sheath blight resistance using the backcross selected introgression lines for grain quality in rice., 35(9): 1729–1737. (in Chinese with English abstract)

    Lin W, Anuratha C S, Datta K, Potrykus I, Muthukrishnan S, Datta S K. 1995. Genetic engineering of rice for resistance to sheath blight., 13: 686–691.

    Liu G, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A, Correll J C. 2009. Mapping quantitative trait loci responsible for resistance to sheath blight in rice., 99: 1078–1084.

    Liu G, Jia Y, McClung A, Oard J H, Lee F N, Correll J C. 2013. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease., 97(1): 113–117.

    Molla K A, Karmakar S, Chanda P K, Ghosh S, Sarkar S N, Datta S K, Datta K. 2013. Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen () in transgenic rice., 14(9): 910–922.

    Nelson J C, Oard J H, Groth D, Utomo H S, Jia Y, Liu G, Moldenhauer K A K, Correa-Victoria F J, Fjellstrom R G, Scheffler B, Prado G A. 2012. Sheath-blight resistance QTLs inrice germplasm., 184(1): 23–34.

    Pan X B, Zou J H, Chen Z X, Lu J F, Yu H X, Li H T, Wang Z B, Pan X Y, Rush M C, Zhu L H. 1999. Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85., 44(19): 1783–1789.

    Park D S, Sayler R J, Hong Y G, Nam M H, Yang Y N. 2008. A method for inoculation and evaluation of rice sheath blight disease., 92: 25–29.

    Pinson S R M, Capdevielle F M, Oard J H. 2005. Confirmation QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines., 45(2): 503–510.

    Srinivasachary S, Willocquet L, Savary S. 2011. Resistance to rice sheath blight () [(teleomorph:(A.B. Frank) Donk.] disease: Current status and perspectives., 178(1): 1–22.

    Tan C X, Ji X M, Yang Y, Pan X Y, Zuo S M, Zhang Y F, Zou J H, Chen Z X, Zhu L H, Pan X B. 2005. Identification and marker- assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations., 32(4): 399–405. (in Chinese with English abstract)

    Tonnessen B W, Manosalva P, Lang J M, Baraoidan M, Bordeos A, Mauleon R, Oard J, Hulbert S, Leung H, Leach J E. 2015. Rice phenylalanine ammonialyase geneis associated with broad spectrum disease resistance., 87(3): 273–286.

    Wang H H, Meng J, Peng X X, Tang X K, Zhou P L, Xiang J H, Deng X B. 2015. Riceacts as a transcriptional activator mediating defense responses toward, the causing agent of rice sheath blight., 89: 157–171.

    Wang R, Lu L X, Pan X B, Hu Z L, Ling F, Yan Y, Liu Y M, Lin Y J. 2015. Functional analysis ofin rice sheath blight resistance., 87: 181–191.

    Wang Y, Pinson S R M, Fjellstrom R G, Tabien R E. 2012. Phenotypic gain from introgression of two QTL,and, for rice sheath blight resistance., 30(1): 293–303.

    Wen Z H, Zeng Y X, Ji Z J, Yang C D. 2015. Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice., 14(1): 1636–1649.

    Xu Q, Yuan X P, Yu H Y, Wang Y P, Tang S X, Wei X H. 2011. Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population., 130(3): 404–406.

    Xue X, Cao Z X, Zhang X T, Wang Y, Zhang Y F, Chen Z X, Pan X B, Zuo S M. 2016. Overexpression ofenhances resistance to rice sheath blight., 100(8): 1634–1642.

    Yadav S, Anuradha G, Kumar R R, Vemireddy L R, Sudhakar R, Donempudi K, Venkata D, Jabeen F, Narasimhan Y K, Marathi B, Siddiq E A. 2015. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (L.)., 4: 175.

    Yuan D P, Zhang C, Wang Z Y, Zhu X F, Xuan Y H. 2018.activates brassinosteroids and ethylene signaling to modulate response to sheath blight disease in rice., 108(9): 1104–1113.

    Zeng Y X, Ji Z J, Ma L Y, Li X M, Yang C D. 2011. Advances in mapping loci conferring resistance to rice sheath blight and miningresistant resources., 18(1): 56–66.

    Zeng Y X, Wen Z H, Ma L Y, Ji Z J, Li X M, Yang C D. 2013. Development of 1047 insertion-deletion markers for rice genetic studies and breeding., 12(4): 5226–5235.

    Zeng Y X, Ji Z J, Yang C D. 2015a. The way to a more precise sheath blight resistance QTL in rice., 203(1): 33–45.

    Zeng Y X, Xia L Z, Wen Z H, Ji Z J, Zeng D L, Qian Q, Yang C D. 2015b. Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population., 14(5): 801–810.

    Zeng Y X, Ji Z J, Wen Z H, Liang Y, Yang C D. 2016. Combination of eight alleles at four quantitative trait loci determines grain length in rice., 11(3): e0150832.

    Zeng Y X, Shi J S, Ji Z J, Wen Z H, Liang Y, Yang C D. 2017. Genotype by environment interaction: The greatest obstacle in precise determination of rice sheath blight resistance in the field., 101: 1795–1801.

    Zeng Y X, Chen Y, Ji Z J, Liang Y, Yang C D. 2019. Twenty-four alleles at twelve quantitative trait loci act additively to control tiller angle in cultivated rice., 88(2): 195–203.

    Zhang Q X, Zhang Y, He L L, Chen X J, Tong Y H, Ji Z L. 2018. Identification of strain 7-5, antagonistic to rice sheath blight, and preliminary study of its biocontrol mechanism., 32(3): 277–284. (in Chinese with English abstract)

    Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. 2000. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (L.)., 101(4): 569–573.

    Zuo S M, Zhang L, Wang H, Yin Y J, Zhang Y F, Chen Z X, Ma Y Y, Pan X B. 2008. Prospect of the QTLqSB-9utilized in molecular breeding program ofrice against sheath blight., 35(8): 499–505.

    Zuo S M, Yin Y J, Pan C H, Chen Z X, Zhang Y F, Gu S L, Zhu L H, Pan X B. 2013. Fine mapping ofqSB-11, the QTL that confers partial resistance to rice sheath blight., 126(5): 1257–1272.

    Zuo S M, Zhu Y J, Yin Y J, Wang H, Zhang Y F, Chen Z X, Gu S L, Pan X B. 2014a. Comparison and confirmation of quantitative trait loci conferring partial resistance to rice sheath blight on chromosome 9., 98(7): 957–964.

    Zuo S M, Zhang Y F, Yin Y J, Li G Z, Zhang G W, Wang H, Chen Z X, Pan X B. 2014b. Fine-mapping ofqSB-9, a gene conferring major quantitative resistance to rice sheath blight., 34(4): 2191–2203.

    28 December 2018;

    26 April 2019

    Yang Changdeng (yangchangdeng@126.com)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2019.08.007

    (Managing Editor: Li Guan)

    大香蕉97超碰在线| 网址你懂的国产日韩在线| 国产色婷婷99| 人妻少妇偷人精品九色| 这个男人来自地球电影免费观看 | 日日摸夜夜添夜夜爱| 九九久久精品国产亚洲av麻豆| 久久国产精品大桥未久av | 久久av网站| 尤物成人国产欧美一区二区三区| 91久久精品国产一区二区成人| 有码 亚洲区| 欧美日韩精品成人综合77777| 免费久久久久久久精品成人欧美视频 | 国产欧美另类精品又又久久亚洲欧美| 又粗又硬又长又爽又黄的视频| 少妇裸体淫交视频免费看高清| 国产成人a∨麻豆精品| 黄色视频在线播放观看不卡| 国产大屁股一区二区在线视频| 久久这里有精品视频免费| .国产精品久久| 制服丝袜香蕉在线| 汤姆久久久久久久影院中文字幕| 99久久精品一区二区三区| 亚洲精品第二区| 高清不卡的av网站| 国产黄频视频在线观看| 欧美激情极品国产一区二区三区 | 自拍偷自拍亚洲精品老妇| 国产精品国产av在线观看| 亚洲欧美一区二区三区国产| 夫妻午夜视频| 久久 成人 亚洲| 丰满迷人的少妇在线观看| 亚洲综合色惰| 97超碰精品成人国产| 久久人人爽人人片av| 日韩制服骚丝袜av| 日本午夜av视频| 大话2 男鬼变身卡| 亚洲精品久久久久久婷婷小说| 91aial.com中文字幕在线观看| 午夜激情久久久久久久| 亚洲,一卡二卡三卡| 一区二区三区免费毛片| 亚洲av免费高清在线观看| 91久久精品国产一区二区三区| 久久97久久精品| 18禁裸乳无遮挡免费网站照片| 欧美xxxx黑人xx丫x性爽| 男男h啪啪无遮挡| 人人妻人人添人人爽欧美一区卜 | 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区四那| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线观看99| 内射极品少妇av片p| 国产免费福利视频在线观看| 亚洲av成人精品一二三区| 激情五月婷婷亚洲| 最近手机中文字幕大全| 乱系列少妇在线播放| 国产欧美日韩一区二区三区在线 | 成人美女网站在线观看视频| 80岁老熟妇乱子伦牲交| 国产av码专区亚洲av| 日日啪夜夜撸| 免费久久久久久久精品成人欧美视频 | 超碰97精品在线观看| 新久久久久国产一级毛片| 男女床上黄色一级片免费看| 麻豆av在线久日| 一边亲一边摸免费视频| 在现免费观看毛片| 日韩视频在线欧美| 久久精品国产亚洲av高清一级| 99香蕉大伊视频| 国产高清国产精品国产三级| 精品少妇一区二区三区视频日本电影| 午夜影院在线不卡| 亚洲欧美精品自产自拍| 最新在线观看一区二区三区 | 日韩 欧美 亚洲 中文字幕| 91精品三级在线观看| a级毛片在线看网站| xxx大片免费视频| 一本综合久久免费| 9191精品国产免费久久| 日韩大片免费观看网站| 亚洲少妇的诱惑av| 我的亚洲天堂| www.熟女人妻精品国产| 黄色毛片三级朝国网站| 老司机深夜福利视频在线观看 | 欧美日韩视频高清一区二区三区二| 9色porny在线观看| 黄色a级毛片大全视频| 中文字幕最新亚洲高清| 一级毛片女人18水好多 | 女人久久www免费人成看片| 亚洲国产日韩一区二区| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 夜夜骑夜夜射夜夜干| 午夜精品国产一区二区电影| 精品少妇黑人巨大在线播放| 亚洲熟女精品中文字幕| 欧美久久黑人一区二区| 在线观看www视频免费| 尾随美女入室| 精品久久久久久电影网| 又黄又粗又硬又大视频| 欧美精品高潮呻吟av久久| 黑丝袜美女国产一区| 国产欧美日韩综合在线一区二区| 国产成人精品久久二区二区免费| 天天影视国产精品| 久久精品成人免费网站| 黄片播放在线免费| 精品人妻1区二区| 色网站视频免费| 性少妇av在线| 亚洲专区国产一区二区| 91精品三级在线观看| 成人亚洲欧美一区二区av| 天天影视国产精品| 国产国语露脸激情在线看| 国产成人影院久久av| 久久精品久久久久久噜噜老黄| 国产精品亚洲av一区麻豆| 国产亚洲午夜精品一区二区久久| 亚洲欧洲精品一区二区精品久久久| 亚洲,一卡二卡三卡| 欧美日韩精品网址| 久久久久久人人人人人| 男人添女人高潮全过程视频| 高清视频免费观看一区二区| 黑丝袜美女国产一区| 久9热在线精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜美足系列| 国产免费又黄又爽又色| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 国产淫语在线视频| 久久九九热精品免费| 人人澡人人妻人| 自线自在国产av| 国产有黄有色有爽视频| 91老司机精品| 日本91视频免费播放| 日本a在线网址| 美女扒开内裤让男人捅视频| 激情视频va一区二区三区| 大香蕉久久网| 成人国语在线视频| 激情视频va一区二区三区| 亚洲av日韩精品久久久久久密 | 国产精品熟女久久久久浪| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 99国产精品99久久久久| 蜜桃在线观看..| 在线观看免费午夜福利视频| 欧美日韩精品网址| 色网站视频免费| svipshipincom国产片| 国产精品久久久久久精品古装| 精品久久久久久久毛片微露脸 | 精品少妇久久久久久888优播| av线在线观看网站| 国产精品国产三级专区第一集| 黄色毛片三级朝国网站| 蜜桃在线观看..| 国产精品秋霞免费鲁丝片| 亚洲午夜精品一区,二区,三区| 免费在线观看完整版高清| 美女主播在线视频| 国产黄色视频一区二区在线观看| 天天添夜夜摸| 青青草视频在线视频观看| 亚洲少妇的诱惑av| 波多野结衣一区麻豆| netflix在线观看网站| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 在现免费观看毛片| 亚洲人成网站在线观看播放| 午夜福利免费观看在线| 日本a在线网址| 黄网站色视频无遮挡免费观看| 一区福利在线观看| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| av天堂在线播放| 九草在线视频观看| 国产黄频视频在线观看| 亚洲精品国产一区二区精华液| 咕卡用的链子| 男人添女人高潮全过程视频| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 欧美+亚洲+日韩+国产| av欧美777| 国产成人精品久久二区二区91| svipshipincom国产片| 性色av一级| 久久鲁丝午夜福利片| 久久性视频一级片| 操美女的视频在线观看| 高清av免费在线| 国产福利在线免费观看视频| 免费不卡黄色视频| 日本猛色少妇xxxxx猛交久久| 久久国产精品影院| 两个人免费观看高清视频| 在线天堂中文资源库| 国产精品久久久久久人妻精品电影 | 国产成人欧美在线观看 | 国产日韩欧美视频二区| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 色综合欧美亚洲国产小说| 男人爽女人下面视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲精品美女久久久久99蜜臀 | 国产亚洲一区二区精品| 成年动漫av网址| 国产色视频综合| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀 | 亚洲成av片中文字幕在线观看| 免费不卡黄色视频| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 一区二区三区乱码不卡18| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 亚洲精品美女久久av网站| 啦啦啦在线观看免费高清www| 晚上一个人看的免费电影| 人成视频在线观看免费观看| 免费在线观看视频国产中文字幕亚洲 | 国产三级黄色录像| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 蜜桃国产av成人99| 亚洲色图综合在线观看| 日本欧美国产在线视频| 久久久久久久国产电影| 精品国产一区二区三区四区第35| 欧美日韩亚洲综合一区二区三区_| 精品国产一区二区久久| 啦啦啦视频在线资源免费观看| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 亚洲中文日韩欧美视频| 精品人妻1区二区| 夫妻性生交免费视频一级片| 免费不卡黄色视频| 亚洲自偷自拍图片 自拍| 一区福利在线观看| 美女大奶头黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| 国产老妇伦熟女老妇高清| www.999成人在线观看| 狂野欧美激情性xxxx| 另类精品久久| 黄色一级大片看看| 人人妻人人爽人人添夜夜欢视频| 亚洲精品一区蜜桃| 波多野结衣av一区二区av| 19禁男女啪啪无遮挡网站| 日本wwww免费看| 色播在线永久视频| 亚洲国产毛片av蜜桃av| 欧美精品一区二区大全| 欧美另类一区| 久久精品久久久久久久性| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 精品第一国产精品| 久久久久久久大尺度免费视频| 视频区欧美日本亚洲| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一卡2卡三卡4卡5卡 | 一级黄片播放器| 在线精品无人区一区二区三| 人人妻人人澡人人看| 我要看黄色一级片免费的| 人妻 亚洲 视频| 一区在线观看完整版| 9191精品国产免费久久| 男人添女人高潮全过程视频| 欧美精品一区二区免费开放| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 日本午夜av视频| 日韩一区二区三区影片| 丝袜人妻中文字幕| 一级a爱视频在线免费观看| 久久国产精品大桥未久av| 欧美日韩视频高清一区二区三区二| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 久久久欧美国产精品| 亚洲精品国产一区二区精华液| 少妇精品久久久久久久| 精品久久蜜臀av无| 国产在线观看jvid| av又黄又爽大尺度在线免费看| 精品人妻1区二区| 久久精品久久久久久噜噜老黄| 超碰97精品在线观看| 日韩大码丰满熟妇| 久热爱精品视频在线9| 人成视频在线观看免费观看| 欧美日韩精品网址| 一级,二级,三级黄色视频| 日本欧美国产在线视频| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区 | 久久精品成人免费网站| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| cao死你这个sao货| 日韩 亚洲 欧美在线| 亚洲久久久国产精品| 久久这里只有精品19| 亚洲精品国产av成人精品| 午夜视频精品福利| av有码第一页| 亚洲国产av新网站| 99九九在线精品视频| 国产又爽黄色视频| 久久国产精品大桥未久av| 又大又黄又爽视频免费| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 欧美精品av麻豆av| 中文字幕制服av| 免费女性裸体啪啪无遮挡网站| 国产人伦9x9x在线观看| 亚洲av成人不卡在线观看播放网 | 国产熟女午夜一区二区三区| 欧美精品啪啪一区二区三区 | 午夜福利视频在线观看免费| 亚洲黑人精品在线| 在线观看国产h片| 在线观看免费视频网站a站| 99久久精品国产亚洲精品| av线在线观看网站| 首页视频小说图片口味搜索 | 国产高清国产精品国产三级| 亚洲av美国av| 大码成人一级视频| 在线亚洲精品国产二区图片欧美| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| av有码第一页| 91九色精品人成在线观看| 99精国产麻豆久久婷婷| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看视频国产中文字幕亚洲 | 男女免费视频国产| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版| 久热爱精品视频在线9| 又大又爽又粗| 久久精品久久久久久久性| 中文欧美无线码| 婷婷色av中文字幕| 精品熟女少妇八av免费久了| 欧美+亚洲+日韩+国产| 精品一区二区三区四区五区乱码 | 日本色播在线视频| 国产深夜福利视频在线观看| 日韩大片免费观看网站| 国产精品香港三级国产av潘金莲 | 亚洲精品美女久久久久99蜜臀 | 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区国产| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁| 亚洲免费av在线视频| 欧美精品高潮呻吟av久久| 一本色道久久久久久精品综合| 国产精品久久久久久精品古装| 一级片免费观看大全| 欧美xxⅹ黑人| 国产激情久久老熟女| 亚洲中文字幕日韩| 成在线人永久免费视频| 一边亲一边摸免费视频| 久久国产精品男人的天堂亚洲| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 日韩av免费高清视频| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 国产在线视频一区二区| 久久精品国产综合久久久| 叶爱在线成人免费视频播放| 手机成人av网站| 亚洲精品日韩在线中文字幕| 欧美成人精品欧美一级黄| 国产极品粉嫩免费观看在线| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 熟女av电影| 色视频在线一区二区三区| 女人久久www免费人成看片| 欧美人与性动交α欧美软件| 国产福利在线免费观看视频| 亚洲欧美激情在线| 亚洲天堂av无毛| 韩国精品一区二区三区| 一本色道久久久久久精品综合| 日韩电影二区| 久久久久久久久免费视频了| 成人免费观看视频高清| 免费在线观看视频国产中文字幕亚洲 | 美女高潮到喷水免费观看| 亚洲国产欧美网| 国产精品av久久久久免费| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 欧美黄色淫秽网站| 午夜免费观看性视频| 黑人欧美特级aaaaaa片| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 亚洲黑人精品在线| 国产亚洲一区二区精品| 午夜老司机福利片| 亚洲国产看品久久| 国产日韩一区二区三区精品不卡| 国产亚洲欧美在线一区二区| 在现免费观看毛片| 91国产中文字幕| 999久久久国产精品视频| 桃花免费在线播放| 欧美变态另类bdsm刘玥| 高潮久久久久久久久久久不卡| 黄色视频不卡| 亚洲自偷自拍图片 自拍| 久久免费观看电影| 欧美 日韩 精品 国产| av片东京热男人的天堂| 日韩欧美一区视频在线观看| 色视频在线一区二区三区| 波野结衣二区三区在线| 欧美日韩精品网址| 69精品国产乱码久久久| 波多野结衣av一区二区av| 免费av中文字幕在线| 欧美黑人欧美精品刺激| 一级毛片我不卡| 欧美激情高清一区二区三区| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 午夜福利视频在线观看免费| 国产高清国产精品国产三级| 大香蕉久久网| 99国产精品一区二区三区| 婷婷色麻豆天堂久久| 老司机靠b影院| e午夜精品久久久久久久| 精品视频人人做人人爽| 亚洲精品久久午夜乱码| 丝袜美腿诱惑在线| 狂野欧美激情性bbbbbb| 操出白浆在线播放| 久久久国产欧美日韩av| 成人18禁高潮啪啪吃奶动态图| 黄色视频不卡| 久久久久网色| 久久九九热精品免费| 嫩草影视91久久| 日韩av免费高清视频| 一二三四社区在线视频社区8| 一级毛片我不卡| 亚洲一区二区三区欧美精品| 亚洲 国产 在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产伦理片在线播放av一区| 一级毛片我不卡| 久久精品成人免费网站| 丝瓜视频免费看黄片| 日韩av免费高清视频| 久久久久精品人妻al黑| 热99国产精品久久久久久7| 国产黄频视频在线观看| 亚洲成人免费av在线播放| 国产人伦9x9x在线观看| 免费高清在线观看日韩| 一级黄色大片毛片| 日韩制服骚丝袜av| 热99久久久久精品小说推荐| 亚洲国产欧美网| 日韩一本色道免费dvd| 久久久久久久国产电影| 欧美中文综合在线视频| av有码第一页| 欧美精品亚洲一区二区| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 又紧又爽又黄一区二区| 免费女性裸体啪啪无遮挡网站| 美国免费a级毛片| 色网站视频免费| 国产免费一区二区三区四区乱码| 人人妻人人澡人人爽人人夜夜| 午夜福利视频精品| 免费高清在线观看日韩| 一本久久精品| 肉色欧美久久久久久久蜜桃| 我要看黄色一级片免费的| 国产三级黄色录像| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| av在线播放精品| 亚洲成色77777| 无限看片的www在线观看| 男女免费视频国产| 欧美精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 免费看av在线观看网站| 欧美日韩福利视频一区二区| 久久精品国产a三级三级三级| 久久久久久亚洲精品国产蜜桃av| 天天影视国产精品| 多毛熟女@视频| 欧美激情 高清一区二区三区| 国产精品一区二区免费欧美 | 国产一卡二卡三卡精品| av电影中文网址| 欧美亚洲 丝袜 人妻 在线| 久久久国产欧美日韩av| 久久久久久久精品精品| 久久99一区二区三区| 三上悠亚av全集在线观看| 夫妻午夜视频| 欧美日韩综合久久久久久| 天堂俺去俺来也www色官网| 国产97色在线日韩免费| 在线精品无人区一区二区三| 国产老妇伦熟女老妇高清| 免费在线观看黄色视频的| 考比视频在线观看| 美国免费a级毛片| 国产一区二区三区av在线| 国产精品麻豆人妻色哟哟久久| 亚洲欧美日韩高清在线视频 | 美女脱内裤让男人舔精品视频| 秋霞在线观看毛片| 女人精品久久久久毛片| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美精品济南到| 天天影视国产精品| 少妇猛男粗大的猛烈进出视频| 久久精品成人免费网站| 日本91视频免费播放| 免费在线观看日本一区| 精品福利永久在线观看| 亚洲国产精品国产精品| 久久人人爽av亚洲精品天堂| 男女下面插进去视频免费观看| 自线自在国产av| 青春草亚洲视频在线观看| 精品免费久久久久久久清纯 | 成年女人毛片免费观看观看9 | 黄片播放在线免费| 永久免费av网站大全| av线在线观看网站| 黄片播放在线免费| 精品福利永久在线观看| 亚洲av在线观看美女高潮| 久久人人爽av亚洲精品天堂| 永久免费av网站大全| 亚洲伊人色综图| 精品第一国产精品| cao死你这个sao货| 日本五十路高清| 精品少妇久久久久久888优播| 电影成人av| 亚洲成人免费av在线播放| 亚洲,一卡二卡三卡| 18在线观看网站| 欧美在线黄色| 好男人视频免费观看在线| 如日韩欧美国产精品一区二区三区| 亚洲精品一区蜜桃| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡| 亚洲欧美日韩高清在线视频 | 老鸭窝网址在线观看| 一级黄色大片毛片| 制服诱惑二区| 黑人巨大精品欧美一区二区蜜桃|