• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal-physiological Strategies Underlying the Sympatric Occurrence of Three Desert Lizard Species

    2019-09-27 00:47:04XueqingWANGShuranLILiLIFushunZHANGXingzhiHANJunhuaiBIandBaojunSUN
    Asian Herpetological Research 2019年3期

    Xueqing WANG, Shuran LI, Li LI, Fushun ZHANG, Xingzhi HAN, Junhuai BI*# and Baojun SUN

    1 College of Life Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China

    2 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

    3 College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China

    4 Grassland research institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, Inner Mongolia, China

    5 College of wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, China

    Abstract Sympatric reptiles are the ideal system for investigating temperature-driven coexistence. Understanding thermally physiological responses of sympatric lizards is necessary to reveal the physiological mechanisms that underpin the sympatric occurrence of reptiles. In this study, we used three lizard species, Eremias argus, E. multiocellata, and Phrynocephalus przewalskii, which are sympatric in the Inner Mongolia desert steppe, as a study system. By comparing their resting metabolic rates (RMR) and locomotion at different body temperatures, we aimed to better understand their physiological responses to thermal environments, which may explain the sympatric occurrence of these lizards. Our results showed that E. argus had significantly higher RMR and sprint speed than E. multiocellata, and higher RMR than P. przewalskii. In addition, the optimal temperature that maximized metabolic rates and locomotion for E. argus and E. multiocellata was 36°C, whereas for P. przewalskii it was 39°C. Our study revealed the physiological responses to temperatures that justify the sympatric occurrence of these lizards with different thermal and microhabitat p References and active body temperatures. Eremias argus and E. multiocellata, which have lower body temperatures than P. przewalskii, depend on higher RMR and locomotion to compensate for their lower body temperatures in field conditions. Our study also highlights the importance of using an integrative approach, combining behavior and physiology, to explore the basis of sympatric occurrence in ectothermic species.

    Keywords Sympatric lizards, resting metabolic rate, locomotion, Eremias argus, E. multiocellata, Phrynocephalus przewalskii

    1. Introduction

    Understanding the mechanisms that allow species coexistence is one of the core issues in community ecology. Niche differentiation is considered to be the basis of coexistence among sympatric species. Niche differentiation is a process by which competing species utilize environmental resources differently, and it can include aspects such as activity period, use of space, and food p References (Hardin, 1960; Shurinet al., 2004). Pacala and Roughgarden (1985), for example, reported the existence of several anole lizards that shared food resources (i.e., insects) on the Caribbean islands but occupied different microhabitats such as leaf litter floor and branches to avoid any possible competition for microhabitats or food resources.Lophophorus sclateriandIthaginis cruentus, two pheasant species, were observed to share high-altitude habitats in Gaoligong Mountain but to feed on different plants or different parts of the same plants (Luoet al., 2016).

    In ectotherms, performances of specific activities such as locomotion, immunity, growth, and even reproduction are greatly affected by body temperatures (Angilletta, 2009; Angillettaet al., 2002). Within thermal tolerance range, the physiological performance of ectotherms is known to enhance as body temperature increases until the optimal temperature is reached; after that, performance rapidly decreases if body temperature continues to increase (Huey and Kingsolver, 1989). Because of its effect on body temperature and thus on function and performance, environmental temperature is one of the most important ecological factors for ectotherm animals (Angilletta, 2009) and, therefore, is also considered an important resource (e.g., Liet al., 2017). Among sympatric ectotherms, different temperature p References may result in different body temperatures, which in turn may result in segregation of microhabitat utilization and allow sympatric occurrence (Adolph, 1990; Hertz, 1992; Martinvallejoet al., 1995; Wilkinson and Grover, 1996). Understanding how variation in thermal environment affects sympatric species has become a hot topic in animal ecology (e.g., Liet al., 2017; Osojniket al., 2013; Ruschet al., 2018; ?agaret al., 2015).

    As ectotherms, sympatric lizards constitute ideal systems for investigating temperature-driven niche differentiation and coexistence (Pianka, 1986). Lizards can regulate their body temperatures in a narrow range mainly through behaviors to facilitate physiological functions (Adolph, 1990; Angilletta, 2009). On the Mongolian plateau, three ground-dwelling sympatric lizard species coexist in arid, semi-arid, or grass lands area:Eremias argus,E. multiocellata, andPhrynocephalus przewalskii(Zhaoet al., 1999). These sympatric species have been demonstrated to occupy different microhabitats (e.g., vegetation coverage) and to have significantly different thermal p References and active body temperatures.Phrynocephalus przewalskiimainlyselects open and warm microhabitats and has a higher preferred body temperature range (Tsel: 33.9-39.2℃) thanE. argus(Tsel: 32.8-37.5°C) andE. multiocellata(Tsel: 33.4-36.8°C), which occupy shaded and cool habitats (Table S1) (Liet al., 2017). Accordingly, the active body temperatures are significantly higher inP. przewalskiithan inE. argusandE. multiocellata(Table S1) (Liet al., 2017). These species’ demands for thermal environmental resources were speculated to be met because of microhabitat differentiation, which may be an important basis for their sympatric occurrence (Liet al., 2017).Nevertheless, as ectotherms, their body temperatures should be effective on fitness-related physiological functions before they affect their sympatric occurrences (Angilletta, 2009; Angillettaet al., 2002; Hochachka and Somero, 2002). Our current knowledge on these species’ differences regarding thermal preference or active body temperatures is insufficient to explain the effect of their thermal niche-partitioning on promoting their sympatric occurrence. Therefore, in order to reveal the physiological basis that underpins their temperature-driven sympatric occurrence, it is critical to investigate the effects of body temperature on important physiological traits ofE. argus,E. multiocellata, andP. przewalskii.

    Metabolism is one of the most important physiological processes because it determines an organism’s demands from the environment and energy allocation among functions (Brownet al., 2004; McNab, 2002). Lizards’ metabolic rates have been demonstrated to be significantly sensitive to body temperatures; these, in turn, require the animals’ fast response to any environment thermal variation (e.g., Maet al., 2018a; Maet al., 2018b; Sunet al., 2018). For example, the metabolic rates were enhanced as body temperature increasing, and could respond to thermal variation by acclimation in lizard (e.g., Sunet al.,2018). Furthermore, the segregation of metabolic rates at the same temperatures may help niche differentiation (?agaret al., 2018; ?agaret al., 2015). In addition, locomotion is thermal dependent and critical to escape danger, forage, and choose mating partners, and thus affects survival and reproduction in ectotherms (Robson and Miles, 2010; Shine, 2003; Shuet al., 2010; Wilson, 2001).

    Here, with sympatricE. argus,E. multiocellataandP. przewalskiifrom Shierliancheng of Inner Mongolia area as a study system, we measured the metabolic rates and locomotion of each species at a range of body temperatures from 15-42°C in order to determine interspecific differences in physiology and fitness-related performances. We predicted that: 1)E. argusandE. multiocellata, which occupied shaded microhabitats and have lower active body temperatures, would have higher metabolic rates and sprint speeds but lower optimal temperatures for sprint speed thanP. przewalskiiat a same temperature within a moderate range before the optimal temperature is reached; 2) combined with temperaturerelated curves of metabolic rates and sprint speed, the three sympatric species would perform better when at their own active body temperatures under preferred microhabitat conditions.

    2. Materials and Methods

    2.1. Lizard collection and husbandryThe grounddwelling lizardsE. argus, E. multiocellata, andP. przewalskiiwere collected from late June to early July at the Shierliancheng field station, Institute of Grassland Research of the Chinese Academy of Agricultural Sciences (111°09′ E, 40°21′ N, elevation 1010-1021 m), where the ground-dwelling lizards (i.e.,E. argus, E. multiocellata, andP. przewalskii) sympatry (Liet al., 2017). During collection, gravid female lizards were determined by palpate and released. Male and nongravid female adults of each species were transferred to our laboratory in Beijing, where they were weighed (to the nearest 0.001 g) and measured (to the nearest 1 mm). Every five or six lizards of each species were kept in a terrarium (550 × 400 × 350 mm3, length × width × height). The terraria were placed in a temperaturecontrolled room at 20°C with photoperiod cycles of 10 h dark: 14 h light (6:00-20:00). A heating bulb (50 w) was placed above one end of each terrarium to provide a temperature gradient inside the terrarium from 20-50°C within each photoperiod. Food (crickets dusted with vitamins) and water were providedad libitum.

    2.2. Resting metabolic rateAfter seven days of husbandry, the resting metabolic rates (RMR) of 14E. argus(7 ♂ and 7 ♀), 13E. multiocellata(5 ♂ and 8 ♀), and 14P. przewalskii(7 ♂ and 7 ♀) (totaln= 41) were measured at ten test temperatures (15, 18, 21, 24, 27, 30, 33, 36, 39, and 42°C), with one temperature every other day in a random sequence. Lizards were fasted for at least 12 hours before each measurement. Initially, each lizard was placed in an incubator (Sanyo, Japan) at the selected test temperature for 90 min; then, the lizard was placed in a respirometry chamber within the incubator and the measurement was performed. RMR was measured using a closed-flow respirometry system with a volume of 281.4 ml (Stable Systems International Inc. Las Vegas, NV, USA) and estimated via CO2production rate following a previously established method (Sunet al., 2018). In brief, the system contained the following modules: Universal interface II (UI2), Subsampler TR-S (SS3), Mass flow control unit (MFC-2), Oxygen analyzer (FC-10a), and Carbon dioxide analyzer (Ca-10a). At the beginning of each measurement, the system was opened for two to three minutes so that air came through an entrance tube with a flow rate of 300 ml/min to make the baseline stable. Afterward, the measurement system was transferred to a closed-circuit respirometry, and then carbon dioxide production rates (VCO2) in closedcircuit were continuously recorded for 10 min. The entire environment was dark (no light exposure) during measurements, and all measurements were conducted from 10:00-18:00 to minimize the effects of circadian rhythms. The metabolic rates were calculated as the CO2production per gram0.75of body mass per hour (ml/g0.75/hr) following the ‘metabolic theory of ecology’ (Brownet al., 2004), with the equation of metabolic rates =VCO2× volume/body mass, whereVCO2is the CO2production rate in percentage (%/hr) in the closed circuit with the volume of 281.4 ml (Sunet al., 2018). After each measurement, lizards were transferred back to the terraria until the next measurement initiated. After around 20 days of RMR tests, the locomotion tests were performed.

    2.3. LocomotionThe locomotion of 37 lizards was determined using a 1 000 mm custom-made race track at ten test temperatures randomly (15, 18, 21, 24, 27, 30, 33, 36, 39 and 42°C) after the RMR measurements. Locomotion measurements were not performed in fourE. argusas they were out of conditions (i.e., inactive or unwilling to move under stimulation) one day after the RMR experiments. Before the locomotion measurement, lizards were placed in an incubator at each test temperature for 90 min. The sprint speed was then determined in a 1 000 mm race track with photoelectric timers every 200 mm. For measurements, the lizard was placed in one end of the track and then stimulated on the tail with a paintbrush to run along the race track. The time spent by the lizard to run over every 200 mm interval was recorded using the photoelectric timer. Tests were conducted from 10:00-14:00. Each individual was tested twice with an interval of one hour between tests; the fastest speed of the two tests (i.e., 10 speed records) was recorded as the sprint speed for each lizard. Tests were conducted every other day.

    2.4. Statistical analysisBefore statistical analysis, Kolmogorov-Smirnov test andLevene’stest were conducted to detect data normality and variance homogeneity. Repeated-measures ANOVAs were conducted to determine species differences in RMR and locomotion, with species as a main factor and test temperatures as a repeated factor. When interaction between species and test temperatures was detected, a further comparison was conducted to analyze the differences among species at relevant test temperature ranges.

    3. Results

    3.1 Resting metabolic ratesThe RMRs were significantly different among the three species.Eremias argushad a higher RMR thanE. multiocellataandP. przewalskii(E. argusa>E. multiocellatab>P. przewalskiib;F2,38= 3.65,P= 0.036) (Figure 1). RMR increased with test temperature until the optimal temperature was reached; then, RMR decreased as temperature continued to increase (repeated factor ‘test temperature’:F9,342= 97.956,P< 0.0001). The optimal temperature of RMR forE. argusandE. multiocellatawas 36°C, whereas forP. przewalskiiit was 39°C. The effect of the test temperatures on RMR was species-dependent. At low temperatures (from 15-36°C),E. argushad a significantly higher RMR thanP. przewalskii, withE. multiocellatain between (E. argusa>E. multiocellataab>P. przewalskiib;F2,38= 8.251,P= 0.001). At high temperatures (39-42°C), the RMR ofP. przewalskiiwas significantly higher than those ofE. argusandE. multiocellata(P. przewalskiia>E. argusb>E. multiocellatab;F2,38= 18.023,P< 0.0001) (Figure 1).

    3.2. Locomotion Sprint speed ofE. arguswas significantly higher than that ofE. multiocellata, whereas sprint speed ofP. przewalskiiwas not significantly different from those of either species (E. argusa>P. przewalskiiab>E. multiocellatab;F2,34= 5.376,P= 0.009) (Figure 2). Test temperature had a significant effect on sprint speed (F9,306= 61.687,P< 0.0001). Sprint speed increased with temperature until the optimal temperature, after which it decreased as temperature continued to increase. The optimal temperature of sprint speed forE. argusandE. multiocellatawas 36°C, whereas forP. przewalskiiit was 39°C. At low temperatures (15-36°C), the sprint speed ofE. arguswas significantly higher than that ofE. multiocellata; the sprint speed ofP. przewalskiiwas not significantly different from those of either species (E. argusa>P. przewalskiiab>E. multiocellatab;F2,34= 4.439,P= 0.019). At high temperatures (39-42°C), the sprint speeds ofP. przewalskiiandE. arguswere similar and both higher than that ofE. multiocellata(P. przewalskiia>E. argusa>E. multiocellatab;F2,34= 6.792,P= 0.003) (Figure 2).

    4. Discussion

    On the basis of previously known thermal biology traits such as active body temperatures, and thermal preference of the sympatric lizardsE. argus,E. multiocellata, andP. przewalskii(Tables S1) (Liet al., 2017), in the present study we determined the interspecific differences in RMR and locomotion at different body temperatures from 15 to 42°C. We found thatE. argushave significantly higher RMR and locomotor performance, andE. multiocellatahas significant higher RMR, when compared toP. przewalskii, especially at low body temperatures from 15 to 36°C, but lower optimal temperatures for RMR and locomotion, which indicates the existence of a physiological adaptation to the decrease in body temperature that also influences their performances. Therefore, we found that physiology and performance are both fine-tuned to the thermal p References of the studied lizard species.

    Figure 1 Resting metabolic rate (RMR) of Eremias argus, E. multiocellata, and Phrynocephalus przewalskii at 15, 18, 21, 24, 27, 30, 33, 36, 39, and 42°C. RMR was expressed as CO2 production per g0.75 body mass per hour (ml/g0.75/hr). Red circles, blue triangles, and green rectangles indicate the RMR of E. argus, E. multiocellata, and P. przewalskii, respectively. The optimal temperatures for E. argus, E. multiocellata, and P. przewalskii were 36°C, 36°C, and 39°C, respectively. Data are shown as mean ± SE. The RMRs (expressed as ml/g/hr) are also provided in Table S2, for the convenience of interspecific comparison in ‘Meta-Analysis’.

    Figure 2 Locomotion of Eremias argus, E. multiocellata, and Phrynocephalus przewalskii at 15, 18, 21, 24, 27, 30, 33, 36, 39, and 42℃. Locomotion was expressed as sprint speed (m/s). Red circles, blue triangles, and green rectangles indicate the sprint speed of E. argus, E. multiocellata, and P. przewalskii, respectively. The optimal temperatures for E. argus, E. multiocellata, and P. przewalskii were 36℃, 36℃, and 39℃, respectively. Data are shown as mean ± SE.

    The interspecific differences in metabolic rates amongE. argus,E. multiocellata, andP. przewalskiiare consistent with the differences that were observed in hatchlings incubated under fluctuant temperatures (Maet al., 2018a, 2018b). The metabolic rates of hatchlings ofE. argusandE. multiocellatawere higher than in those ofP. przewalskiiand enhanced with the increase in the test temperatures; this may indicate that the interspecific differences are fixed at the different life cycle stages of these species. As the fundamental physiological process, metabolic rates may reflect the organism’s physiological response to the environment (Brownet al., 2004; McNab, 2002). However, unlike endotherms—which have thermal neutral zones within which organismal metabolic rates are thermally insensitive—, ectothermic metabolic rates are significantly thermally dependent, with a slow increasing rate at low temperatures and a rapid increase at high temperatures, followed by a steep drop after optimal temperature is reached (Gilloolyet al., 2001; White, 2011). As the fundamental ‘pacemaker’ of biological rate, metabolic rate is related to lizard species’ body temperature, which is in turn affected by thermal environments (Brownet al., 2004; Glazier, 2015).Eremias argusandE. multiocellataselect shaded microhabitats and thus have lower body temperatures thanP. przewalskii(Table S1) (Liet al.,2017).Having high metabolic rates at low temperatures (15-36°C, Figure 1) may create advantages forE. argusandE. multiocellataat low temperatures by allowing the allocation of more metabolic energy for the performance of activities such as escaping or foraging (e.g., Sunet al., 2018; Whiteet al., 2012; White and Kearney, 2013). In contrast, as a higher RMR may enable a higher metabolic energetic production, a higher RMR at high temperatures inP. przewalskiimay be responsible for improving this species’ performance, accompanied by higher thermal p References and active body temperatures. Alternatively, a higher RMR at high temperatures may induce more energetic allocation for maintenance, which might be a cost (Sokolovaet al., 2012).

    The existence of interspecific differences in locomotion across body temperatures has been demonstrated in numerous species of lizards(Chenet al., 2003; Duet al., 2000; Ji, 1995; Jiet al., 1996; Sunet al., 2014; Xu, 2001; Zhang and Ji, 2004). Locomotion could reflect the species’ ability to escape, forage, and even reproduce (Husak and Fox, 2006; Shuet al., 2010). The higher sprint speed inE. argusthan inP. przewalskiiandE. multiocellatamay result in selective advantages in escaping, foraging, and even reproduction, especially at low temperatures (Bergmann and Irschick, 2010; Xu, 2001; Zamora-Camachoet al., 2014).

    As they are desert species, the optimal temperatures for sprint speed inE. argus(36°C),E. multiocellata(36°C), andP. przewalskii(39°C) are higher than those reported for skinks (32-34°C ) (Duet al., 2000; Ji, 1995; Xu, 2001) and grass lizards (28-34°C ) (Chenet al., 2003; Jiet al., 1996; Zhang and Ji, 2004). In addition, the high optimal temperature forP. przewalskiifound in this study is consistent with this species’ higher active body temperatures, thermal preference, and thermal tolerance (Liet al., 2017) if compared to the sympatricE. argusandE. multiocellata. The differences in optimal temperatures may be an evolutionary consequence of adaptation to different climatic environments (Zhang and Ji, 2004). Lizards in open and warm environments (e.g., deserts) tend to have high body temperatures, and their optimal temperatures for functions are normally positively correlated with body temperatures (e.g., Ji, 1995; Zhang and Ji, 2004). Potentially, active body temperatures and optimal temperatures for function may be both affected by habitat thermal environments through natural selection or acclimation (Gilbert and Miles, 2017; Sinclairet al., 2016). Within a species’ distribution area, other climatic factors (i.e., humidity) may also directly or indirectly induce variation in thermal traits in lizards, including optimal temperatures of thermal performance curve or critical temperatures (Sinclairet al., 2016; Sundayet al., 2012). Nonetheless, in the present study, these three sympatric species lived in adjacent microhabitats with very similar precipitation and evaporation indices (Wanget al., 2016); thus, we propose that the divergences in optimal temperatures of metabolic rates and locomotion among species were driven by thermal environments. However, future studies on the effect of multiple factors on thermal traits in sympatric ectotherms systems would be very important and necessary.

    In general, the sympatric speciesE. argus,E. multiocellata, andP. przewalskiihave different preferred microhabitats, resulting in interspecies variation of thermal p References and active body temperatures (Table S1) (Liet al., 2017).Eremias argusandE. multiocellataresort to high physiological processes within a low temperatures range (i.e., 15-36°C) to compensate for their lower body temperatures in field conditions. Alternatively,P. przewalskiioccupies open and warm microhabitats, and it has higher body temperatures. Lower metabolic rates and sprint speed at low body temperatures may be an adaptive strategy forP. przewalskii; its low energetic production at low body temperatures results in a lower energetic cost—indicated by low sprint speed—, which in turn reduces energy expenditure (Brownet al., 2004; Younget al., 2011). Similarly, within a certain geographical scale, populations or species that occupy warm habitats (e.g., tropical region) also have higher body temperatures, and therefore tend to have lower performance (e.g., swimming speed) and metabolism rates when compared to species from cold environments at even temperatures, as ‘Metabolic Cold Adaptation’ predicts (e.g., Whiteet al., 2012). Given that, the combination of different active body temperatures and physiological trait responses is an effective solution that allows the sympatric occurrence of the three desert lizards, by enabling their functions within an active body temperature range. Our study highlights the importance of integrative investigations on temperature-driven sympatric occurrence at a physiological level, based on thermal biological traits and active body temperatures. Future studies should focus on the dynamic of the effects of body temperatures on physiological responses in field to reveal the modification of physiological and body temperatures to thermal variation. Especially in the context of climate warming, studies integrating body temperatures alterations and thermal performance curves may provide insight into the responses and the evaluation of the vulnerabilities of sympatric species (Sinclairet al., 2016).

    AcknowledgementsWe thank WANG C. X. and MA L. for their assistance. Animal Ethics Committees at the Institute of Zoology, Chinese Academy of Sciences approved the ethics and protocol (IOZ14001) for the collection, handling, and husbandry of the study animals. BI J. H. (No.31660615) and SUN B. J. (No. 31870391 and 31500324) are supported by grants from the National Natural Science Foundation of China.

    日韩国内少妇激情av| 久久精品熟女亚洲av麻豆精品 | 国产亚洲一区二区精品| 成人综合一区亚洲| 三级男女做爰猛烈吃奶摸视频| 国内精品美女久久久久久| 精品人妻视频免费看| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 国产乱人偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 校园人妻丝袜中文字幕| 国产精品国产三级国产专区5o | 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 日韩欧美国产在线观看| 亚洲欧美日韩东京热| 在线观看av片永久免费下载| 97在线视频观看| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品 | 亚洲欧美精品专区久久| 欧美一区二区亚洲| 麻豆乱淫一区二区| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| av在线播放精品| 91精品国产九色| 国产亚洲精品av在线| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 免费观看精品视频网站| 久久精品人妻少妇| 我要看日韩黄色一级片| 最近的中文字幕免费完整| 国产色婷婷99| 男女啪啪激烈高潮av片| 乱人视频在线观看| 色视频www国产| 亚洲成av人片在线播放无| 日本免费一区二区三区高清不卡| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 成人综合一区亚洲| 2022亚洲国产成人精品| 嫩草影院新地址| 久久99热6这里只有精品| 中文字幕av在线有码专区| 国产高潮美女av| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 国产精品久久电影中文字幕| 在线a可以看的网站| 成人国产麻豆网| 国产黄片视频在线免费观看| 极品教师在线视频| 亚洲成色77777| 男女下面进入的视频免费午夜| 99国产精品一区二区蜜桃av| 在线播放国产精品三级| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 国产黄色视频一区二区在线观看 | 亚洲av一区综合| 人妻系列 视频| 国产精品人妻久久久久久| 亚洲精品自拍成人| 免费大片18禁| 蜜桃亚洲精品一区二区三区| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看| 国产精品国产三级国产av玫瑰| 男插女下体视频免费在线播放| 亚洲欧美日韩高清专用| 最近最新中文字幕大全电影3| 免费无遮挡裸体视频| 黄片wwwwww| 成人午夜高清在线视频| 精品人妻一区二区三区麻豆| 大话2 男鬼变身卡| 国产成人精品婷婷| 少妇熟女欧美另类| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 乱人视频在线观看| 亚洲精品456在线播放app| 内射极品少妇av片p| 亚洲国产精品sss在线观看| 岛国在线免费视频观看| 国产大屁股一区二区在线视频| 免费观看在线日韩| 日韩强制内射视频| 晚上一个人看的免费电影| 少妇高潮的动态图| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻| 国产亚洲5aaaaa淫片| 日韩强制内射视频| 亚洲人成网站在线播| 女人久久www免费人成看片 | 亚洲国产日韩欧美精品在线观看| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 免费一级毛片在线播放高清视频| 国产精品无大码| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 免费看光身美女| 草草在线视频免费看| 一级毛片我不卡| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 九九热线精品视视频播放| 少妇熟女欧美另类| 老司机影院毛片| 高清日韩中文字幕在线| 最近的中文字幕免费完整| 麻豆成人av视频| 婷婷色综合大香蕉| 国产精华一区二区三区| 夜夜爽夜夜爽视频| 久久99精品国语久久久| 精品免费久久久久久久清纯| 国产亚洲av片在线观看秒播厂 | 亚洲精品日韩av片在线观看| 午夜福利在线观看吧| 最近最新中文字幕大全电影3| 亚洲精品aⅴ在线观看| 国产一区二区亚洲精品在线观看| 久久精品夜色国产| 国产精品.久久久| 99热网站在线观看| 在现免费观看毛片| 两性午夜刺激爽爽歪歪视频在线观看| 国产成年人精品一区二区| 成人av在线播放网站| 久久久久免费精品人妻一区二区| 我的女老师完整版在线观看| 国产精品国产三级国产专区5o | 国产老妇伦熟女老妇高清| 日韩一区二区视频免费看| 国产午夜精品久久久久久一区二区三区| 一夜夜www| 亚洲不卡免费看| 亚洲第一区二区三区不卡| 久久精品影院6| 99热6这里只有精品| 国产乱人偷精品视频| 免费av不卡在线播放| 丰满人妻一区二区三区视频av| 中文乱码字字幕精品一区二区三区 | 久久精品国产亚洲网站| 不卡视频在线观看欧美| www.色视频.com| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 午夜福利网站1000一区二区三区| av在线播放精品| 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| 18禁在线播放成人免费| 亚洲国产精品久久男人天堂| 纵有疾风起免费观看全集完整版 | 色播亚洲综合网| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 欧美性感艳星| 久久精品国产鲁丝片午夜精品| 人妻夜夜爽99麻豆av| 乱人视频在线观看| 亚洲在线观看片| 神马国产精品三级电影在线观看| av视频在线观看入口| 国产av一区在线观看免费| 午夜福利高清视频| 男女视频在线观看网站免费| 少妇的逼水好多| 日韩中字成人| 简卡轻食公司| 岛国毛片在线播放| 国产一区二区亚洲精品在线观看| 日韩欧美国产在线观看| 国产 一区精品| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 3wmmmm亚洲av在线观看| 免费黄色在线免费观看| 精品国产一区二区三区久久久樱花 | 午夜精品在线福利| 欧美日韩国产亚洲二区| 七月丁香在线播放| 又爽又黄无遮挡网站| 高清午夜精品一区二区三区| 亚洲av一区综合| 中文字幕制服av| 国产午夜福利久久久久久| 中文字幕熟女人妻在线| 又爽又黄a免费视频| 国产精品综合久久久久久久免费| 一区二区三区免费毛片| 尾随美女入室| av又黄又爽大尺度在线免费看 | 日韩欧美 国产精品| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 欧美成人a在线观看| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 2021少妇久久久久久久久久久| 啦啦啦韩国在线观看视频| 亚洲av中文av极速乱| 嫩草影院入口| 国产伦理片在线播放av一区| 精品久久久久久久久av| 亚洲精品一区蜜桃| 亚洲乱码一区二区免费版| 国模一区二区三区四区视频| 国产探花极品一区二区| 成年女人永久免费观看视频| 久久久久久久亚洲中文字幕| 日本wwww免费看| 亚洲欧美一区二区三区国产| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久 | 少妇熟女欧美另类| 麻豆久久精品国产亚洲av| 久久6这里有精品| 免费观看精品视频网站| 国内揄拍国产精品人妻在线| a级毛色黄片| 精品不卡国产一区二区三区| 日本爱情动作片www.在线观看| 国产成人a区在线观看| 欧美日韩在线观看h| 亚洲av免费高清在线观看| 少妇熟女aⅴ在线视频| 久久久久久伊人网av| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站 | 国产成人a∨麻豆精品| 免费人成在线观看视频色| 五月伊人婷婷丁香| 欧美丝袜亚洲另类| 你懂的网址亚洲精品在线观看 | 欧美最新免费一区二区三区| 免费看美女性在线毛片视频| 秋霞伦理黄片| 亚洲精品乱久久久久久| 麻豆av噜噜一区二区三区| 亚洲无线观看免费| 国产精品人妻久久久影院| 成人二区视频| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 午夜久久久久精精品| 欧美区成人在线视频| 视频中文字幕在线观看| 99久久成人亚洲精品观看| 久久久久久久久久久免费av| 精品免费久久久久久久清纯| 久久亚洲国产成人精品v| 丰满人妻一区二区三区视频av| 久热久热在线精品观看| 免费看a级黄色片| 男人的好看免费观看在线视频| 天天一区二区日本电影三级| 国产一区二区在线av高清观看| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻偷拍中文字幕| 久久久国产成人免费| 99久久九九国产精品国产免费| 综合色av麻豆| 啦啦啦韩国在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利网站1000一区二区三区| 美女cb高潮喷水在线观看| 国产伦理片在线播放av一区| 国产一区二区亚洲精品在线观看| 亚洲中文字幕一区二区三区有码在线看| 一级二级三级毛片免费看| 精品国内亚洲2022精品成人| 国产一区亚洲一区在线观看| 丝袜喷水一区| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 2021天堂中文幕一二区在线观| 国产淫片久久久久久久久| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 久久久久久久久久成人| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 亚洲精品色激情综合| 日本三级黄在线观看| 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 日本-黄色视频高清免费观看| 我要搜黄色片| 久久久欧美国产精品| 丰满人妻一区二区三区视频av| 欧美另类亚洲清纯唯美| 国产不卡一卡二| 国产亚洲一区二区精品| 亚洲精品,欧美精品| 成人性生交大片免费视频hd| 色网站视频免费| 校园人妻丝袜中文字幕| 内射极品少妇av片p| 噜噜噜噜噜久久久久久91| 啦啦啦韩国在线观看视频| 丰满人妻一区二区三区视频av| 内地一区二区视频在线| 欧美bdsm另类| 亚洲av电影不卡..在线观看| 欧美bdsm另类| 成年av动漫网址| 国产精品国产三级专区第一集| 简卡轻食公司| 国产爱豆传媒在线观看| 日韩 亚洲 欧美在线| av在线蜜桃| 最后的刺客免费高清国语| 亚洲色图av天堂| 青春草亚洲视频在线观看| 免费观看精品视频网站| 亚洲内射少妇av| 久久久精品大字幕| 长腿黑丝高跟| 国产日韩欧美在线精品| 长腿黑丝高跟| 欧美一级a爱片免费观看看| 亚洲av男天堂| 精品久久久久久久久久久久久| 精品国产三级普通话版| 国产精品一二三区在线看| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| 精品熟女少妇av免费看| 性色avwww在线观看| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 欧美97在线视频| 亚洲综合色惰| 国产高清三级在线| 黄片wwwwww| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区 | 最近中文字幕2019免费版| 天美传媒精品一区二区| 国产精品乱码一区二三区的特点| 一个人免费在线观看电影| 色5月婷婷丁香| 中文字幕熟女人妻在线| 国产伦一二天堂av在线观看| 久久99热这里只频精品6学生 | 亚洲欧洲日产国产| 国产探花在线观看一区二区| 国产亚洲午夜精品一区二区久久 | 亚洲天堂国产精品一区在线| 亚洲精品乱久久久久久| 亚洲av成人精品一区久久| 丰满人妻一区二区三区视频av| 乱码一卡2卡4卡精品| www.色视频.com| 高清在线视频一区二区三区 | 久热久热在线精品观看| 男人舔女人下体高潮全视频| 中文字幕制服av| 少妇丰满av| 一卡2卡三卡四卡精品乱码亚洲| 3wmmmm亚洲av在线观看| 直男gayav资源| 色噜噜av男人的天堂激情| 午夜免费激情av| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 国产成人精品久久久久久| 精品欧美国产一区二区三| av在线蜜桃| 国产人妻一区二区三区在| 两个人的视频大全免费| 能在线免费观看的黄片| 人人妻人人澡欧美一区二区| 欧美成人精品欧美一级黄| 26uuu在线亚洲综合色| 久久久久久久国产电影| 少妇丰满av| 国产精品永久免费网站| 国产一区亚洲一区在线观看| 秋霞伦理黄片| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 亚洲精品乱码久久久久久按摩| 一级毛片我不卡| 久久精品国产亚洲av涩爱| 99在线人妻在线中文字幕| 一级爰片在线观看| 九色成人免费人妻av| 99热精品在线国产| 中国国产av一级| 久久亚洲国产成人精品v| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 国产高清有码在线观看视频| 在线a可以看的网站| 国产精华一区二区三区| 天天躁夜夜躁狠狠久久av| 99热全是精品| 国产 一区精品| 午夜精品国产一区二区电影 | 久久久久久久久久久免费av| 男人的好看免费观看在线视频| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 免费看a级黄色片| 亚洲欧美精品综合久久99| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品| 免费电影在线观看免费观看| 最近视频中文字幕2019在线8| 久久精品久久久久久久性| 久久久午夜欧美精品| 国产单亲对白刺激| 在线观看一区二区三区| 国产在视频线在精品| 亚洲熟妇中文字幕五十中出| 在线播放无遮挡| 久久精品久久精品一区二区三区| 欧美日韩综合久久久久久| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 日韩 亚洲 欧美在线| av播播在线观看一区| 中文字幕免费在线视频6| 国产亚洲5aaaaa淫片| 18禁动态无遮挡网站| 搡女人真爽免费视频火全软件| 国产在线一区二区三区精 | av线在线观看网站| 亚洲av免费在线观看| 欧美一级a爱片免费观看看| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 性插视频无遮挡在线免费观看| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区 | 91av网一区二区| 中文字幕免费在线视频6| 在线免费观看的www视频| 免费一级毛片在线播放高清视频| 日本爱情动作片www.在线观看| 国产高清不卡午夜福利| 水蜜桃什么品种好| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 亚洲一级一片aⅴ在线观看| 欧美97在线视频| 美女xxoo啪啪120秒动态图| 亚洲色图av天堂| 男人和女人高潮做爰伦理| 午夜福利网站1000一区二区三区| 女人被狂操c到高潮| 精品久久久久久电影网 | 嫩草影院新地址| 国产老妇女一区| 久久久久网色| 美女大奶头视频| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| 91狼人影院| 亚洲av一区综合| 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 男的添女的下面高潮视频| 成人二区视频| 亚洲精品乱久久久久久| 日韩成人伦理影院| 国产成人a∨麻豆精品| 我的老师免费观看完整版| 国产中年淑女户外野战色| 哪个播放器可以免费观看大片| 亚洲天堂国产精品一区在线| 日韩强制内射视频| .国产精品久久| 成人av在线播放网站| 亚洲精品日韩av片在线观看| 国产精品麻豆人妻色哟哟久久 | 免费在线观看成人毛片| 男人舔女人下体高潮全视频| 免费人成在线观看视频色| 午夜亚洲福利在线播放| 成年女人看的毛片在线观看| 国产69精品久久久久777片| 99热网站在线观看| 97超碰精品成人国产| 六月丁香七月| 亚洲精品自拍成人| 国产精品永久免费网站| 欧美性猛交黑人性爽| 亚洲色图av天堂| 成人性生交大片免费视频hd| 欧美bdsm另类| 秋霞伦理黄片| 一个人观看的视频www高清免费观看| 国产午夜福利久久久久久| 成年免费大片在线观看| 久久久久精品久久久久真实原创| 成人一区二区视频在线观看| 免费观看人在逋| av.在线天堂| 麻豆av噜噜一区二区三区| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添av毛片| 欧美成人一区二区免费高清观看| 国产三级中文精品| 高清在线视频一区二区三区 | 欧美97在线视频| 精品免费久久久久久久清纯| 精品一区二区三区人妻视频| 日本黄色片子视频| 美女黄网站色视频| 伦精品一区二区三区| 免费观看的影片在线观看| 国产午夜精品久久久久久一区二区三区| 中文在线观看免费www的网站| 舔av片在线| 九九在线视频观看精品| 成年免费大片在线观看| 亚州av有码| 尾随美女入室| 99久久精品国产国产毛片| 国产精品无大码| 成人美女网站在线观看视频| 亚洲av电影在线观看一区二区三区 | 在线播放国产精品三级| 嫩草影院精品99| 中文亚洲av片在线观看爽| 美女高潮的动态| 国产一区亚洲一区在线观看| 日韩,欧美,国产一区二区三区 | 免费观看a级毛片全部| 久久久a久久爽久久v久久| 免费观看人在逋| 国产成人精品久久久久久| 极品教师在线视频| 色哟哟·www| 欧美+日韩+精品| 好男人在线观看高清免费视频| 精品人妻视频免费看| 大又大粗又爽又黄少妇毛片口| 日日摸夜夜添夜夜爱| 边亲边吃奶的免费视频| 高清毛片免费看| 我要看日韩黄色一级片| 精品熟女少妇av免费看| 国产精品蜜桃在线观看| 国产av不卡久久| 三级经典国产精品| 一级黄片播放器| 亚洲综合色惰| 精品少妇黑人巨大在线播放 | 97人妻精品一区二区三区麻豆| 免费观看精品视频网站| 国产精品久久久久久av不卡| 国产极品精品免费视频能看的| 亚洲欧美精品综合久久99| 亚洲欧洲日产国产| 国产老妇女一区| 男人狂女人下面高潮的视频| av在线老鸭窝| 日本av手机在线免费观看| 一区二区三区高清视频在线| 久久久久久久国产电影| 狂野欧美激情性xxxx在线观看| 你懂的网址亚洲精品在线观看 | 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 日本wwww免费看| 如何舔出高潮| 黄色一级大片看看| 69人妻影院| 少妇熟女aⅴ在线视频| 禁无遮挡网站| 国产三级在线视频| 亚洲图色成人| 天堂√8在线中文| 小蜜桃在线观看免费完整版高清| 国产亚洲最大av| 中国美白少妇内射xxxbb| 亚洲精品影视一区二区三区av| 日本黄大片高清| 欧美极品一区二区三区四区| 亚洲av成人精品一区久久| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 非洲黑人性xxxx精品又粗又长| 国语自产精品视频在线第100页| 国产黄a三级三级三级人| 九九爱精品视频在线观看| 最近最新中文字幕大全电影3| 九九久久精品国产亚洲av麻豆| 欧美3d第一页|