• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    變遺忘因子多新息隨機梯度算法雙饋電機參數(shù)辨識

    2019-09-20 05:41:58
    測控技術(shù) 2019年3期
    關(guān)鍵詞:新息雙饋磁鏈

    (江南大學(xué) 輕工過程先進控制教育部重點實驗室,江蘇 無錫 214122)

    雙饋感應(yīng)發(fā)電機因其性能優(yōu)良、結(jié)構(gòu)可靠得到廣泛應(yīng)用,實際運行時,受溫度、頻率、飽和、雜散損耗等復(fù)雜因素的影響,電機參數(shù)容易發(fā)生改變,因此在許多應(yīng)用場合,電機參數(shù)辨識具有重要的作用[1-2]。常見的待辨識電機參數(shù)包括定子電阻Rs、定子電感Ls、轉(zhuǎn)子電阻Rr、轉(zhuǎn)子電感Lr和定轉(zhuǎn)子之間的互感Lm。

    辨識分為離線辨識和在線辨識兩種,其中在線辨識可以充分利用每次采集到的新數(shù)據(jù),使辨識結(jié)果不斷更新,從而克服慢時變和數(shù)據(jù)陳舊而引起的失效,在參數(shù)辨識中越來越得到重視[3-4],常見的遞推最小二乘算法、隨機梯度算法等都屬于在線辨識。文獻[5]在處理電機的瞬態(tài)過程中,采用脈沖電壓法和脈沖電流法辨識電機參數(shù),對數(shù)據(jù)實時處理的方法略顯復(fù)雜;文獻[6]采用基于遺忘因子最小二乘算法對永磁同步電機離散系統(tǒng)模型的轉(zhuǎn)動慣量及負載轉(zhuǎn)矩等進行辨識,雖然達到了辨識結(jié)果,但由于最小二乘算法需要計算協(xié)方差,導(dǎo)致計算量較大;文獻[7]采用隨機梯度算法辨識永磁同步電機參數(shù),不用計算協(xié)方差陣,改進了最小二乘方法計算量的不足,但同時它的缺點是收斂速度比較慢,以上算法從各個方面驗證了各自算法的有效性,但也存在各種不足,將多新息理論與傳統(tǒng)隨機梯度算法理論結(jié)合起來在一定程度上解決了這些問題,文獻[8]將隨機梯度算法與多新息思想結(jié)合,相對于傳統(tǒng)隨機梯度算法,增加了每次計算對數(shù)據(jù)的利用率,不僅減小了計算量,同時又大大提高了算法收斂速度。

    本文將雙饋電機dq坐標(biāo)系下數(shù)學(xué)模型轉(zhuǎn)化為標(biāo)準(zhǔn)辨識形式,采用定子磁鏈定向的矢量控制方法搭建雙饋電機矢量控制系統(tǒng)并采集數(shù)據(jù),利用變遺忘因子多新息隨機梯度算法對雙饋電機參數(shù)進行辨識,由仿真結(jié)果驗證了算法的有效性。

    1 雙饋電機模型

    1.1 dq坐標(biāo)系下的雙饋電機模型

    在風(fēng)力發(fā)電機系統(tǒng)中,雙饋電機定子側(cè)直接連接到電網(wǎng),通常把定子側(cè)電壓和頻率在運行中看作是恒定的,轉(zhuǎn)子側(cè)通常采用dq同步坐標(biāo)系下解耦控制,用q軸分量irq控制有功分量,d軸分量inq控制控制雙饋電機的無功功率。其基于定子磁鏈定向的空間矢量圖如圖1所示。

    圖1 定子磁鏈定向的DFIG空間矢量圖

    其中,αs、βs為靜止坐標(biāo)系下定子側(cè)分量,αr、βr為靜止坐標(biāo)系下轉(zhuǎn)子側(cè)分量,θs為定子磁通角,θr為轉(zhuǎn)子電角度,θslip為轉(zhuǎn)差角,ψs為定子磁鏈。

    假設(shè)定子采用發(fā)電機慣例,電流以流出為正,轉(zhuǎn)子采用電動機慣例,電流以流入為正,經(jīng)過Clark變換和Park變換,可以得到雙饋電機在同步旋轉(zhuǎn)dq軸坐標(biāo)系下的數(shù)學(xué)模型[9-10]。

    電壓方程:

    Usd=Dψsd-ω1ψsd-Rsisd

    (1)

    Usq=Dψsq+ω1ψsd-Rsisq

    (2)

    Urd=Dψrd-ω2ψrq-Rrird

    (3)

    Urq=Dψrq+ω2ψrd+Rrirq

    (4)

    式中,Usd、Usq分別為dq軸定子電壓分量;Urd、Urq分別為dq軸轉(zhuǎn)子電壓分量;isd、isq分別為dq軸定子電流分量;ird、irq分別為dq軸轉(zhuǎn)子電流分量;ψsd、ψsq分別為dq軸定子磁鏈分量;ψrd、ψrq分別為dq軸轉(zhuǎn)子磁鏈分量;ω1為定子電流角頻率;ω2為轉(zhuǎn)子電流角頻率;D為微分算子。

    磁鏈方程為

    ψsd=-Lsisd+Lmird

    (5)

    ψsq=-Lsisq+Lmirq

    (6)

    ψrd=Lrird-Lmisd

    (7)

    ψrq=Lrirq-Lmisq

    (8)

    式中,Lm為定轉(zhuǎn)子互感;Ls為定子電感;Lr為轉(zhuǎn)子電感。

    電磁轉(zhuǎn)矩方程為

    Tem=1.5npLm(isqird-isdirq)

    (9)

    式中,Tem為電磁轉(zhuǎn)矩;np為極對數(shù)。

    運動方程為

    (10)

    式中,TL為負載轉(zhuǎn)矩;J為轉(zhuǎn)動慣量

    式(1)~式(10)為雙饋電機在同步旋轉(zhuǎn)dq坐標(biāo)系下的數(shù)學(xué)模型,通過坐標(biāo)變換后,大大簡化了交流電機的模型復(fù)雜度。

    1.2 參數(shù)辨識模型

    本文中雙饋電機參數(shù)辨識在同步旋轉(zhuǎn)dq坐標(biāo)系下進行,所以需要將雙饋電機在同步旋轉(zhuǎn)dq坐標(biāo)系下的數(shù)學(xué)模型變形為參數(shù)辨識的標(biāo)準(zhǔn)形式。旋轉(zhuǎn)坐標(biāo)系下,將定轉(zhuǎn)子磁鏈方程帶入到電壓方程,則雙饋電機在同步旋轉(zhuǎn)dq坐標(biāo)系下的數(shù)學(xué)電壓方程可簡化為

    Usd=(-Disd+ω1isq)Ls+(Dird-ω1irq)Lm-isdRs

    (11)

    Usq=(-Disq-ω1isd)Ls+(Dirq+ω1ird)Lm-isqRs

    (12)

    Urd=(Dird-ω2irq)Lr+(-Disd+ω2isq)Lm-irdRr

    (13)

    Urq=(Dirq+ω2ird)Lr+(-Disq-ω2isd)Lm+irqRr

    (14)

    將式(11)~式(14)改寫成矩陣形式:

    (15)

    (16)

    對式(15)、式(16)中的微分算子D進行離散化處理:

    (17)

    (18)

    (19)

    (20)

    將式(17)~式(20)代入式(15)、式(16),則得到在dq坐標(biāo)系下雙饋電機離散型參數(shù)辨識表達式為

    (21)

    (22)

    考慮定子側(cè)的電流電壓情況,雙饋電機的自回歸模型為

    y(k)=φT(k)θ(k)

    其中:

    y(k)=[Usd(k)Usq(k)]T

    (23)

    φ(k)=

    (24)

    (25)

    2 變遺忘因子多新息隨機梯度算法

    2.1 遺忘因子多新息隨機梯度算法

    對于線性回歸模型:

    y(t)=φT(t)θ+v(t)

    (26)

    式中,y(t)為輸出向量;φ(t)為信息向量;θ為待辨識參數(shù);v(t)∈R1為噪聲向量。

    令目標(biāo)函數(shù)為J(θ)=‖y(t)-φT(t)θ‖2,其中X的范數(shù)定義為‖X‖2=tr[XXT],tr[X]表示X的跡。

    根據(jù)梯度搜索原理極小化J(θ)得到式(27)~式(29)所示的隨機梯度[11](Stochastic Gradient,SG)算法:

    (27)

    (28)

    r(t)=r(t-1)+φ(t)2,r(0)=1

    (29)

    相比最小二乘算法,隨機梯度算法不需要計算協(xié)方差陣從而減小了計算量,但是隨機梯度算法的由于數(shù)據(jù)利用率低,導(dǎo)致收斂速度慢,為提高隨機梯度算法參數(shù)估計的收斂速度,引入新息長度p,將原來的單新息量e(t)擴展到數(shù)據(jù)長度為p的多新息向量,提高了每次計算對數(shù)據(jù)的利用率,得:

    (30)

    Φ(p,t)=[φ(t)φ(t-1) …φ(t-p+1)]∈R1×p

    (31)

    Y(p,t)=[y(t)y(t-1) …y(t-p+1)]∈R1×p

    (32)

    其中y(t-i),φ(t-i):i=1,2,…,p-1表示過去時刻的值。

    式(28)可以表示為

    (33)

    根據(jù)隨機梯度算法得到多新息隨機梯度算法:

    (34)

    (35)

    r(t)=r(t-1)+Φ(t)2,r(0)=1

    (36)

    相比傳統(tǒng)的隨機梯度算法和最小二乘算法,多新息隨機梯度算法將新息的數(shù)據(jù)長度擴展為p,使數(shù)據(jù)得到比較充分的利用,同時避免最小二乘算法中因為要計算協(xié)方差而造成的計算量較大的情況[12],是兩種算法的折中。

    2.2 變遺忘因子

    新息長度的引入可以改善參數(shù)收斂精度,但這種改進是有極限的,特別在待辨識參數(shù)數(shù)目多時,可在多新息隨機梯度辨識方法中引入遺忘因子得到多新息遺忘梯度算法。

    用FF表示遺忘因子,其中0

    r(t)=FF·r(t-1)+φ(t)2

    (37)

    多新息遺忘梯度算法相比于傳統(tǒng)的隨機梯度算法有一定的改進,但固定的遺忘因子有時并不能滿足需要,在非平穩(wěn)的情況下,通常希望FF足夠小,使算法能夠很快跟蹤上非平穩(wěn)信號的局部趨勢;在穩(wěn)態(tài)情況下,希望FF能夠逐漸變大到一個合適的值,以減小參數(shù)的估計誤差[14];故提出可變遺忘因子,通過檢測系統(tǒng)的誤差更新遺忘因子的大小。

    通過檢測系統(tǒng)的真實輸出,并計算與估計輸出值的差值的范數(shù)得到t時刻的輸出誤差δ(t)。定義t時刻遺忘因子的更新公式為

    (38)

    式中,(FF1,F(xiàn)F2)是FF的變化范圍,r(t)=FF(t)·r(t-1)+φ(t)2為容許的最大誤差,并規(guī)定當(dāng)δ(t)>t時,取δ(t)=δ;在r(t)=FF(t)·r(t-1)+φ(t)2時,取δ(t)=0.2δ,其中δ為系統(tǒng)參數(shù)與真實參數(shù)誤差的范數(shù),即系統(tǒng)參數(shù)的辨識誤差[15]。代入得到式(39):

    r(t)=FF(t)·r(t-1)+φ(t)2

    (39)

    將該算法與電機模型結(jié)合起來,采集電機運行中電流、電壓等相關(guān)數(shù)據(jù),構(gòu)建算法中信息向量和輸出向量,根據(jù)變遺忘因子多新息理論迭代刷新估計參數(shù)值,從而得到電機參數(shù)的辨識結(jié)果,其流程圖如圖2所示。

    圖2 電機參數(shù)辨識流程圖

    3 仿真實驗

    3.1 控制系統(tǒng)仿真

    矢量控制是將電機的電壓或電流矢量進行變換,將其解耦為正交的勵磁電流和轉(zhuǎn)矩電流并分別進行控制。雙饋電機由于其非線性、強耦合性,控制較為復(fù)雜,因此將矢量控制技術(shù)引入到雙饋調(diào)速系統(tǒng)中,并對坐標(biāo)軸間的交叉耦合進行有效的補償,在Simulink中搭建永磁同步電機矢量控制模型[16-18],如圖3所示。

    圖3 雙饋電機矢量控制系統(tǒng)

    由于DFIG定子側(cè)繞組直接連在無窮大電網(wǎng)上,通常將定子的電壓幅值、頻率近似看作恒定的。采用定子磁鏈定向時,假定定子磁鏈?zhǔn)噶颗cd軸方向一致,可以得到:

    (40)

    忽略定子電阻,可以得到:

    (41)

    (42)

    電機模型參數(shù)為:額定功率Pn=2.8 kW,額定電壓Un=380 V,定子電感Ls=0.102 H,定子電阻Rs=1.31 Ω,定轉(zhuǎn)子互感Lm=0.109 H,極對數(shù)np=2,額定轉(zhuǎn)速n=2000 r/min。圖4為轉(zhuǎn)速跟蹤仿真,從圖中可以看出,該矢量控制模型有很好的控制效果,超調(diào)約為6%,且抗干擾能力較好。

    圖4 轉(zhuǎn)速跟蹤(ω =2000 rad/min)

    3.2 電機參數(shù)辨識

    參數(shù)辨識步驟如下。

    ① 采集電機中電流isdq、irdq和電壓Usdq、Urdq等數(shù)據(jù),并進行濾波處理。

    ② 根據(jù)式(23)、式(24)的值構(gòu)造y(k)、φ(k)。

    ③ 根據(jù)式(31)、式(32)構(gòu)造Φ(p,t)、Y(p,t)。

    ④ 根據(jù)式(30)計算E(p,t),根據(jù)式(39)計算r(t)。

    ⑥ 在線采集新數(shù)據(jù),t=t+1,返回步驟②。

    辨識結(jié)果如圖5~圖7所示。

    圖5 定子電感Ls辨識結(jié)果

    圖6 互感Lm辨識結(jié)果

    圖7 定子電阻Rs辨識結(jié)果

    圖5為變遺忘因子多新息隨機梯度算法對雙饋電機定子電感Ls的辨識結(jié)果,從圖中可以看出,在0.1 s內(nèi)算法快速收斂,后雖略有波動,但誤差極小,精度理想。

    圖6為辨識算法對雙饋電機定轉(zhuǎn)子互感Lm的辨識結(jié)果,從圖中可以看出,約在0.1 s系統(tǒng)達到收斂效果,誤差控制在0.2%內(nèi),隨后緩慢收斂于實際值。

    圖7為變遺忘因子多新息隨機梯度算法對雙饋電機電阻Rs辨識的結(jié)果。可以看出,參數(shù)辨識結(jié)果在0.15 s接近于實際值,誤差控制在0.01以內(nèi),算法辨識精度理想。

    4 結(jié)束語

    本文采用定子磁鏈定向的矢量控制方法,在Simulink中搭建電機控制系統(tǒng)模型采集電壓電流信號,根據(jù)電機數(shù)學(xué)模型推導(dǎo)參數(shù)辨識表達式,并結(jié)合梯度辨識思想,提出了一種基于變遺忘因子多新息隨機梯度算法的雙饋電機參數(shù)辨識方法。相比最小二乘辨識方法,避免計算協(xié)方差矩陣,從而大大減少了計算工作量;而相對于隨機梯度辨識方法,擴展新息長度并加入時變遺忘因子,充分利用過去時刻數(shù)據(jù),提高了系統(tǒng)辨識的速度,由仿真結(jié)果分析,變遺忘因子多新息隨機梯度算法通過調(diào)節(jié)遺忘因子的大小,能夠較有效跟蹤參數(shù)的變化。

    猜你喜歡
    新息雙饋磁鏈
    雙饋式可變速抽水蓄能機組運行控制
    基于Motor CAD的雙饋發(fā)電機溫升速算方法研究
    防爆電機(2021年6期)2022-01-17 02:40:18
    傳遞函數(shù)辨識(21):線性回歸系統(tǒng)的遞階遞推參數(shù)估計
    M估計的強跟蹤SVD-UKF算法在組合導(dǎo)航中的應(yīng)用
    電子科技(2018年7期)2018-07-23 05:30:32
    自適應(yīng)卡爾曼濾波在航空重力異常解算的應(yīng)用研究
    一種弱磁擴速下的異步電機磁鏈觀測和速度辨識
    基于新息正交性自適應(yīng)濾波的慣性/地磁組合導(dǎo)航方法
    一種基于簡化MRAS無速度傳感器的永磁電機EKF磁鏈辨識
    受平均斜率控制的Crowbar雙饋異步電機低電壓穿越
    基于PI控制的雙饋風(fēng)電場的無功電壓建模與仿真
    望谟县| 莱西市| 莎车县| 浦城县| 绵竹市| 奉节县| 鹤山市| 绿春县| 阳信县| 永平县| 夏津县| 邹城市| 库伦旗| 顺平县| 汽车| 巴东县| 宜川县| 河东区| 新平| 班玛县| 乐都县| 日土县| 南雄市| 普洱| 芒康县| 本溪| 德庆县| 南平市| 财经| 来凤县| 阿坝| 崇阳县| 定陶县| 台中市| 开原市| 天台县| 宜川县| 凤阳县| 鹿泉市| 开鲁县| 兴山县|