許孟杰 李衛(wèi)兵 周雪松
摘要:以從玉米芯中提取的水不溶性半纖維素(wisAGX) (中性單糖組成為:83.09%木糖、10.03%葡萄糖、4.76%阿拉伯糖、0.76%半乳糖)為原料,在堿性介質(zhì)中與丙烯酰胺接枝共聚并適度水解,在半纖維素中引入具有pH響應(yīng)性的聚丙烯酸(PAA)鏈段,再將共聚物與聚乙烯醇(PVA)溶液共混后以戊二醛交聯(lián)制備半纖維素基水凝膠。通過核磁共振儀和傅里葉變換紅外光譜儀對該水凝膠的化學(xué)結(jié)構(gòu)進(jìn)行表征,利用掃描電子顯微鏡對水凝膠的形貌特征進(jìn)行表征,研究了該水凝膠在去離子水和不同pH值環(huán)境下的溶脹行為。結(jié)果表明,水凝膠具有明顯的pH響應(yīng)性,且在pH值10時溶脹率最高,可達(dá)1210%。此外,水凝膠的溶脹率與羧基含量正相關(guān),與戊二醛用量負(fù)相關(guān)。以茶堿作為模型藥物,探討了其在模擬胃液(pH值1.2)和腸液(pH值7.4)介質(zhì)中的藥物釋放行為。在6 h內(nèi),擔(dān)載藥物后的水凝膠在模擬腸液中的藥物累積釋放量可達(dá)68%,明顯高于其在胃液中51%的藥物累積釋放量,故此水凝膠有明顯的藥物緩釋作用。
關(guān)鍵詞:水不溶性半纖維素;聚乙烯醇;pH響應(yīng)性水凝膠;藥物控釋
中圖分類號:TQ317.4
文獻(xiàn)標(biāo)識碼:A
DOI:10.11980/j.issn.0254508X.2019.04.004
Abstract:A kind of novel pHsensitive hemicellulosesbased hydrogels was synthesized from the water insoluble hemicelluloses (wisAGX)(the composition of neutral monosaccharide was 83.09% xylose, 10.03% glucose, 4.76% arabinose and 0.76% galactose)extracted from corncobs via sequential graft copolymerization, saponification hydrolysis in alkaline medium, blending with polyvinyl alcohol(PVA)and crosslinkage in presence of glutaraldehyde.The chemical structure of the composite hydrogel was characterized by NMR and Fourier transform infrared spectroscopy, and the morphological characteristics of the hydrogel were characterized by scanning electron microscopy. The swelling properties of the hydrogels in distilled water and buffer solutions with different pH values were studied, respectively. The results show that the hydrogel has obvious pH sensitivity, and the swelling rate is the highest at pH=10, up to 1210%. In addition, the swelling rate of the hydrogel is positively correlated with the content of —COOH and negatively correlated with the amount of glutaraldehyde. Using theophylline as a model drug, its drug release behavior in simulated gastric fluid (pH=1.2) and intestinal fluid (pH=7.4) was investigated. Within 6 h, the cumulative release of the drugloaded gel in the simulated intestinal fluid was up to 68%, which was significantly higher than the cumulative release of 51% of the drug in the gastric juice, so hydrogel has obvious drug sustained release effect and pH sensitivity.
Key words:water insoluble hemicelluloses; polyvinyl alcohol; pH sensitive hydrogels; drug controlled release
水凝膠是一種能夠在水中溶脹但又不溶解于水且具有親水基團(tuán)的三維網(wǎng)絡(luò)結(jié)構(gòu)的高分子材料[1]。智能型水凝膠是一類受外界環(huán)境微小的物理和化學(xué)刺激如溫度、pH值、鹽濃度、光、電場、化學(xué)物質(zhì)等,其自身性質(zhì)就會發(fā)生明顯改變的交聯(lián)聚合物[23]。由于智能型水凝膠這種獨(dú)特的響應(yīng)性,其在生物醫(yī)藥、組織工程等方面具有很好的應(yīng)用前景,如藥物載體、組織工程支架材料及人工器官等[46]。目前,對智能型水凝膠研究最多的集中在溫度敏感和pH響應(yīng)性水凝膠上,特別是pH響應(yīng)性水凝膠已受到越來越多的關(guān)注。pH響應(yīng)性水凝膠可以把藥物分子包埋在水凝膠網(wǎng)絡(luò)中,使水凝膠載體能夠根據(jù)人體環(huán)境pH值的變化實現(xiàn)藥物的靶向釋放[78]。
近年來,使用天然多聚糖制備智能型水凝膠實現(xiàn)藥物緩釋成為研究熱點(diǎn)之一。天然多糖來源廣泛、可再生、無毒,而且具有良好的生物相容性和生物降解性。半纖維素是植物細(xì)胞壁中連接纖維素和木素的一種雜化聚糖,在自然界中的含量僅次于纖維素[910]。玉米芯中分離得到的半纖維素根據(jù)主鏈取代度的不同分為水溶性半纖維素(wsAGX)和水不溶性半纖維素(wisAGX)兩種,其中wisAGX主鏈由木糖結(jié)構(gòu)單元通過β14糖苷鍵鏈接而成,其中主鏈中95%的木糖結(jié)構(gòu)單元未被取代,因此,這類半纖維素主要呈線形結(jié)構(gòu);而wsAGX大于15%的木糖結(jié)構(gòu)單元被取代[1112]。
Sun X F等人[1315]在水相體系中以半纖維素和丙烯酸為原料, NN亞甲基雙丙烯酰胺為交聯(lián)劑,制備了具有pH響應(yīng)性的水凝膠。但由于丙烯酸單體的反應(yīng)活性大,在水相體系中往往形成均聚物,而很難被接枝于半纖維素主鏈上;此外,聚合過程中,由于大量均聚物的形成而導(dǎo)致凝膠效應(yīng)出現(xiàn),使半纖維素與丙烯酸的接枝共聚反應(yīng)不易發(fā)生,因而無法真正實現(xiàn)半纖維素的高值化利用。
本研究在堿性介質(zhì)中,以丙烯酰胺替代丙烯酸對從玉米芯中提取得到的水不溶性半纖維素(wisAGX)進(jìn)行接枝共聚改性,然后將接枝共聚物適度皂化水解得到側(cè)鏈含有聚丙烯酸(PAA)鏈段的接枝共聚物,可避免因直接使用丙烯酸這類高反應(yīng)活性的單體在反應(yīng)介質(zhì)中均聚產(chǎn)生的“爬桿效應(yīng)”,而導(dǎo)致的接枝共聚反應(yīng)失敗。并將皂化產(chǎn)物與聚乙烯醇(PVA)溶液共混后經(jīng)戊二醛化學(xué)交聯(lián)制備出具有pH響應(yīng)性的水凝膠。以茶堿為模型藥物,對載藥后的復(fù)合水凝膠在模擬胃液和腸液中的藥物釋放行為進(jìn)行了研究。
1實驗
1.1主要儀器與試劑
離子色譜分析儀(Dionex ICS3000,美國);傅里葉變換紅外光譜儀(FTIRNexus 670,Nicolet,美國);超導(dǎo)核磁共振譜儀(AVANCE AV 400,Bruker,瑞士);掃描電子顯微鏡(ZEISS,德國);紫外可見光分光光度計(UV8453,美國)。
水不溶性半纖維素(wisAGX)由本實驗室提取[16](中性單糖組成為:83.09%木糖,10.03%葡萄糖,4.76%阿拉伯糖,0.76%半乳糖);聚乙烯醇(PVA)(相對分子質(zhì)量為95000,醇解度95%),百靈威科技有限公司;丙烯酰胺(AM)、硫代硫酸鈉(Na2S2O3),天津市科密歐化學(xué)試劑有限公司;過硫酸鉀(KPS),天津福晨化學(xué)試劑有限公司;戊二醛(質(zhì)量分?jǐn)?shù)為25%),天津市福晨化學(xué)試劑廠;茶堿(藥典BP級),上海晶純試劑有限公司。以上所有試劑均為分析純,無需純化可直接使用。
1.2皂化產(chǎn)物(wisAGXgPAA)的制備
將0.5 g水不溶性半纖維素在100 mL的三口燒瓶中溶于10 mL質(zhì)量分?jǐn)?shù)為 2%的NaOH溶液中,50℃水浴中攪拌至完全溶解,然后迅速降溫至(30±1)℃,隨后加入5 mL濃度為3.89 mmol/L的KPSNa2S2O3引發(fā)劑(KPS與Na2S2O3摩爾比為1∶1)水溶液,通入氮?dú)獠嚢?0 min,然后將15 mL濃度為1.41 mol/L的丙烯酰胺水溶液緩慢滴加入反應(yīng)瓶中,滴加時間為1 h?;旌先芤涸诖藴囟认路磻?yīng)4 h后,加入1 mL質(zhì)量分?jǐn)?shù)為2%的對苯二酚水溶液終止反應(yīng)。然后將上述溶液放入60℃烘箱中干燥24 h,繼續(xù)放入50℃真空干燥箱中干燥至恒質(zhì)量。將上述干燥后的產(chǎn)物置于N, N二甲基甲酰胺(DMF)和冰醋酸的混合液中(DMF與冰醋酸體積比為1∶1),在室溫條件下浸泡12 h以除去未反應(yīng)的單體及均聚物,過濾得固體物[17]。固體物用丙酮多次洗滌,將洗滌后的產(chǎn)物放入50℃真空干燥箱中干燥至恒質(zhì)量,該固體物即為wisAGXgPAM接枝共聚物。取上述干燥后的產(chǎn)物0.5 g,溶于10 mL NaOH溶液中,在設(shè)定的溫度下攪拌、皂化反應(yīng)4 h后,將皂化產(chǎn)物在乙醇中沉淀。所得沉淀物放入50℃的真空干燥箱中干燥至恒質(zhì)量,皂化后得到的最終產(chǎn)物即為wisAGXgPAA。wisAGXgPAM皂化反應(yīng)條件如表1所示,皂化水解路線如圖1所示。
3結(jié)論
本研究以從玉米芯中提取的水不溶半纖維素為原料,通過接枝共聚與皂化水解反應(yīng)合成出側(cè)鏈具有pH響應(yīng)性的聚丙烯酸(PAA)鏈段的半纖維素接枝共聚物,再將共聚物與聚乙烯醇(PVA)共混后在戊二醛的化學(xué)交聯(lián)下成功制備出具有pH響應(yīng)性的半纖維素基水凝膠。
3.1該水凝膠在pH值低于4.6的環(huán)境中溶脹率較低;而在pH值大于4.6的環(huán)境中溶脹率較高。其溶脹行為表現(xiàn)出明顯的pH響應(yīng)性,且水凝膠中羧基含量越高,平衡溶脹率越高;交聯(lián)劑用量越高的水凝膠平衡溶脹率越低。
3.2通過掃描電子顯微鏡(SEM)可以看出,水凝膠有明顯的網(wǎng)狀結(jié)構(gòu),且網(wǎng)孔的尺寸隨羧基含量的增加而增大,隨交聯(lián)劑用量的增加而減小。
3.3通過考察載藥水凝膠在模擬胃液和腸液中的釋放行為發(fā)現(xiàn),其在模擬胃液中藥物的釋放速率和達(dá)到平衡時的累積釋放量均明顯低于其在模擬腸液中的釋放速率和達(dá)到平衡時的累積釋放量。該類水凝膠表現(xiàn)出明顯的pH響應(yīng)性以及藥物的緩釋行為。由此可以推知,利用該類水凝膠作為藥物載體,有望實現(xiàn)藥物的靶向給藥以及藥物的緩釋。
參考文獻(xiàn)
[1]Kim S J, Shin S R, Shin D I, et al. Synthesis and characteristics of semiinterpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate)[J]. Journal of Applied Polymer Science, 2010, 96(1): 86.
[2]Qiu Y, Park K. Environmentsensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews, 2012, 64(3): 49.
[3]Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pHresponsive drug delivery[J]. Drug Discovery Today, 2002, 7(10): 569.
[4]Hu X, Wei W, Qi X, et al. Preparation and characterization of a novel pHsensitive Salecangpoly(acrylic acid) hydrogel for controlled release of doxorubicin[J]. Journal of Materials Chemistry B, 2015, 3(13): 2685.
[5]Zhao Yuqiang, Zhang Zhibin, Liu Ning, et al. Application of intelligent hydrogels[J]. Modern Chemical Industry, 2007, 27(3): 66.趙玉強(qiáng), 張志斌, 劉寧, 等. 智能水凝膠的應(yīng)用[J]. 現(xiàn)代化工, 2007, 27(3): 66.
[6]NasriNasrabadi B, Mehrasa M, Rafienia M, et al. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering[J]. Carbohydrate Polymers, 2014, 108(20): 232.
[7]Hoare T R, Kohane D S. Hydrogels in drug delivery: Progress and challenges[J]. Polymer, 2008, 49(8): 1993.
[8]Chan A W, Whitney R A, Neufeld R J. Semisynthesis of a controlled stimuliresponsive alginate hydrogel[J]. Biomacromolecules, 2009, 10(3): 609.
[9]Saha B C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30(5): 279.
[10]LIN Da, PENG Hong, YU Ziping, et al. Research Progress in Separation and Purification of Hemicellulose[J]. China Pulp & Paper, 2011, 30(1): 60.林妲, 彭紅, 余紫蘋, 等. 半纖維素分離純化研究進(jìn)展[J]. 中國造紙, 2011, 30(1): 60.
[11]Ebringerová A, Hromádková Z, Heinze T. Hemicellulose[J]. Polysaccharides I, 2005: 1.
[12]WANG An, BI Jiajie, LI Haiming. Research on Variations of Cellulose and Hemicellulose in Acid Catalytic Prehydrolysis of Corn Stalk[J]. China Pulp & Paper, 2016, 35(4): 6.王安, 畢佳捷, 李海明. 玉米秸稈酸催化預(yù)水解過程中纖維素和半纖維素變化規(guī)律研究[J]. 中國造紙, 2016, 35(4): 6.
[13]Sun X F, Wang H H, Jing Z X, et al. Hemicellulosebased pHsensitive and biodegradable hydrogel for controlled drug delivery[J]. Carbohydrate Polymers, 2013, 92(2): 1357.
[14]Peng X W, Ren J L, Zhong L X, et al. Xylanrich hemicellulosesgraftacrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents[J]. Journal of Agricultural & Food Chemistry, 2011, 59(15): 8208.
[15]Peng F, Guan Y, Zhang B, et al. Synthesis and properties of hemicellulosesbased semiIPN hydrogels[J]. International Journal of Biological Macromolecules, 2014, 65(5): 564.
[16]Fang Ju. Isolation of Hemicelluloses from Corncob and Sythesize of Hemicellulosesbased Hydrogel[D]. Guangzhou: South China University of Technology, 2012.
方駒. 玉米芯半纖維素的分離及其水凝膠的制備[D]. 廣州: 華南理工大學(xué), 2012.
[17]Hebeish A, Bayazeed A, ElAlfy E, et al. Synthesis and Properties of PolyacrylamideStarch Graft Copolymers[J]. StarchStarke, 2010, 40(6): 223.
[18]Karaaslan A M, Tshabalala M A, Buschlediller G. Wood hemicellulose/chitosanbased semiinterpenetrating network hydrogels: mechanical, swelling and controlled drug release properties[J]. Bioresources, 2010, 5(2): 1036.
[19]Xu Feng, Sun RunCang, Zhai MeiZhi, et al. Fractional Separation of Hemicelluloses and Lignin in High Yield and Purity from Mild BallMilled Periplocasepium[J]. Separation Science & Technology, 2008, 43(11/12): 3351.
[20]Nayak B R, Singh R P. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science, 2010, 81(7): 1776.
[21]Song Y, Zhou J, Zhang L, et al. Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions[J]. Carbohydrate Polymers, 2008, 73(1): 18.
[22]Tanodekaew S, Channasanon S, Uppanan P. Xylan/polyvinyl alcohol blend and its performance as hydrogel[J]. Journal of Applied Polymer Science, 2010, 100(3): 1914.
[23]Soppimath K S, Kulkarni A R, Aminabhavi T M. Chemically modified polyacrylamidegguar gumbased crosslinked anionic microgels as pHsensitive drug delivery systems: preparation and characterization[J]. Journal of Controlled Release, 2001, 75(3): 331.
[24]Mahdavinia G R, Pourjavadia A, Zohuriaan M J. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acidcoacrylamide) grafted chitosan with salt and pHresponsiveness properties[J]. European Polymer Journal, 2004, 40(7): 1399.
[25]Yin Y, Ji X, Dong H, et al. Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginateacrylic acid[J]. Carbohydrate Polymers, 2008, 71(4): 682. CPP
(責(zé)任編輯:黃舉)