• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰基橋聯(lián)的Fe2Ni雙之字鏈的合成與磁性

    2019-09-09 08:08:00賀艷麗孟銀杉孫慧瑩姜文靜矯成奇
    無機(jī)化學(xué)學(xué)報 2019年9期
    關(guān)鍵詞:大連理工大學(xué)精細(xì)化工文靜

    賀艷麗 孟銀杉 孫慧瑩 姜文靜 矯成奇 劉 濤

    (大連理工大學(xué)精細(xì)化工國家重點(diǎn)實(shí)驗(yàn)室,大連 116024)

    0 Introduction

    Single-chain magnets(SCMs),which can exhibit slow magnetic relaxation and magnetic hysteresis below blocking temperature,have attracted considerable attention and great interests because of their potential application in high-density information storage and spintronic devices[1-8]. This conception was firstly proposed by Glauber in 1960s that Ising magnetic chain was expected to exhibits low magnetic relaxation behavior[9].However,it was not until 2001 Gatteschi and co-workers reported the first single-chain magnet[Co(hfac)2(NITPHOMe)][10].In recent decades,considerable SCMs with chirality,porosity,spin-crossover,photo-switchable properties have been reported[10-16].In order to obtain high-performance SCMs,two challenges have to be solved:(1)constructing magnetic chains with strong intrachain ferromagnetic interactions so as to meet the Ising chain requirement;(2)minimizing the interchain interaction to avoid the long-range magnetic ordering.Utilizing metallocyanate building blocks as multidentate ligands is an effective approach for constructing SCMs for that it is helpful to form the one-dimensional structure and transmit the intrachain magnetic interactions[14,17-19].Particularly,tetracyanometallate building block facilitates the construction of one-dimensional chain structure,wherein two of the four cyano groups can coordinate with appropriate metal ions to form a double-zigzag chain,and the other two cyano groups can form hydrogen bonding interactions with solvent molecules.The recent study have also dedicated the important role of tetracyanometallate building blocks in the construction of photo-switchable single-chain magnets[20-21].

    In order to obtain the SCMs,we plan to use tetracyanometallate building block to link spin carriers such as Co2+,Ni2+,Mn3+and Fe2+into a ferromagnetic chain.The interchain magnetic interaction should be minimized to avoid the long-range ordering.Therefore,suitable diamagnetic auxiliary ligands should be carefully selected to make chains magnetically wellisolated and ensure the uniaxial anisotropy of the transition metal ions[11,13,22-25].In this work,we selected Li[Fe(Ⅲ)(bpy)(CN)4](bpy=2,2′-bipyridine) as the building block to react with Ni(Ⅱ) ions.The Ni(Ⅱ) ion was chosen because the interactions between low-spin Fe(Ⅲ) and high-spin Ni(Ⅱ) are generally ferromagnetic.Three auxiliary ligands 4-phenylpyridine (bp),4-(phenyldiazenyl)pyridine(papy),and 1,2-di(pyridin-4-yl)diazene (azp)were applied,forming three cyanobridged FeⅢ2NiⅡdouble-zigzag chain complexes:{[Fe(bpy)(CN)4]2[Ni(bp)2]·2H2O}n(1),{[Fe(bpy)(CN)4]2[Ni(papy)2]·H2O}n(2)and{[Fe(bpy)(CN)4]2[Ni(azp)]·4H2O}n(3).Herein,we reported the synthesis,crystal structures and magnetic properties of compounds 1~3.

    1 Experimental

    1.1 Materials and methods

    All organic reagents were commercially obtained and used without further purification.Li[Fe(bpy)(CN)4]and the ancillary ligands L(L=bp,papy and azp)were synthesized according to the literature methods[26].Elemental analyses(C,H and N)were performed on an ElementarVario ELⅢanalyzer.Magnetic measurements of the samples were performed on a Quantum Design SQUID(MPMS XL-7)magnetometer.Data were corrected for the diamagnetic contribution calculated from Pascal constants.

    1.2 Synthesis of{[Fe(bpy)(CN)4]2[Ni(bp)2]·2H2O}n(1)

    A 1.0 mL aqueous solution of Ni(BF4)2·6H2O(0.005 mmol)was placed at the bottom of a test tube,a mixture of methanol and water(1:4,V/V,2 mL)was gently layered on the top of the solution,and then a 1.0 mL methanol solution of Li[Fe(bpy)(CN)4](0.01 mmol)and 4-phenylpyridine(0.01 mmol)was carefully added as the third layer.After four weeks,red crystals of 1 were obtained and collected after washed with water and air dried.Yield:57% based on Ni(BF4)2·6H2O.Anal.Calcd.for C50H38Fe2N14NiO2(%):C 57.84,H 3.66,N 18.89;Found(%):C 57.76,H 3.62,N 18.72.

    1.3 Synthesis of{[Fe(bpy)(CN)4]2[Ni(papy)2]·H2O}n(2)

    Red crystals of compound 2 were obtained and collected in the same way as for compound 1,except using 4-(phenyldiazenyl)pyridine(0.01 mmol)to replace 4-phenylpyridine(0.01 mmol).Red crystals appeared after four weeks.Yield:61%based on Ni(BF4)2·6H2O.Anal.Calcd.for C50H36Fe2N18NiO(%):C 55.79,H 3.35,N 23.43;Found(%):C 55.68,H 3.40,N 23.39.

    1.4 Synthesis of{[Fe(bpy)(CN)4]2[Ni(azp)]·4H2O}n(3)

    One milliliter aqueous solution of Ni(ClO4)2·6H2O(0.005 mmol)was placed at the bottom of a test tube.A mixture of methanol and water(1∶2,V/V,2 mL)was gently layered on the top of the solution,and then 1.0 mL methanol solution of Li[Fe(bpy)(CN)4](0.01 mmol)and 1,2-di(pyridin-4-yl)diazene(0.01 mmol)was carefully added as the third layer.After few weeks,red crystals of 3 were obtained and collected after washed with water and air dried.Yield:54%based on Ni(ClO4)2·6H2O.Anal.Calcd.for C38H32Fe2N16NiO4(%):C 48.14,H 3.38,N 23.65;Found(%):C 48.20,H 3.32,N 23.58.

    1.5 X-ray crystallography

    The data were collected on a Bruker Smart APEXⅡX-diffractometer equipped with graphite monochromated Mo Kα radiation(λ=0.071 073 nm)using the SMART and SAINT[27]programs at 298 K for compounds 1~3.Final unit cell parameters were based on all observed reflections from integration of all frame data.The structures were solved in the space group by direct method and refined by the full-matrix least-squares using SHELXTL-97 fitting on F2[28].For compounds 1~3,all non-hydrogen atoms were refined anisotropically.The hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.The crystal data and details of the structure refinement of compounds 1~3 are summarized in Table 1.Selected bond distances and angles of compounds 1~3 are listed in Table 2.

    CCDC:1904149,1;1904150,2;1904151,3.

    Table 1 Crystal data and structure refinements for compounds 1~3

    Table 2 Selected bond lengths(nm)and angles(°)for compounds 1~3

    Symmetry transformations used to generate equivalent atoms:#1:-x+2,-y+1,-z+2;#2:x,-y+1,z+1/2;#3:x+2,y,-z+3/2 for 1;#1:-x+1,-y+1,-z+1;#2:x-1,y,z;#3:-x,-y+1,-z+1;#4:x+1,y,z for 2;#1:-x,-y,-z;#2:x,-y,z;#3:-x,y,-z;#4:-x+1,y,-z for 3.

    2 Results and discussion

    2.1 Structure characterization

    Single-crystal X-ray diffraction analysis revealed that 1 crystallizes in the monoclinic space group C2/c,2 in the triclinic space group P1,and 3 in the monoclinic space group I2/m,respectively(Table 1).All of them show a similar skeleton,constructed by the cyano-bridged FeⅢ2NiⅡdouble-zigzag chains.Uncoordinated water molecules are located between the chains.Each repeating unit comprises of neutral[Fe(bpy)(CN)4]2Ni(L)2,in which each nickel ion is coordinated with two ligands L along the apical direction.Different from compounds 1 and 2,the neutral layer of compound 3 is further linked by the bidentate ligands along the apical direction of the Ni(Ⅱ)centers.Within the repeating unit,the nickel ion is coordinated by two nitrogen atoms from the ligands L and four cyanide nitrogen atoms from two contiguous[Fe(bpy)(CN)4]-portions.Each iron ion is located in an octahedral environment,comprising four carbon atoms from the cyanide groups and two nitrogen atoms from the bidentate ligand bpy.

    For compound 1,the Fe-N and Fe-C bond lengths are 0.197(5)~0.198(5)nm and 0.189(7)~0.195(10)nm,respectively,which are characteristic of the LS Fe(Ⅲ)ions.The Ni-N bond distances are in a range of 0.204(6)~0.210(7)nm,which are in good agreement with those of high-spin Ni(Ⅱ)compounds.The Fe-C≡N angles are almost linear with bond angles of 174.9(7)°~179.1(7)°.The values of the C≡N-Ni angles are 161.4(5)°~170.1(6)°.Meanwhile,the π…π (0.376 1 nm)stacking interactions exist between the pyridine rings of adjacent bpy ligands and aromatic rings of the adjacent 4-phenylpyridine ligands. The nearest distance between the adjacent pyridine rings is 0.376 1(2)nm,and the nearest distance of aromatic rings of the 4-phenylpyridine ligands is 0.384 8(2)nm.The shortest intrachain Fe…Fe,F(xiàn)e…Ni and Ni…Ni distances are 0.707 8(3),0.502 9(2)and 0.675 9(3)nm,respectively.The nearest interchain Ni…Ni distance is 1.454 8(6)nm,which indicates that interchain magnetic interactions should be weak.

    For compound 2,the Fe-N and Fe-C bond lengths are in a range of 0.197 7(15)~0.197 9(15)nm and 0.190 9(19)~0.196 4(2)nm,respectively.The Ni-N distances range from 0.209 8(15)to 0.214 6(15)nm.The Fe-C≡N linkages are close to linearity with bond angles of 172.2(16)°~178.1(18)°.The bond lengths and bond angles of compound 2 confirm that the Fe(Ⅲ)is in the low-spin state.In comparison with compound 1,the C≡N-Ni angles fall in a range of 149.08(14)°~163.85(14)°,which depart significantly from linearity.The shortest intrachain Fe…Fe,F(xiàn)e…Ni and Ni…Ni distances are 0.646 1(20),0.507 0(34)and 0.646 1(47)nm,respectively.The nearest interchain Ni…Ni distance is 1.403 2(41)nm.

    For compound 3,the Fe-N(0.197 7(4)nm)and Fe-C(0.191 1(4)~0.194 6(5)nm)bond lengths are in good agreement with the reported LS Fe(Ⅲ)compounds.The Ni-N bond distances are 0.207 6(4)~0.210 5(5)nm.The Fe-C≡N angles deviate slightly from linearity,which are in a range of 172.3(4)°~178.1(5)°.The values of the C≡N-Ni angles are 160.7(4)°.The shortest intrachain Fe…Fe,F(xiàn)e…Ni and Ni…Ni distances are 0.662 2(5),0.500 9(7)and 0.662 2(5)nm,respectively.The nearest interchain Ni…Ni distance is 1.322 9(8)nm.Compared with compounds 2 and 3,compound 1 exhibits longer interchain distances,which may diminish the interchain magnetic interactions and benefit for slow magnetic relaxation of SCMs.To further elucidate the differences of them,we applied geometry analysis to see how the ancillary ligands influence the coordination environment of Ni(Ⅱ)ion(Table 3).One can note that coordination environments of Ni(Ⅱ) in compounds 1~3 are all octahedron type and the CShM value of Ni for compound 1 is the highest.This indicates that the Ni(Ⅱ)ion in 1 locates in a more distorted octahedron environment.

    Table 3 SHAPE analysis of Ni six-coordinated geometry in compound 1~3

    2.2 Magnetic characterizations

    Fig.3 Temperature-dependent magnetic susceptibilities of 1(a),2(b)and 3(c)in a temperature range of 2~300 K under an applied field of 1 000 Oe and field-dependent magnetizations of 1(d),2(e)and 3(f)

    Temperature-dependent magnetic susceptibilities data of 1~3 were collected under a DC field of 1 000 Oe in a temperature range of 2~300 K(Fig.3).The χT values for 1,2 and 3 were 2.90,2.74 and 3.06 cm3·mol-1·K at 300 K,respectively,which are approximatively in a range of 2.48~2.80 cm3·mol-1·K expected for two LS Fe(Ⅲ) (S=1/2,g=2.6~2.8)and one HS Ni(Ⅱ)(S=1,g=2.2~2.3).When the temperature went down,χT values of 1~3 first increased smoothly and then increased rapidly at 80 ,60 and 50 K,respectively,reaching the maximum values of 52.16,35.68 and 14.59 cm3·mol-1·K at 4.2,3.9 and 2.4 K.The χT vs T plots indicate the typical ferromagnetic interaction between Fe(Ⅲ) and Ni(Ⅱ) ions within the chain.When the temperature decreased further to 2 K,the χT values of 1 and 2 decreased and reached the values of 33.1 and 25.50 cm3·mol-1·K,respectively.It is probably caused by the zero-field splitting of Ni(Ⅱ)ions and/or weak interchain antiferromagnetic interactions.In the temperature range of 30~300 K,the magnetic susceptibility data of 1~3 were fitted with the Curie-Weiss law,giving Curie constant C of 2.78,2.65 and 2.55 cm3·mol-1·K and Weiss constant θ of 11.27,9.29 and 3.05 K,respectively.The positive Weiss constants of 1~3 further confirm the ferromagnetic coupling interactions between Fe(Ⅲ) and Ni(Ⅱ) ions.Meanwhile,the field-dependent magnetization at 2 K also confirms the ferromagnetic behavior.The isothermal magnetization of 1~3 first increased linearly and then increased gradually,reaching a maximum value of 4.35Nβ,4.20Nβ and 4.52Nβ at 50 kOe,respectively.The values are close to the saturation value for two magnetically isolated low-spin Fe(Ⅲ)ions and one magnetically isolated high-spin Ni(Ⅱ)ion.

    Fig.4 Frequency dependence of ac magnetic signals of compounds 2(a)and 3(b)at H ac=3.5 Oe and H dc=0 Oe;Frequency dependence of ac magnetic signals of compound 1(c,d)

    To further probe the dynamics of the magnetization of the three compounds,the alternating current(ac)magnetic susceptibilities were studied.For compounds 2 and 3,no obvious frequency-dependent in-phase (χ′)and out-of-phase signals(χ″)were observed,indicating that compounds 2 and 3 are not single-chain magnets(Fig.4(a)and(b)).For compound 1,temperature-and frequency-dependent in-phase components(χ′)were observed below 2.8 K,as shown in Fig.4(c).Moreover,the plots of field-cooled magnetization(FC)and zero-field-cooled magnetization(ZFC)under a field of 100 Oe of 1 showed no bifurcation(Fig.5),excluding the spontaneous magnetization above 1.8 K.The generalized Debye model was used to extract the energy barrier based on the relationship of ln(χ′/χ″)=ln(ωτ0)+Ea/(kBT).The obtained energy barrier Ea/kBwas 10.9 K and the relaxation time τ0was 7.8×10-4s(Fig.6),which are in the typical range for SCMs.

    Fig.5 Field-cooled magnetization(FC)and zero fieldcooled magnetization(ZFC)curves of compound 1

    Fig.6 Plots of ln(χ″/χ′)vs 1/T for 1

    Three cyano-bridged FeⅢ2NiⅡdouble-zigzag chains show different magnetic behaviors. The neutral ancillary ligands should be the main reason for the different magnetic behaviors of them.For compounds 1~3,ferromagnetic interactions exist between the Fe(Ⅲ)and Ni(Ⅱ) ions,which can be rationalized according to the orthogonality of the magnetic orbitals of the lowspin Fe(Ⅲ) and high-spin Ni(Ⅱ) ions[29-35].Compared to compounds 2 and 3,the Ni-N≡C bending angle of compound 1 is smaller,which presents a stronger ferromagnetic interaction.In addition,when the Ni-N≡C angles further decrease,an antiferromagnetic contribution will arise and the overall magnetic coupling would be weakened[35].Although there exist π…π stacking interactions between the interchain in compound 1,the nearest interchain Ni…Ni distance 1.454 8(6)nm is the largest among the three compounds.Such a large interchain distance will diminish the interchain magnetic interactions and benefit for the SCM behavior.It is worth noting that steric hindrance can enhance the bending of the C≡N-Ni angle and elongate the Ni-N bond lengths.The smaller bending angle of C≡N-Ni and shorter Ni-N bond length should be also responsible for the singlechain magnet behavior of compound 1.For the ligand shape,these results indicate that the introduction of long monodentate ligand plays an important role for obtaining SCMs.

    3 Conclusions

    In summary,three new cyano-bridged FeⅢ2NiⅡdouble-zigzag chains,{[Fe(bpy)(CN)4]2[Ni(bp)2]·2H2O}n(1),{[Fe(bpy)(CN)4]2[Ni(papy)2]·H2O}n(2)and{[Fe(bpy)(CN)4]2[Ni(azp)]·4H2O}n(3)were synthesized.The magnetic studies demonstrate the existence of ferromagnetic interactions between Fe(Ⅲ) and Ni(Ⅱ) ions and slow magnetic relaxation behavior of compound 1.Compounds 2 and 3 show ferromagnetic behavior but no single-chain magnets property.Our results demonstrate that ancillary ligands play an important role in influencing the intra-and interchain interactions as well as the local coordination environments.This work is useful for the design of new SCMs in the future.

    猜你喜歡
    大連理工大學(xué)精細(xì)化工文靜
    北京華立精細(xì)化工公司
    泉州永春駿能精細(xì)化工有限公司
    中國造紙(2022年8期)2022-11-24 09:43:40
    呵護(hù)
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    精細(xì)化工車間“三字訣” 讓精益安全理念落地生根
    An analysis of Speech Act Theory in Horton Hears a Who
    西部論叢(2019年10期)2019-03-20 05:18:14
    Lexical Approach in Language Teaching and Learning
    精細(xì)化工廢水污染特性分析及控制策略
    化工管理(2017年23期)2017-03-04 07:59:02
    偽隨機(jī)碼掩蔽的擴(kuò)頻信息隱藏
    the reanalyze of PPP approach and application in practical teaching
    一级毛片女人18水好多| 51午夜福利影视在线观看| 麻豆国产av国片精品| 久久久国产一区二区| 色播在线永久视频| 99国产极品粉嫩在线观看| 美女高潮喷水抽搐中文字幕| 永久免费av网站大全| 精品熟女少妇八av免费久了| 久久国产亚洲av麻豆专区| 欧美日韩精品网址| avwww免费| 黄频高清免费视频| 国产97色在线日韩免费| 夜夜骑夜夜射夜夜干| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 色精品久久人妻99蜜桃| 欧美大码av| 亚洲国产精品成人久久小说| 人妻 亚洲 视频| 日本a在线网址| e午夜精品久久久久久久| 美女福利国产在线| 极品少妇高潮喷水抽搐| 91成年电影在线观看| 欧美日韩一级在线毛片| 国产99久久九九免费精品| 天堂俺去俺来也www色官网| 欧美变态另类bdsm刘玥| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 国产视频一区二区在线看| h视频一区二区三区| 欧美xxⅹ黑人| 夫妻午夜视频| 99热全是精品| 欧美老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕| 国产高清videossex| a 毛片基地| 欧美在线黄色| 欧美黄色片欧美黄色片| 亚洲精品久久久久久婷婷小说| 国产精品欧美亚洲77777| 美女国产高潮福利片在线看| 亚洲第一青青草原| tocl精华| 久久ye,这里只有精品| 一级毛片精品| 成人国产一区最新在线观看| 亚洲av日韩精品久久久久久密| 99精品久久久久人妻精品| 免费在线观看日本一区| 老司机靠b影院| 1024香蕉在线观看| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 午夜91福利影院| 国产在线一区二区三区精| 视频区欧美日本亚洲| 女警被强在线播放| 中文字幕高清在线视频| 国产在线一区二区三区精| 一个人免费在线观看的高清视频 | 色视频在线一区二区三区| 亚洲精品在线美女| 国产免费现黄频在线看| 日韩中文字幕视频在线看片| 岛国在线观看网站| 日韩精品免费视频一区二区三区| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 悠悠久久av| 日韩,欧美,国产一区二区三区| 后天国语完整版免费观看| 淫妇啪啪啪对白视频 | 高清黄色对白视频在线免费看| 爱豆传媒免费全集在线观看| 午夜日韩欧美国产| 亚洲va日本ⅴa欧美va伊人久久 | 久热这里只有精品99| a级片在线免费高清观看视频| 久久中文字幕一级| 在线观看免费午夜福利视频| 精品卡一卡二卡四卡免费| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花| 免费不卡黄色视频| av免费在线观看网站| 久久毛片免费看一区二区三区| 国产男女超爽视频在线观看| 操美女的视频在线观看| 下体分泌物呈黄色| 高清视频免费观看一区二区| 亚洲国产av新网站| 热99国产精品久久久久久7| 精品国产一区二区三区四区第35| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| tube8黄色片| 亚洲精品中文字幕一二三四区 | 欧美日韩精品网址| 十八禁网站免费在线| 午夜精品久久久久久毛片777| av一本久久久久| 少妇猛男粗大的猛烈进出视频| 咕卡用的链子| 岛国在线观看网站| 老汉色∧v一级毛片| 午夜福利乱码中文字幕| 岛国毛片在线播放| 麻豆av在线久日| 亚洲免费av在线视频| 精品一区二区三区av网在线观看 | 欧美大码av| 欧美国产精品va在线观看不卡| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲| 国产精品.久久久| 汤姆久久久久久久影院中文字幕| 91麻豆av在线| 美女国产高潮福利片在线看| 午夜福利一区二区在线看| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看 | 日韩 欧美 亚洲 中文字幕| 男女边摸边吃奶| 高潮久久久久久久久久久不卡| 久久久久久久国产电影| 亚洲欧美一区二区三区黑人| 免费av中文字幕在线| 激情视频va一区二区三区| 亚洲中文av在线| 桃花免费在线播放| 一区二区三区激情视频| 最近中文字幕2019免费版| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 性高湖久久久久久久久免费观看| 熟女少妇亚洲综合色aaa.| 久久人人爽人人片av| 在线精品无人区一区二区三| 首页视频小说图片口味搜索| 999久久久精品免费观看国产| 成年人免费黄色播放视频| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 午夜免费观看性视频| 久久精品亚洲av国产电影网| 黑人操中国人逼视频| 国产又爽黄色视频| 日本一区二区免费在线视频| 国产精品一区二区精品视频观看| 久久久国产精品麻豆| 国产成人欧美在线观看 | 国产免费一区二区三区四区乱码| 国产精品国产av在线观看| 中文欧美无线码| 99国产精品99久久久久| 热99久久久久精品小说推荐| 99久久精品国产亚洲精品| 手机成人av网站| 精品乱码久久久久久99久播| 亚洲精品乱久久久久久| 老汉色∧v一级毛片| 久久中文字幕一级| 脱女人内裤的视频| 久久亚洲精品不卡| 在线观看免费午夜福利视频| 男人爽女人下面视频在线观看| 手机成人av网站| 国产一卡二卡三卡精品| 十分钟在线观看高清视频www| 一级黄色大片毛片| 黄色视频,在线免费观看| 亚洲avbb在线观看| 99国产极品粉嫩在线观看| 午夜福利在线免费观看网站| 精品国产乱码久久久久久小说| 天堂8中文在线网| 狂野欧美激情性bbbbbb| 日韩 欧美 亚洲 中文字幕| 久久久水蜜桃国产精品网| 女人爽到高潮嗷嗷叫在线视频| 999久久久国产精品视频| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 搡老熟女国产l中国老女人| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 亚洲激情五月婷婷啪啪| 欧美一级毛片孕妇| 欧美日韩av久久| 黄片小视频在线播放| 久久99一区二区三区| 亚洲天堂av无毛| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 欧美av亚洲av综合av国产av| 叶爱在线成人免费视频播放| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 欧美日韩亚洲高清精品| 深夜精品福利| tocl精华| 免费在线观看日本一区| 97精品久久久久久久久久精品| 久热这里只有精品99| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 国产真人三级小视频在线观看| 成人手机av| 99九九在线精品视频| 人妻 亚洲 视频| 国产色视频综合| 午夜福利影视在线免费观看| 亚洲国产日韩一区二区| 一级片'在线观看视频| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 欧美日韩国产mv在线观看视频| 欧美午夜高清在线| 一本—道久久a久久精品蜜桃钙片| 激情视频va一区二区三区| 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 欧美变态另类bdsm刘玥| 婷婷丁香在线五月| 纯流量卡能插随身wifi吗| 69av精品久久久久久 | 成年人午夜在线观看视频| 啦啦啦 在线观看视频| 高清av免费在线| 久久久久久久大尺度免费视频| 男女之事视频高清在线观看| 午夜老司机福利片| 亚洲国产精品999| 最近最新免费中文字幕在线| 女人精品久久久久毛片| 亚洲av片天天在线观看| 国产精品一二三区在线看| 亚洲精品久久成人aⅴ小说| 国产成人精品无人区| svipshipincom国产片| 国产亚洲av高清不卡| 亚洲,欧美精品.| 国产欧美日韩一区二区精品| 午夜福利视频精品| 国产深夜福利视频在线观看| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 在线 av 中文字幕| 热99久久久久精品小说推荐| 国产精品偷伦视频观看了| 色视频在线一区二区三区| 国产欧美日韩一区二区三区在线| 国产一区二区激情短视频 | 精品国产一区二区三区四区第35| 桃花免费在线播放| 国产成人欧美| 桃红色精品国产亚洲av| 精品福利观看| cao死你这个sao货| 又黄又粗又硬又大视频| 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 久久久精品国产亚洲av高清涩受| 99热全是精品| 亚洲激情五月婷婷啪啪| 午夜激情av网站| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区 | 国精品久久久久久国模美| 久热这里只有精品99| 成人国产av品久久久| 黑人巨大精品欧美一区二区mp4| www.av在线官网国产| www.熟女人妻精品国产| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 精品亚洲成国产av| 亚洲国产av新网站| 亚洲av成人不卡在线观看播放网 | av天堂在线播放| 国产av又大| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 欧美激情久久久久久爽电影 | 日本vs欧美在线观看视频| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 下体分泌物呈黄色| 99国产精品一区二区蜜桃av | 免费在线观看日本一区| 99国产精品免费福利视频| 欧美中文综合在线视频| 精品国产一区二区三区四区第35| 亚洲国产欧美在线一区| 免费少妇av软件| 国产一区二区在线观看av| 成人av一区二区三区在线看 | 精品亚洲乱码少妇综合久久| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 欧美精品一区二区大全| 女性被躁到高潮视频| 国产av精品麻豆| 亚洲一区中文字幕在线| 大香蕉久久网| 人妻久久中文字幕网| 精品国产国语对白av| 国产成人av激情在线播放| 老司机靠b影院| 91成年电影在线观看| 色综合欧美亚洲国产小说| 久久久久网色| 欧美老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 日韩免费高清中文字幕av| 日韩欧美一区二区三区在线观看 | 日本av手机在线免费观看| 91成人精品电影| 老鸭窝网址在线观看| av国产精品久久久久影院| tube8黄色片| 超色免费av| 在线观看舔阴道视频| 一区二区日韩欧美中文字幕| 国产一区二区三区av在线| 久久ye,这里只有精品| 一本—道久久a久久精品蜜桃钙片| 老司机影院成人| 日本精品一区二区三区蜜桃| 91国产中文字幕| 精品国产一区二区久久| 超碰成人久久| 一个人免费看片子| 日本a在线网址| 成人国产av品久久久| 日韩制服丝袜自拍偷拍| 国产成人av教育| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 免费在线观看影片大全网站| 亚洲天堂av无毛| 不卡一级毛片| 欧美人与性动交α欧美精品济南到| 精品国产超薄肉色丝袜足j| 大香蕉久久成人网| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 国产精品 欧美亚洲| 精品视频人人做人人爽| 久久久精品94久久精品| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 国产欧美日韩一区二区三 | 婷婷成人精品国产| 亚洲av欧美aⅴ国产| 在线 av 中文字幕| 日本a在线网址| 日本av手机在线免费观看| 国产主播在线观看一区二区| 欧美另类一区| 亚洲国产精品999| 两个人看的免费小视频| 成年人免费黄色播放视频| 久久青草综合色| 日韩三级视频一区二区三区| 精品高清国产在线一区| 99精国产麻豆久久婷婷| 免费日韩欧美在线观看| 天天操日日干夜夜撸| 久久久久网色| 亚洲精品日韩在线中文字幕| 动漫黄色视频在线观看| 亚洲人成电影免费在线| 国产精品影院久久| 成年女人毛片免费观看观看9 | 欧美日韩av久久| 母亲3免费完整高清在线观看| 水蜜桃什么品种好| 桃红色精品国产亚洲av| 成人av一区二区三区在线看 | 欧美97在线视频| av网站在线播放免费| h视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三 | avwww免费| svipshipincom国产片| 久久久欧美国产精品| 国产高清国产精品国产三级| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 国产成人精品在线电影| 不卡av一区二区三区| 亚洲七黄色美女视频| 9热在线视频观看99| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 欧美日韩视频精品一区| 老熟女久久久| 欧美一级毛片孕妇| 欧美午夜高清在线| 国产av国产精品国产| 亚洲中文av在线| 午夜91福利影院| 欧美xxⅹ黑人| 一级黄色大片毛片| 久久久国产成人免费| www.自偷自拍.com| av又黄又爽大尺度在线免费看| 日韩精品免费视频一区二区三区| 中国国产av一级| 深夜精品福利| 色播在线永久视频| 高清黄色对白视频在线免费看| 水蜜桃什么品种好| 后天国语完整版免费观看| 亚洲全国av大片| 99热网站在线观看| 成年动漫av网址| 久久午夜综合久久蜜桃| 美女高潮到喷水免费观看| 亚洲精品av麻豆狂野| 亚洲国产精品999| 久久午夜综合久久蜜桃| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 欧美在线一区亚洲| 精品国产超薄肉色丝袜足j| 日韩有码中文字幕| 亚洲欧美色中文字幕在线| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 啦啦啦视频在线资源免费观看| 大陆偷拍与自拍| 99国产精品一区二区三区| 久久免费观看电影| 国产一级毛片在线| e午夜精品久久久久久久| 欧美97在线视频| 搡老乐熟女国产| 久久久水蜜桃国产精品网| netflix在线观看网站| 国产伦人伦偷精品视频| 日韩 亚洲 欧美在线| 成人手机av| 韩国精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲天堂av无毛| 日韩制服丝袜自拍偷拍| 一级片'在线观看视频| 亚洲欧美清纯卡通| 老鸭窝网址在线观看| 精品国产超薄肉色丝袜足j| 国产国语露脸激情在线看| 男女午夜视频在线观看| 男女高潮啪啪啪动态图| 在线天堂中文资源库| 久久精品国产综合久久久| 99国产精品一区二区蜜桃av | a级毛片黄视频| 免费人妻精品一区二区三区视频| 纯流量卡能插随身wifi吗| 欧美黄色淫秽网站| kizo精华| 丝袜美足系列| 美女大奶头黄色视频| 不卡一级毛片| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产 | 51午夜福利影视在线观看| 一级黄色大片毛片| 国产成人av教育| 美女午夜性视频免费| 亚洲精品日韩在线中文字幕| 少妇粗大呻吟视频| 久久久久久亚洲精品国产蜜桃av| 精品人妻在线不人妻| 脱女人内裤的视频| 亚洲欧美一区二区三区黑人| 久久久精品区二区三区| 亚洲国产av影院在线观看| 精品视频人人做人人爽| 脱女人内裤的视频| 亚洲国产精品一区二区三区在线| 妹子高潮喷水视频| 首页视频小说图片口味搜索| 亚洲国产看品久久| 精品国内亚洲2022精品成人 | 天天躁狠狠躁夜夜躁狠狠躁| 成人18禁高潮啪啪吃奶动态图| 午夜福利免费观看在线| 国产精品99久久99久久久不卡| 别揉我奶头~嗯~啊~动态视频 | 欧美久久黑人一区二区| 99国产综合亚洲精品| 少妇 在线观看| 视频区图区小说| 日韩精品免费视频一区二区三区| av国产精品久久久久影院| 51午夜福利影视在线观看| 久久久精品区二区三区| 欧美黄色淫秽网站| 午夜福利,免费看| 王馨瑶露胸无遮挡在线观看| 麻豆av在线久日| 嫩草影视91久久| 成人国产av品久久久| 宅男免费午夜| 亚洲欧美一区二区三区久久| 丝袜人妻中文字幕| av在线app专区| 中文字幕最新亚洲高清| 黄色视频,在线免费观看| 一级黄色大片毛片| 性少妇av在线| 国产又色又爽无遮挡免| 欧美日韩国产mv在线观看视频| 亚洲激情五月婷婷啪啪| 亚洲精品一区蜜桃| 国产精品一区二区在线不卡| 国产一区二区三区在线臀色熟女 | 久久精品久久久久久噜噜老黄| 精品国产一区二区三区四区第35| av在线播放精品| 大型av网站在线播放| 黑人巨大精品欧美一区二区mp4| 久久性视频一级片| 丝袜在线中文字幕| 女警被强在线播放| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 高清视频免费观看一区二区| 欧美性长视频在线观看| 久久香蕉激情| 日韩 欧美 亚洲 中文字幕| 免费在线观看日本一区| cao死你这个sao货| 91字幕亚洲| 男女高潮啪啪啪动态图| 亚洲性夜色夜夜综合| 国产精品国产三级国产专区5o| 免费不卡黄色视频| 人人妻人人爽人人添夜夜欢视频| 欧美性长视频在线观看| 亚洲人成电影免费在线| 久热这里只有精品99| 中文字幕高清在线视频| 亚洲精品久久久久久婷婷小说| videos熟女内射| 精品第一国产精品| 精品免费久久久久久久清纯 | 久久国产精品影院| 99久久精品国产亚洲精品| 久久亚洲国产成人精品v| 亚洲欧美清纯卡通| 最新的欧美精品一区二区| 黄色 视频免费看| 一区二区av电影网| 国产精品久久久av美女十八| √禁漫天堂资源中文www| 亚洲av美国av| 国产成人免费无遮挡视频| 日韩欧美免费精品| 色婷婷久久久亚洲欧美| 伊人亚洲综合成人网| 天堂俺去俺来也www色官网| 欧美日韩福利视频一区二区| av天堂在线播放| 老司机午夜福利在线观看视频 | 欧美日韩亚洲高清精品| 精品一区二区三区四区五区乱码| 亚洲欧美色中文字幕在线| 久久久精品94久久精品| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 成在线人永久免费视频| 久久久久网色| 久久性视频一级片| 老熟女久久久| av网站在线播放免费| 亚洲男人天堂网一区| 国产成人精品久久二区二区免费| 久久人妻熟女aⅴ| 亚洲五月色婷婷综合| 国产av又大| 新久久久久国产一级毛片| 夫妻午夜视频| 精品人妻熟女毛片av久久网站| 国产成人精品久久二区二区免费| 国产有黄有色有爽视频| 手机成人av网站| 亚洲美女黄色视频免费看| 国产深夜福利视频在线观看| 日韩中文字幕视频在线看片| 久久天堂一区二区三区四区| av国产精品久久久久影院| 国内毛片毛片毛片毛片毛片| 国产精品1区2区在线观看. | 欧美日韩av久久| 国产一区二区三区av在线| 日本五十路高清| 亚洲欧洲日产国产| 亚洲国产日韩一区二区| 日韩免费高清中文字幕av| 亚洲精华国产精华精| 午夜视频精品福利| 欧美黄色淫秽网站|