• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Holocene lake carbon sequestration,hydrological status and vegetation change,China

    2019-09-06 01:21:28LingMeiXuYuLiWangTingYeXinZhongZhangYiChanLiYuXinZhang
    Sciences in Cold and Arid Regions 2019年4期

    LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang

    Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, Gansu 730000,China

    ABSTRACTLakes have received considerable attention as long-term sinks for organic carbon (C) at regional and global scales. Previous studies have focused on assessment and quantification of carbon sinks, and few have worked on the relationship between millennial-scale lake C sequestration, hydrological status and vegetation, which has important scientific significance in improving our understanding of lake C stocks and storage mechanisms. Here, we present a comprehensive study of pollen records,organic geochemical proxies,lake-level records,sediment accumulation rate(SAR)and organic C accumulation rate (CAR)in China since the Holocene.We also include numerical climate classification and lake-level simulations,to investigate variations of lake C sequestration,hydrological status and vegetation during the Holocene.Results indicate that the evolution of lake C accumulation showed an out-of-phase relationship with hydrological status and vegetation in China.Lake C accumulation exhibited an overall trend of increasing from the early to late Holocene in response to gradually increasing terrestrial organic matter input. However, China as a whole experienced the densest vegetation cover in the middle Holocene, corresponding to the mid-Holocene optimum of a milder and wetter climate. Optimal hydrological conditions were asynchronous in China; for example, early Holocene in Asian monsoon dominated areas, and middle Holocene in westerlies controlled regions.Our synthesis indicated that climate change was the main factor controlling the long-term variability in lake C accumulation,hydrologic conditions,as well as vegetation,and human influences were usually superimposed on the natural trends.

    Keywords:lake sediment;millennial-scale;organic carbon accumulation;lake hydrological status;vegetation;climate change

    1 Introduction

    Distributed across various geological, geographical and climatic regions, lakes are generally sensitive to changes in the surrounding environment and the impacts that such changes have on their lacustrine deposit are of considerable importance (Wang and Dou,1998; Kortelainen et al., 2004; Elliott et al., 2006;Shen, 2013; Wang et al., 2015). In this regard, the C sequestration capacity of lakes easily varies according to the alterations in hydrological status and surrounding vegetation (Martini et al., 2006; Chen et al., 2008;Zhang et al., 2013;Wang et al., 2015). However, most studies on lakes in China were confined to estimating the total amount of C burial using lake records, while the long-term C accumulation of lakes and their responses to climate change have received little attention (Duan et al., 2008; Gui et al., 2013; Wang et al.,2015). For a more thorough understanding about the role of lakes in regional C cycling, the relationship between organic C sequestration, hydrological status and vegetation conditions of different lake types in various regions needs to be investigated (Kling et al., 1991;Herzschuh, 2006; Cole et al., 2007; Li and Morrill,2010;Zhang et al.,2013;Wang et al.,2015).

    The formation of lakes in China generally has no zonality, distributed through all the climatic zones including tropic, temperate and frigid zones with altitudes ranging from 5,000 m above sea level (a.s.l.)to -155 m a.s.l. (Wang and Dou, 1998; Shen, 2013;Wang et al., 2015). In spite of covering only about 0.9% of China's entire territorial area, lakes show a significant carbon sequestration potential with total C accumulation rate of 1.98 Tg C/a (Duan et al., 2008),indicating China's lakes cannot be ignored in consideration of the regional C cycle. Recently, studies have focused on the long-term C accumulation of lakes.Wang et al. (2015) synthesized the records of C sequestration from 58 lakes with direct organic C measurements throughout China, and suggested that the Holocene lake C accumulation showed an overall increasing trend since 12 ka. Another synthesis derived from 42 palaeolake records in China indicated a high accumulation rate for lakes during the middle Holocene relative to the late Holocene (Zhang et al.,2013).Millennial-scale variations in lake hydrological status and vegetation have been conducted by many studies using numerous proxy-data from lakes (An et al.,2000; Yu et al., 2000; Herzschuh, 2006; Parmesan,2006;Chen et al.,2008;Qian et al.,2009;Long et al.,2010; Liu et al., 2013; Zhang et al., 2016). The most comprehensive lake-level study of Shen (2013) indicated that lakes on the Tibetan Plateau experienced a persistent and stable high lake level in the early Holocene, whereas overall high lake-levels with maximum moisture conditions were observed during the middle Holocene in the mid-latitude arid Asian region and the monsoon area. Li and Morrill (2010) reported that most lakes of the monsoonal Asia began to expand during the post-glacial, and reached the highest stands in the early Holocene. As for vegetation of China, Yu et al. (2000) provided two state-of-the-art palaeovegetation maps using modern and fossil pollen data, in which the forest biomes in eastern China systematically shifted northwards and extended westwards during the middle Holocene while steppe and even desert vegetation extended to eastern China at the last glacial maximum. At present, numerous studies have been conducted for lakes of China,but we still lack a fundamental and comprehensive understanding of the relationship between lake C accumulation, hydrological status and vegetation of China. In this paper, we synthesized records from 51 lakes in various K?ppen climate zones and different geographical regions of China; investigated the Holocene SAR and CAR variations of lakes at 1,000-year bin; assessed the factors controlling the temporal and spatial evolution of C accumulation;reconstructed millennial-scale lake hydrology and vegetation changes in different regions; as well as analyzed the relationship between lake C accumulation, hydrological status and vegetation. Our results provide insights into the mechanism of the carbon balance, and demonstrate a new perspective on global and regional carbon cycle research.

    2 Materials and methods

    2.1 Data set and analyses

    Holocene lake records in this paper were considered multi-proxy data from different profiles for an individual lake (Figure 1, Table 1). We have selected records based on three criteria: (1) the record should have reliable chronologies and successive sedimentary sequences but not have depositional hiatuses during the Holocene; (2) indicators derived from the records must include sediment organic carbon (OC) and (3) lake-level records should be indicated by the effective proxies.Therefore, 51 lakes derived from various K?ppen climate zones and different regions of China were selected. All radiocarbon ages (14C dates) of individual lake were first corrected,and any possible old-carbon effects were removed according to original publications (Chen et al.,2008).Then,the corrected14C ages were calibrated to calendar years (cal. a B.P.) using the program of Calib 6.1.0 (Stuiver and Reimer, 1993). The calibrated ages were used to compile the variations of sediment and C accumulation rate, organic geochemical proxies,and total pollen concentration throughout the text (Figures S1-S4). Lake-level records, site information and representative pollen indicators of lakes in China are presented in Tables 1,S2 and 3,respectively.

    2.2 Estimate of organic C accumulation rate

    The organic carbon accumulation rate (CAR,g C/(m2·a)) at 1,000-year bins of deposition in each lake was gathered in this paper using the following equation(Müller et al.,2005)(Table S1):

    Lake sediment accumulation rate (SAR, mm/a)was typically established by14C chronology. Organic carbon content (OC, %) was directly derived from 51 lake sediment records, and sediment density (ρ) and porosity (φ) could be calculated using Equation (2)(Alin and Johnson, 2007) and Equation (3) (Danielson and Sutherland,1986;Avnimelech et al.,2001).

    The dry bulk density (DBD, g/cm3) for lake sediments without a measured value was then obtained using empirical relationships(Dean and Gorham,1998;Avnimelech et al.,2001;Kastowski et al.,2011;Wang et al.,2015).

    Equation (4) was given by Dean and Gorham(1998), and Equation (5) was derived from Avnimelech et al.(2001).

    Figure 1 Overview map showing lake sites selected in this study(numbers in symbols refer to lakes described in Table 1)and the geographical zones of China:the Qinghai-Tibet Plateau(TP),the monsoonal regions(MR)and northwest arid and semi-arid China(NAC)

    2.3 Environmental variables and lake characteristics

    This paper explored the relationship between lake average CAR of past 12 ka and a series of environmental variables or lake characteristics. Annual temperature, summer temperature, annual precipitation and summer precipitation were calculated based on the datasets of 0.5°×0.5° monthly gridded precipitation and temperature during 1961-2013 released by the National Meteorological Information Center (http://cdc.cma.gov.cn).Altitude, annual evaporation, mean depth,max depth,surface areas and catchment area of lakes were partly from Wang et al. (2015) and partly from available publications(Table S2).

    2.4 Numerical climate classification

    Dating from 1900, the K?ppen-Geiger climate classification system continues to be the most widespread climate system(Lohmann et al.,1993;Peel et al.,2007;Baker et al., 2010; Rubel and Kottek, 2010; Naipal et al.,2015).Based on the 0.5°×0.5°monthly gridded precipitation and temperature datasets of 53 years during 1961-2013, and a 0.5°×0.5° gridded elevation data derived from a quality-controlled global Digital Elevation Model (DEM), this paper produced a K?ppen's climate classification map for China,using the method given by Zhu and Li(2015).The map divided China's climate into 5 main climate groups, 12 types and 28 subtypes.Figure 5 shows that China's main climate regions are Arid (B),Temperate (C), Cold (D), Polar (E), and main climate types include steppe climate (Semi-arid) (Bs),desert climate (Bw), mild temperate with dry winter(Cw), mild temperate, fully humid (Cf), snow with dry winter(Dw),and tundra climate(ET).

    2.5 Lake-level simulations

    We applied a set of models, the community climate system model (CCSM 3.0), a lake energy-balance and a lake water-balance model, to verify long-term changes in lake-level for the early (8.5 ka), middle (6.0 ka)and late (pre-industrial (PI)) Holocene. Model details are clearly described by Li and Morrill(2010).

    Table 1 Information on lake records for organic C accumulation rate,lake level and vegetation changes of China 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Bangong Co Songxi Co Naleng Lake Chen Co Nam Co Zigetang Co Ngoin Co Paru Co Pumoyum Co Koucha Lake Ximen Co Qinghai Lake Donggi Cona Lake Gahai Lake Chaka Salt Lake Genggahai Lake Erlongwan Maar Lake Xingkai Lake TOC,Pollen TOC TOC,C/N,δ13C,Pollen TOC,C/N,Pollen TOC,C/N,Pollen TOC,δ13C,Pollen TOC,C/N,δ13C TOC TOC TOC,δ13C TOC TOC,C/N,δ13C,Pollen TOC,C/N TOC,C/N,δ13C,Pollen TOC TOC,C/N,δ13C TOC,C/N,δ13C,Pollen TOC,C/N,δ13C,Pollen TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP MRMR-+*+-+--+**+++-- ++//*+-/-////+-- /- ++//*//+-//*/+/+/-*-+/*++-/////+/-//**Arid Arid Polar Polar Polar Polar Polar Polar Polar Polar Polar Cold Polar Arid Arid Arid Cold Cold Desert Steppe Tundra Tundra Tundra Tundra Tundra Tundra Tundra Tundra Tundra Dry Winter Tundra Steppe Steppe Steppe Dry Winter Dry Winter Cold Cold/////////Cold Summer/Cold Cold Cold Warm Summer Warm Summer High Low High High High Low Low High High Low Low Low Low High Low Low Low High Low Low Low Low Low High Low High High Low Low High Low Low Low Low Low High Low Low Low Low Low High Low High Low Low High High Low Low Low Low High High High Low High High High High High High High High High High High High Low High Low Low High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High Low High High High High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High ID Site Proxies Region Relationship between CAR and proxies TOC C/N δ13C TPC K?ppen climate zones 1st 2nd 3rd CAR 8.5-6 ka 8.5 ka-PI 6 ka-PI Lake level 8.5-6 ka 8.5 ka-PI 6 ka-PI Vegetation 8.5-6 ka 8.5 ka-PI 6 ka-PI to be continued

    19 20 21 22 23 24 25 26 27 28 29 30 3132 33 Sihailongwan Maar Lake Moon Lake Erhai Lake Dian Ch i Xima Ch i Xingyun Lake Lugu Lake Hugangyan Maar Lake Dajiuhu Lake Gucheng Lake Jiangling Dahu Lake Chaohu Lake Taihu Lake Beihuqiao TOC,C/N,δ13C TOC,C/N,δ13C,Pollen TOC,δ13C,Pollen TOC,C/N,δ13C,Pollen TOC TOC,C/N,δ13C,Pollen TOC,Pollen TOC,C/N,δ13C,Pollen TOC,C/N,δ13C,Pollen TOC TOC,C/N,δ13C,Pollen TOC,C/N,δ13C,Pollen TOC,Pollen TOC,Pollen TOC,C/N,δ13C MR MR MR MR MR MR MR MR MR MR MR MR MRMR MR-++++-+++-+++++-*/+/+/+*/+- //---- -/+/+ +/- - / / +/-- +/++++/*+*- /Cold Cold Temperate Temperate Temperate Temperate Temperate Temperate Temperate Temperate Temperate Temperate Temperate Temperate Temperate Dry Winter Dry Winter Dry Summer Dry Summer Dry Summer Dry Winter Dry Winter Dry Winter Dry Winter Dry Winter Without dry season Without dry season Without dry season Without dry season Without dry season Warm Summer Cold Summer Warm Summer Warm Summer Warm Summer Warm Summer Warm Summer Warm Summer Hot Summer Hot Summer Hot Summer Hot Summer Hot Summer Hot Summer Hot Summer High Low High Low High Low Low High Low Low Low High Low High High High Low High Low Low High Low High Low/Low High///High Low High Low Low High Low High Low/Low Low///Low High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High High Low Low Low Low Low Low Low High Low Low Low High Low Low Low High High High High High High High High Low High High High Low High High High High High High High High High High High High High Low High High High ID Site Proxies Region Relationship between CAR and proxies TOC C/N δ13C TPC K?ppen climate zones 1st 2nd 3rd CAR 8.5-6 ka 8.5 ka-PI 6 ka-PI Lake level 8.5-6 ka 8.5 ka-PI 6 ka-PI Vegetation 8.5-6 ka 8.5 ka-PI 6 ka-PI to be continued Table 1 Information on lake records for organic C accumulation rate,lake level and vegetation changes of China

    343536 37 3839 40 41 42 43 44 45 46 47 48 49 50 51 Longgan Lake Sanqing Ch i Bosten Lake Aibi Lake Yitang Lake Balikun Lake Wulungu Lake Manas Lake Zhuye Lake Juyanze Lake Huahai Lake Sanjiaocheng Daihai Lake Dali Lake Gonghai Lake Hulun Lake Tengger Nuur Yanhaizi Lake TOC TOC TOC,C/N,Pollen TOC TOC,C/N,δ13C TOC,Pollen TOC,C/N,δ13C,Pollen TOC,Pollen TOC,C/N,δ13C,Pollen TOC,Pollen TOC,C/N TOC,δ13C,Pollen TOC,C/N,Pollen TOC,C/N,δ13C TOC TOC,δ13C,Pollen TOC,Pollen TOC,C/N MRMR NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC++*+-+-++++- - *-+-+//*/+/-/+/++- +///+////-/-/-////*/-////*//+++-*/++//-*/Temperate Cold Arid Arid Arid Arid Arid Arid Arid Arid Arid Arid Cold Cold Cold Arid Arid Arid Without dry season Dry Winter Desert Desert Desert Steppe Steppe Steppe Desert Desert Desert Desert Dry Winter Dry Winter Dry Winter Steppe Desert Desert Hot Summer Warm Summer Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Warm Summer Warm Summer Warm Summer Cold Cold Cold High/Low/High High Low Low Low Low High Low Low Low Low Low High High Low/Low/High Low Low Low Low Low High Low Low Low Low Low High High Low Low Low High Low Low Low Low Low Low High Low Low Low Low Low Low Low High/Low Low Low Low Low Low High High Low Low High High High Low High High High/Low Low High Low Low Low High High High High High High High High High High High High High High High High High High High Low High High High High High High High High Low/Low Low Low Low Low High Low High Low High Low Low Low Low Low Low High/Low High High Low Low High High High High High High High High High High High High High High High High High High High High High High High High High High High High High ID Site Proxies Region Relationship between CAR and proxies TOC C/N δ13C TPC K?ppen climate zones 1st 2nd 3rd CAR 8.5-6 ka 8.5 ka-PI 6 ka-PI Lake level 8.5-6 ka 8.5 ka-PI 6 ka-PI Vegetation 8.5-6 ka 8.5 ka-PI 6 ka-PI to be continued Tab le 1 Information on la ke records for organic C accumulation r ate,lake level and vegetatio n changes of China

    3 Results

    3.1 Organic geochemical proxies, pollen records and lake C accumulation rate

    This paper describes the relationships between organic geochemical proxies, total pollen concentrations (TPC) and lake C accumulation rate according to their changing trends during the Holocene (Figures S1-S4).The"+"shows a similar changing trend of paleoclimatic indicators and CAR, the "-" represents the opposite changing trend, and "*" suggests completely different trends between them (Table 1).Therefore, we divided China into the Qinghai-Tibet Plateau (TP), monsoonal regions (MR) and northwest arid and semi-arid China (NAC), based on physiography, taking into account the relationships between the indicators and CAR (Figure 1, Table 1).Lakes in TP show totally different trends of TOC,C/N,δ13C,TPC and CAR.In addition,positive correlations between TOC, C/N, TPC and CAR were found in most lakes of MR and NAC, but the relationship of δ13C and CAR varied among the regions,for example; positive in southern MR, negative in northern MR and NAC.

    3.2 Organic C, sediment and C accumulation

    The variations of lake sediment OC content, sediment and C accumulation rate varied significantly by region and through time during the Holocene (Figure 2). Lakes in TP, MR and NAC show completely different changing trends in OC and SAR,while CAR of lakes indicate a growing trend in most regions, except for MR during the late Holocene(Figure 2).The overall OC content of lakes in China suggest a mid-Holocene peak, but sediment and C accumulation rate exhibited a similar changing trend of increasing from the early to late Holocene(Figure 2).

    The sediment OC content of Chinese lakes ranged from 0.27 (Songxi Co) to 45.90% (Dahu Lake), with a mean value of 5.17%; lake sediment accumulation rate ranged from 0.07 (Xingkai Lake) to 3.44 mm/a(Gucheng Lake), with a mean value of 0.64 mm/a;lake C accumulation rate ranged from 0.40 (Xingkai Lake) to 63.92 g C/(m2·a) (Gucheng Lake), with a mean value of 8.07 g C/(m2·a). The observed peak of the sediment OC content was 8.60% in MR, three and two times higher than the average content of TP and NAC(Table S1).The average sediment and C accumulation rate were 0.56 mm/a, 6.95 g C/(m2·a) in TP;0.61 mm/a,9.45 g C/(m2·a)in MR;and 0.75 mm/a,7.60 g C/(m2·a) in NAC, which did not differ significantly among the regions (Table 2).The lake C burial in China was estimated as 8.80 Pg, with the highest value of 3.80 Pg contributed by lakes in the TP,intermediate value of 3.00 Pg by those in the MR, and the lowest of 2.00 Pg by those in NAC(Table 2).

    Figure 2 Temporal variation patterns of regional organic C content(a),sediment accumulation rate(b)and C accumulation rate(c)of lakes in China

    3.3 Lake sediment CAR and environmental variables or lake characteristics

    Correlation analysis was applied to evaluate the factors controlling lake carbon sequestration in China(Figure 3, Table S2). Results suggest that the average CAR of overall lakes in China was not significantly related to environmental variables or lake characteristics,but there were close correlations between them in various regions of TP, MR and NAC (Figure 3). The Holocene mean CAR of lakes in TP was negatively correlated with altitude (R2=0.18, α=0.001) (Figure 3f), water mean depth (R2=0.31, α=0.001) (Figure 3g)and water maximum depth (R2=0.16, α=0.001) (Figure 3h). Lake CAR in MR show positive correlations with summer temperature (R2=0.12, α=0.001) (Figure 3d) and evaporation (R2=0.68, α=0.001) (Figure 3e),and negative correlation with lake area (R2=0.25,α=0.001) (Figure 3i). Lake CAR in NAC had positive correlations with summer precipitation (R2=0.12,α=0.001) (Figure 3c), water mean depth (R2=0.19,α=0.001) (Figure 3g) and water maximum depth(R2=0.24,α=0.001)(Figure 3h).

    Table 2 Lake areas(Duan et al.,2008),organic C content,sediment and C accumulation rate,as well as estimated regional C burial for various geographical zones of China

    Figure 3 Relationships between Holocene C accumulation rate and environmental variables or lake characteristics.(a)Annual mean precipitation;(b)annual mean temperature;(c)mean summer precipitation;(d)mean summer temperature;(e)evaporation;(f)altitude;(g)mean water depth;(h)maximum water depth;(i)log(Lake area,km2);and(j)catchment area/lake area.Colors show different regions in China:TP(green circles),MR(pink squares),NAC(blue triangles)

    3.4 Lake simulations and lake-level records

    Holocene lake-level changes in China were simulated by CCSM 3.0, lake energy and water balance model, and results show that simulations were consistent with most lake level records (Figure 4).Namely, lake level in MR and TP exhibited a coherent changing trend of decreasing from the early to late Holocene, while overall high lake-levels in NAC were observed in the middle Holocene (Figure 4,Table 1).

    3.5 Lake C accumulation, hydrological status,vegetation

    Millennial-scale variations in lake C accumulation, hydrological status and vegetation in China between the early (12-8 ka), middle (8-4 ka) and late(4-0 ka) Holocene were calculated or reconstructed in this study (Figure 5, Table 1). Lake C accumulation of most lakes in China suggest a growing trend of increasing from early to late Holocene (Figure 5a), whereas a decreasing trend for the evolution of lake hydrological status through the Holocene was found in the regions of TP, MR, eastern NAC, and lakes in western NAC show optimal hydrological conditions in the middle Holocene(Figure 5b).In addition, overall lakes in China experienced favorable vegetation conditions in the middle Holocene, and underwent their worst vegetation conditions at the late Holocene (Figure 5c). Consequently, lake C accumulation, hydrological status and vegetation of China indicated relatively strong temporal and spatial variability in different geographical areas, while they were not synchronous during the Holocene in each K?ppen-Geiger climate zone.

    Figure 4 Simulated lake-level changes for 8.5 ka minus 6.0 ka(a),8.5 ka minus PI(b),and 6.0 ka minus PI(c).Points show locations of lake sites,with color indicating the direction of lake level change implied by the paleo record

    Figure 5 The temporal and spatial evolution of Holocene lake C accumulation(a),hydrological status(b)and vegetation(c).Colors show different evolution patterns of lakes in China:PI>6 ka>8.5 ka(green points);PI>8.5 ka>6 ka(orange points);8.5 ka>6 ka>PI(red points);8.5 ka>PI>6 ka(blue points);6 ka>8.5 ka>PI(yellow points);6 ka>PI>8.5 ka(purple points);no data available(pink points).The K?ppen's climate classification map for China is calculated based on the 0.5°×0.5°monthly gridded precipitation and temperature datasets of 53 years during 1961-2013,and a 0.5°×0.5°gridded elevation data derived from a quality-controlled global Digital Elevation Model(DEM).This map only contains the mainland of China,and the south China sea,Taiwan region,Diaoyu Island,etc.are not include in the map

    Table 3 Information on fossil pollen records in representative pollen indicators from China 1 2 3 4 5 6 7 8 9 10 11 1213 1415 16 17 18 19 20 21 22 Bangong Co Songxi Co Naleng Lake Chen Co Nam Co Zigetang Co Ngoin Co Paru Co Pumoyum Co Koucha Lake Ximen Co Qinghai Lake Gahai Lake Chaka Salt Lake Donggi Cona Lake Genggahai Lake Erlongwan Maar Lake Xingkai Lake Sihailongwan Maar Lake Moon Lake Erhai Lake Dian Chi High//High High High//High High/High High///High High/Low Low/High//Low High High//High High/High High///High High/Low Low/High//Low High High//Low Low/Low High///Low Low/High Low/High/High/High High//High High/Low High///High Low/High//High/Low/Low Low//High High/Low High///High High/High//Low/Low/Low Low//Low Low/Low Low///Low High/Low////Low High Low High///Low/Low High///High Low/Low Low///Low High Low Low///Low/Low High///Low Low/Low High///Low High Low Low///High/High High///Low Low/Low High///Low Low/Low//High High/High High///High Low/Low High///High Low/Low//High High/High High///High High/Low High///High High/High//High High/High High///Low High/High High/Low/High Low Low Similar//High Low/High Low///High High/High//High/High High Low Low//Low Low/High High///High High/Low//High/Low High Low Low//Low High/Low High///Low High/Low/////////////High////Low Low/Low Low////////////High////Low Low/Low Low////////////High////High Low/Low Low/Low//Low////High High/High High///High High/Low Low/Low//Low////High High/Low High///High High/Low High/High//Low////Low Low/Low Low///Low High/High High///Low/Low///Low//Low///////Low Low Low//High/Low///Low//High///////Low High Low//High/High///High//High///////High High High////////High///////High//Low Low High////////High///////High//Low High Low////////Low///////Low//High High Low ID Site ArtemisiaⅠⅡ ⅢChenopodiaceaeⅠⅡⅢPinusⅠⅡⅢBetulaⅠⅡⅢCyperaceaeⅠⅡⅢQuercusⅠⅡⅢA/CⅠⅡ ⅢTreesⅠⅡ ⅢHerbsⅠⅡⅢto be continued Notes:Ⅰ,8.5-6 ka;Ⅱ,8.5 ka-PI;Ⅲ,6 ka-PI

    23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Xima Chi Xingyun Lake Lugu Lake Dajiuhu Lake Huguangyan Maar Lake Jiangling Dahu Lake Chaohu Lake Taihu Lake Gucheng Lake Beihuqiao Longgan Lake Sanqing Chi Bosten Lake Aibi Lake Yitang Lake Balikun Lake Wulungu Lake Manas Lake Zhuye Lake Juyanze Lake Huahai Lake/Low High Low High Low/High Low Low///High Low/Low Low/Low Low//Low High Low Low Low/Low High High///High High/Low Low/Low Low//Low Low Low Low High/Low High High///High High/Low High/High Low////High High High/Low Low Similar///High Low/High Low/Low High////High High Low/Low High Similar///High High/High Low/Low High////High Low Low/Low High High///Low High/Low Low/High Low//Low Low Low/High High High Low Low////Low/Low//High Low/Ⅱ/Low High Low/Low Low Low Low High////High/Low//High Low/Ⅲ/High High High/Low Low Low Low High////High/High//Low High//Low High Low/Low/Low Low///////Low Low//High/Ⅱ/Low High Low/Low/Low Low///////High Low//High/Ⅲ/High Low High/Low/Low Low///////High High//Low//Low Low/High Low Low Low Low////High//Low///High/Ⅱ/High Low/Low Low Low High Low////High//Low///Low/Ⅲ/High Low/Low High High High Low////High//Low///Low//Low Low Low Low High High Low High/////Low////Low Low//Low Low Low Low High High High High/////Similar////High Low//High High High High High High High High/////High////High High///Low Low High Low/High High Low///Low Low/Low High Low High Low///High Low Low Low/High High High///Low High/Low High High High Low///High Low Low Low/High High High///High High/High High High High High////Low High Low High High/////////Low/High/////Low High High High High/////////Low/High/////High High High Low High/////////High/High///Low/Low Low High High High/////Low//Low//Low//Ⅱ/Low/High Low High Low High/////High//High//Low//Ⅲ/Low/High Low High Low High/////High//High//High//ID Site ArtemisiaⅠⅡ ⅢChenopodiaceaeⅠⅡⅢPinusⅠBetulaⅠCyperaceaeⅠQuercusⅠⅡⅢA/CⅠⅡ ⅢTreesⅠⅡ ⅢHerbsⅠto be continued Table 3 Information on fossil pollen records in representative pollen indicators from China Notes:Ⅰ,8.5-6 ka;Ⅱ,8.5 ka-PI;Ⅲ,6 ka-PI

    45 46 47 48 49 50 51 Sanjiaocheng Daihai Lake Dali Lake Gonghai Lake Hulun Lake Tengger Nuur Yanhaizi Lake Low High//High High/Low Low//High High/High Low//Low High/Low Low//Low High/Low Low//Low Low/Low Low//Low Low/High Low//Low Low/Low High//Low Low/Low High//Low High//High//High High//High//High High//High//High High/////Low Low/////Low High/////Low High//Low///High//High///High//High///High/Low High//High Low/High High//High High/High High//High High//Low//Low///High//Low///High//High///High//High///Low//High///Low//Low//ID Site ArtemisiaⅠⅡ ⅢChenopodiaceaeⅠⅡⅢPinusⅠⅡⅢBetulaⅠⅡⅢCyperaceaeⅠⅡⅢQuercusⅠⅡⅢA/CⅠⅡ ⅢTreesⅠⅡ ⅢHerbsⅠⅡⅢto be continued Table 3 Information on fossil pollen records in representative pollen indicators from China Notes:Ⅰ,8.5-6 ka;Ⅱ,8.5 ka-PI;Ⅲ,6 ka-PI

    4 Discussion

    4.1 Lake C accumulation

    This study found that most lakes in China show an overall increasing trend in C accumulation during the Holocene, with relatively high accumulation rate in the middle or late Holocene. The high accumulation rate during the middle Holocene was closely related to an optimal environment characterized by a warm and humid climate (Zhang et al.,2013;Wang et al., 2015). However, the high accumulation rate during the late Holocene could be explained by terrestrial organic matter input due to land-use change (Kortelainen et al., 2006; Liu and Fan, 2010; You and Liu,2012;Wang et al.,2015).

    The C sequestration capacity of lakes is very sensitive to alterations of the surrounding environment(Martini et al., 2006; Chen et al., 2008; Zhang et al.,2013; Wang et al., 2015). Organic geochemical proxies and pollen records, with abundant information of regional climate and environment during the deposition period, play an important role in Holocene climate change studies (Davis, 2000; Balascio et al.,2013; Li et al., 2013). Therefore, this paper divided China into TP, MR and NAC, based on physiography,taking into account the relationships between organic geochemical proxies, total pollen concentration and lake C accumulation rate. Lakes of TP show totally different trends of the proxies and CAR due to the low biomass compared with other regions of China.Positive correlations between TOC, C/N, TPC and CAR were found in most lakes of MR and NAC, that is, high TOC, C/N, TPC usually corresponded to warm-humid climatic conditions. However, the relationship of δ13C and CAR varied among the regions,for example; positive in southern MR, negative in northern MR and NAC, which could be attributed to climate effects of plant δ13C (O'Leary, 1988; Li et al.,1999). Pyrophilous C4plants with light δ13C values were widespread in the warm-humid East Plain of southern MR, while cold or dry conditions prevailing across northern MR and NAC caused the expansion of pyrophilous C3plants with heavy δ13C (Yin and Li,1997;Li,1999;Ehleringer et al.,1997;Ehleringer and Bj?rkman,1977;Zhou et al.,2013).

    Regression analysis suggest that the average CAR of past 12 ka for all lakes in China was not significantly related to lake characteristics (Figure 3), which illustrated that lake C accumulation is a result from comprehensive function of multiple factors, involving geological,physical,chemical,biological and anthropic processes (Shen, 2013). However, on regional scales, several factors could partly explain the millennial-scale variability in lake C accumulation. In NAC,lake CAR is positively correlated to summer precipitation; indeed, vegetation growth and watershed hydrology in arid areas were strongly influenced by moisture conditions and the rainfall of the regions was mainly concentrated in the summer months (Wang et al., 2005; Romero et al., 2012, 2013). Additionally,positive relationship between lake CAR and water depth was observed in NAC, because the shallower lake water was favorable for the oxygenic mineralization of lake sediments (Sobek et al., 2013; Wang et al.,2015).In MR,high summer temperature generally means higher primary productivity, associated with abundant lake organic C produced in situ or transported from terrestrial ecosystems (Zhang et al., 2013;Wang et al., 2015), and thus positive relationship between lake CAR and temperature was found in MR.However, the low C burial in large lakes of MR could be attributed to the high oxidation of terrestrially fixed C to CO2(Kortelainen, 2004). Negative correlation between lake CAR and altitude in TP is easy to understand such that high altitude usually correspond to sparse vegetation with relatively low temperature and moisture. Except for climate factors, lake C accumulation was also impacted by human activity.Extensive agricultural practices and deforestation accelerated soil erosion and thus considerably increased sediment accumulation of lakes (Whitmore et al., 1994;Saito et al.,2001;Ran and Lu,2014).

    4.2 Lake hydrological status

    The Holocene lake hydrologic changes for different geographical regions were reconstructed based on lake level records derived from 51 lakes of China(Figure 4, Table 1). The regions of MR, TP and eastern NAC show gradually weakened hydrological conditions through the Holocene, namely a wetter early Holocene, a moderately wet middle Holocene, and a dry late Holocene. However, lakes of western NAC experienced favorable hydrological status in the middle Holocene, suboptimal hydrological conditions at the early Holocene and poor hydrological status during the late Holocene.

    Lakes in MR,TP and eastern NAC were dominated by the Asian monsoon and those in western NAC were influenced by the westerly winds (Li and Morrill, 2010; Shen, 2013). Palaeoclimate studies revealed that strong summer Asian monsoons and weakened mid-latitude westerlies prevailed during the early Holocene (Herzschuh, 2006; Chen et al., 2008; Li and Morrill, 2010; Jin et al., 2012; Shen, 2013). As a result, considerable precipitation with less lake surface evaporation occurred in Asian monsoon dominated areas, while low-level water vapor transport from the North Atlantic was observed in the westerlies controlled regions (Parmesan, 2006; Chen et al., 2008;Jin et al., 2012; Shen, 2013). Another explanation of the early Holocene regional difference in lake hydrological status could be attributed to air movement induced by summer insolation (Ye and Gao, 1979;Rodwell and Hoskins, 1996; Herzschuh, 2006; Chen et al., 2008). Intense heating of low latitudes region caused intensified subsidence of air masses to TP and inevitably dry climate in NAC (Ye and Gao, 1979;Broccoli and Manabe, 1992; Rodwell and Hoskins,1996; Herzschuh, 2006; Chen et al., 2008; Shen,2013). Moreover, under deglacial boundary conditions at high latitude, cool air and sea-surface might have reduced water vapor transport to western NAC during the early Holocene (Chen et al., 2008; Li and Xu, 2016). In the middle Holocene, the Asian monsoon began to retreat while the westerlies were intensified and expanded (Fleitmann et al., 2003; Yuan et al., 2004; Shao et al., 2006; Chen et al., 2008; Li and Morrill, 2010). Furthermore, reduction in glacier cover would increase the surface air temperature, thereby inducing more vapor transported to NAC (Numaguti,1999; Chen et al., 2008). Consequently, lake hydrological conditions for areas dominated by the Asian monsoon show gradually weakened hydrological conditions through the Holocene, and optimal hydrological conditions occurred during the middle Holocene in the westerlies controlled regions.It should be pointed out that TP was typically characterized by discharges of glacial-melt water; and thus the weakening lake hydrologic status after the middle Holocene in TP was also connected with ice-sheet reduction (Liu et al.,2013;Shen,2013;Li et al.,2014).

    4.3 Vegetation

    Based on the synthetic analysis regarding organic geochemical proxies, total pollen concentrations and eight representative pollen indicators of 51 lakes in China, we reconstructed the Holocene vegetation history in various regions (Figures S1-S4, Table 3).Lake sediments in MR indicated less terrestrial plants and aquatic plankton were produced in the early Holocene, and the region was dominated by pine forest with patches of herbs and shrubs. However, notable increase of TOC, C/N and total pollen concentration suggest that paleoecology improved markedly in the middle Holocene such that deciduous broadleaved forest appeared to extent over the northern region of MR and southern region was dominated by evergreen broadleaved forest. During the late Holocene, along with the decrease in temperature and precipitation,the broadleaved forest degenerated and then pine forest expanded again. In addition, indicators from lakes Bosten, Aibi, Yitang, Balikun, Wulungu, and Manas in western NAC suggest an arid early Holocene with widely distributed dry steppe.The increase in Artemisia and A/C ratios between 4-8 ka indicate that the environment became wetter and the regional vegetation was converted to desert-steppe. During the late Holocene, A/C ratios implied a decreasing trend of effective moisture but drainage basins were still covered by desert-steppe. Nevertheless, eastern NAC shows that arid steppe dominated the region in company with patches of pine forests during the early Holocene; intensive mixed pine and broadleaved forests widely developed in the middle Holocene; and arid stepped reexpanded in the late Holocene. The region of TP, with an average elevation of more than 4,000 m a.s.l.,experienced two different patterns of vegetation and landscape evolution through the Holocene but coherently show an optimal vegetation cover in the middle Holocene. In high-altitude regions of northwest TP, millennial-scale reconstructions of vegetation suggest a dominance of alpine meadows in the early and late Holocene, and the coniferous mixed forest tended to dominate the middle Holocene. On the other hand, all types of pollen in southwest TP indicate the presence of desert steppe during the early Holocene, alpine steppes with desert elements in the middle Holocene, and the re-expansion of desert steppe in the late Holocene.

    Although watershed vegetation in China show a regionally-coherent pattern where vegetation flourished during the middle Holocene, the limiting factor of the regional vegetation was asynchronous; for example, precipitation and temperature in TP, MR and eastern NAC, and precipitation in eastern NAC.Therefore, in spite of considerable precipitation in TP,MR and eastern NAC during the early Holocene, the vegetation coverage was sparse owing to the cold environment (Fleitmann et al., 2003; Yuan et al., 2004;Shao et al., 2006; Chen et al., 2008; Li and Morrill,2010).In the middle Holocene,the intensity of precipitation was still strong and the temperature reached the warmest period of the Holocene; thus, relatively large-scale plant cover prevailed in those regions(Shen, 2013; Li and Xu, 2016). However, the evolution of lakes in western NAC were generally dominated by mid-latitude westerly winds which brought considerable precipitation in the middle Holocene, thereby flourishing vegetation in this region was observed at the middle Holocene (Tao et al., 2010; Xue and Zhang,2011;Zhang and Li,2015).

    4.4 Lake C accumulation, hydrological status and vegetation

    Since the migration and deposition of organic matter from upstream to downstream are interlinked by hydrologic cycle, lake C accumulation can be considered as a synthesis of hydrology and vegetation conditions for a drainage basin (Jasper and Gagosian,1990;Turcq et al., 2002; Zhang et al., 2013; Crann et al.,2015; Wang et al., 2015). Indeed, the strong basinwide hydrodynamic conditions usually correspond to abundant exogenous fluxes of organic C,and the luxuriant vegetation in the watershed means considerable sources of terrestrial organic matter. Accordingly, although various climate-forcing mechanisms acted on different geographical regions, lake C accumulation of most individual lakes in this study set was relatively high during the middle Holocene. However, the accumulation peak of lake C in the late Holocene was observed to be closely related to human activity that was generally characterized by pastoralism in TP and agricultural practices in MR and NAC (Makohonienko et al.,2004;Zhao et al.,2007;Han,2014;Ran and Lu, 2014). Human interference accelerated soil erosion, and thus resulted in considerable C burial in lakes and rivers (Whitmore et al., 1994, Saito et al.,2001;Ran and Lu,2014).

    5 Conclusions

    Millennial-scale variations in lake C accumulation, hydrological status and vegetation in China between the early (12-8 ka), middle (8-4 ka) and late(4-0 ka) Holocene were calculated or reconstructed based on direct organic C values, lake-level records,pollen records and organic geochemical proxies. Our synthesis indicates that variations of lake C accumulation show an out-of-phase relationship with hydrological status and vegetation during the Holocene. Lake C accumulation exhibited an overall trend of increasing from the early to late Holocene in response to gradually increasing terrestrial organic matter input. However, China as a whole experienced the densest vegetation cover in the middle Holocene, corresponding to the mid-Holocene optimum of a milder and wetter climate. Furthermore, a decreasing trend for the evolution of lake hydrological status through the Holocene was found in Asian monsoon dominated areas, while lakes in westerlies controlled regions show optimal hydrological conditions in the middle Holocene.

    Table S1 Organic C content,sediment and C accumulation rates of individual lake cores at 1000-year bin during the Holocene 1 2 3 4 5 6 7 8 9 10 Bangong Co Songxi Co Naleng Lake Chen Co Nam Co Zigetang Co Ngoin Co Paru Co Pumoyum Co Koucha Lake OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))2.62 1.23 20.12///5.05 0.70 12.45 0.97 1.42 13.08 1.31 0.47 5.21 1.48 0.61 7.22 1.75 0.73 9.46 33.14 0.27 6.64 1.34 0.24 2.61 15.42 0.10 2.33 2.10 1.24 18.15///5.22 1.17 20.77 0.98 1.36 12.57 1.00 0.51 4.79 1.31 0.63 6.97 2.30 0.61 8.95 28.25 0.28 6.90 1.33 0.25 2.73 11.95 0.90 19.79 1.16 1.25 12.86///5.94 0.72 12.59 0.96 1.42 12.99 1.10 0.28 2.77 1.20 0.62 6.46 3.07 0.75 12.28 29.03 0.30 7.33 1.20 0.27 2.72 11.93 0.51 11.22 0.78 1.25 10.13 0.33 0.28 1.23 6.16 0.66 11.46 0.98 1.33 12.30 1.24 0.19 2.03 1.45 0.63 7.32 2.86 0.59 9.47 25.83 0.32 7.64 1.12 0.28 2.75 11.94 0.37 8.17 0.79 1.26 10.27 0.34 0.15 0.66 5.83 0.65 11.36 0.96 0.46 4.22 1.22 0.16 1.66 1.48 0.62 7.33 1.92 0.55 7.46 25.76 0.33 8.02 1.03 0.29 2.74 12.43 0.29 6.39 1.00 1.27 11.98 0.29 0.11 0.46 6.60 0.64 10.85 1.21 0.38 3.98 1.47 0.16 1.88 1.64 0.61 7.62 3.59 0.51 8.75 24.69 0.35 8.35 0.89 0.31 2.64 11.22 0.24 5.19 0.86 1.28 10.98 0.33 0.10 0.43 5.64 0.64 11.32 0.93 0.38 3.38 1.34 0.12 1.35 1.90 0.63 8.42 3.23 0.47 7.89 22.28 0.37 8.64 0.81 0.32 2.59 9.02 0.20 4.28 0.74 1.29 9.99 0.31 0.08 0.35 4.49 0.65 11.59 0.75 0.35 2.72 1.33 0.12 1.35 1.98 0.62 8.45 4.04 0.43 7.56 22.50 0.38 9.01 0.78 0.33 2.64 5.62 0.17 3.47 0.76 1.30 10.26 0.25 0.08 0.27 5.20 0.67 11.83 0.48 3.17 18.32 1.49 0.12 1.42 2.41 0.63 9.45 1.17 0.39 4.05 22.72 0.40 9.41 0.69 0.35 2.57 6.56 0.15 3.14 1.94 1.30 19.74 0.14 0.07 0.16 5.20 0.67 11.97 0.68 0.55 4.05 2.03 0.11 1.47 2.67 0.61 9.53 0.59 0.36 2.40 23.69 0.41 9.81 0.97 0.36 3.29 11.28 0.14 2.98///0.11 0.06 0.12 3.82 0.68 11.83 1.02 0.49 4.67 1.56 0.11 1.32 1.73 0.31 3.91///21.18 0.43 10.07 1.28 0.38 3.99 16.49 0.12 2.81///0.14 0.06 0.14 2.75 0.69 10.89 0.98 0.52 4.85 1.06 0.25 2.46/////////1.55 0.39 4.60 15.27 0.11 2.55 Fan et al.,1996 Li et al.,1994 Kramer et al.,2010ab Zhu et al.,2009 Zhu et al.,2008 Wu et al.,2007 Wu et al.,2006 Bird et al.,2014 Lü et al.,2011 Herzschuh et al.,2009 ID Site 1 ka 2 ka 3 ka 4 ka 5 ka 6 ka 7 ka 8 ka 9 ka 10 ka 11 ka 12 ka References to be continued

    11 12 13 14 15 16 17 18 19 20 Ximen Co Qinghai Lake Donggi Cona Lake Gahai Lake Chaka Salt Lake Genggahai Lake Erlongwan Maar Lake Xingkai Lake Sihailongwan Maar Lake Moon Lake OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))9.72 0.02 0.40 1.86 0.44 5.89 0.98 0.34 3.19 2.06 2.61 36.45 0.08 3.54 5.37 1.96 1.19 16.18 5.29 0.49 9.75 0.42 0.06 0.32 9.81 0.06 1.21 12.40 0.52 11.44 9.53 0.24 5.24 0.90 0.44 3.84 1.13 0.19 1.97 1.77 1.52 19.73 0.07 1.28 1.64 3.37 0.76 12.70 15.57 0.49 11.20 0.31 0.06 0.27 11.41 0.09 2.07 15.86 0.51 11.63 9.66 0.56 12.15 0.41 0.43 2.23 1.39 0.19 2.21 1.89 1.41 18.91 0.12 0.74 1.50 4.14 0.65 11.41 13.27 0.50 11.17 0.37 0.06 0.30 14.11 0.14 3.04 17.63 0.50 11.54 9.28 0.57 12.28 0.69 0.42 3.12 1.29 0.27 2.91 1.34 1.17 13.08 0.13 0.52 1.15 4.22 0.59 10.38 14.25 0.51 11.43 0.44 0.06 0.35 13.95 0.17 3.92 19.23 0.49 11.42 9.69 0.50 10.86 1.62 0.41 5.10 1.56 0.17 2.09 1.56 0.97 11.79 0.25 0.40 1.44 3.29 0.55 9.16 14.88 0.52 11.70 0.45 0.07 0.36 13.96 0.22 4.86 17.12 0.48 11.04 11.18 0.61 13.29 2.24 0.40 5.85 1.71 0.16 2.10 1.59 1.13 13.89 0.65 0.33 2.34 3.80 0.52 8.95 7.48 0.53 10.98 0.55 0.07 0.43 14.24 0.26 5.78 14.11 0.47 10.57 12.04 0.25 5.59 3.69 0.40 6.81 1.22 0.24 2.51 1.63 0.99 12.30 0.66 0.28 1.99 2.65 0.49 7.67 3.28 0.53 10.14 0.55 0.07 0.44 13.52 0.30 6.64 10.32 0.46 10.00 11.50 0.15 3.30 4.94 0.39 6.91 1.56 0.21 2.59 1.51 1.13 13.49 0.97 0.24 2.18 3.51 0.47 8.03 8.08 0.54 11.40 0.55 0.07 0.45 11.60 0.34 7.38 10.08 0.45 9.76 7.91 0.20 4.28 8.03 0.38 5.63 1.06 0.25 2.40 1.73 3.00 38.47 1.28 0.21 2.25 3.10 0.46 7.49 3.14 0.55 10.41 0.61 0.07 0.49 11.01 0.38 8.22 7.21 0.44 9.18 8.77 0.15 3.20 5.85 0.37 6.51 0.72 0.20 1.53 1.66 0.79 9.90 1.07 0.18 1.80 1.40 0.44 5.05 4.04 0.56 10.86 0.60 0.07 0.49 8.92 0.42 8.87 5.68 0.43 8.73 6.18 0.17 3.46 7.57 0.36 5.66 0.68 0.18 1.35 1.15 0.75 7.66 0.88 0.17 1.45 4.45 0.43 7.59 6.72 0.57 12.37 0.51 0.07 0.45 6.67 0.45 9.35 6.99 0.42 8.73 6.58 0.20 4.14 5.98 0.36 6.20 0.50 0.19 1.16 0.70 0.66 4.92 0.55 0.16 0.99 3.01 0.42 6.81 1.27 0.57 6.20 0.55 0.08 0.49 6.46 0.50 10.21 8.47 0.41 8.70 Zhang and Mischke,2009 Shen et al.,2005a Opitz et al.,2012 Guo,2012 Liu et al.,2008a Song et al.,2012 You and Liu,2012 Wu and Shen,2010ab Liu et al.,2005b Liu et al.,2010 ID Site 1 ka 2 ka 3 ka 4 ka 5 ka 6 ka 7 ka 8 ka 9 ka 10 ka 11 ka 12 ka References to be continued Table S1 Organic C content,sediment and C accumulation rates of individual lake cores at 1000-year bin during the Holocene

    21 22 23 24 25 26 27 28 29 30 31 Erhai Lake Dian Chi Xima Chi Xingyun Lake Lugu Lake Huguangyan Maar Lake Dajiuhu Lake Gucheng Lake Jiangling Dahu Lake Chao Lake OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))0.32 0.38 1.64 2.12 0.49 6.92 6.87 0.22 3.68 1.07 0.05 0.59 10.96 0.40 8.76 2.53 0.64 11.90 29.56 0.40 9.72///0.76 2.77 21.79 24.36 0.26 6.14///0.37 0.40 1.91 2.30 0.47 6.90 6.36 0.12 2.08 0.46 0.77 2.46 9.60 0.39 8.39 4.30 0.64 12.65 44.82 0.24 6.21///1.00 1.66 15.65 11.68 0.05 1.08///1.75 0.31 4.00 2.09 0.45 6.32 5.28 0.12 2.10 1.99 0.56 2.95 8.97 0.38 8.07 6.74 0.65 13.33 48.28 0.20 5.24///3.76 0.95 16.43 12.55 0.11 2.33///1.57 0.44 5.35 1.65 0.43 5.38 3.47 0.12 1.95 6.45 0.47 9.71 11.04 0.37 7.99 7.31 0.65 13.48 43.48 0.18 4.66///7.18 0.67 10.78 20.04 0.05 1.07///1.79 0.46 6.01 3.25 0.41 6.83 2.86 0.11 1.79 8.00 0.42 8.84 11.66 0.35 7.77 10.69 0.65 14.09 28.99 0.17 4.15///1.86 0.51 6.76 58.04 0.10 2.65///1.73 0.48 6.15 2.35 0.39 5.77 3.85 0.11 1.90 10.09 0.37 8.03 10.03 0.34 7.37 7.19 0.65 13.50 24.94 0.16 3.84///1.03 0.42 4.07 76.53 0.08 2.17///2.17 0.50 7.15 2.37 0.37 5.51 3.12 0.01 0.16 10.60 0.34 7.43 8.27 0.33 6.97 4.92 0.65 12.95 27.26 0.15 3.67 5.55 7.69 130.57 0.72 0.35 2.70 52.10 0.05 1.42 0.83 1.50 12.50 2.78 0.52 8.23 1.55 0.35 4.24 2.13 0.10 1.49 11.77 0.32 7.02 8.06 0.32 6.71 12.10 0.65 14.35 36.97 0.15 3.64 6.09 2.90 59.16 0.66 0.31 2.26 46.36 0.14 3.52 0.37 1.50 7.23 2.24 0.55 7.97 1.58 0.33 4.03 2.06 0.10 1.43 9.44 0.30 6.41 9.01 0.31 6.52 12.49 0.65 14.43 34.78 0.14 3.48 6.40 2.04 41.91 0.56 0.29 1.87 71.93 0.18 4.94 0.36 1.50 7.11 2.18 0.58 8.30 1.58 0.31 3.77 2.49 0.10 1.52 9.08 0.28 6.01 8.44 0.29 6.24 12.32 0.65 14.43 18.09 0.14 3.13 8.03 1.66 34.99///75.21 0.15 4.07 0.46 1.50 8.41 1.54 0.60 7.21///2.16 0.10 1.41 5.85 0.27 4.73 8.09 0.28 5.95 10.73 0.65 14.23 7.28 0.13 2.73 5.63 1.44 29.09///58.62 0.08 2.22 0.52 1.50 9.21//////2.57 0.10 1.50 3.77 0.26 4.52 7.23 0.27 5.58 8.48 0.65 13.88 6.69 0.13 2.64 5.40 1.28 25.87///43.48 0.11 2.92 0.54 1.50 9.43 Shen et al.,2005b Wu et al.,1998 Yang et al.,2004 Zhang et al.,2014 Zheng et al.,2014;Zheng,2014 Mingram et al.,2004 Ma et al.,2008 Wang et al.,1999 Xie,2004 Xue et al.,2007 Hu et al.,2015 ID Site 1 ka 2 ka 3 ka 4 ka 5 ka 6 ka 7 ka 8 ka 9 ka 10 ka 11 ka 12 ka References Table S1 Organic C conten t,sedimen t and C accumulation rates of individ ual lake cores at 1 000-year bin durin g the Holocene o be continued t

    32 33 34 35 36 37 38 39 40 41 Taihu Lake Beihuqiao Longgan Lake Sanqing Chi Bosten Lake Aibi Lake Yitang Lake Balikun Lake Wulungu Lake Manas Lake OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR g C/(m2·a)OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))//////1.53 3.45 41.40 1.86 0.22 2.96 5.05 1.06 18.79 0.40 0.51 2.58///2.52 0.30 4.52 0.67 0.44 3.20 2.21 1.71 24.60//////1.38 0.58 6.60 1.27 0.10 1.13 4.47 1.03 18.24 0.50 0.49 2.94 0.53 1.00 6.19 2.54 0.29 4.43 0.65 0.38 2.72 1.32 0.65 7.17//////0.62 0.61 4.25 1.14 0.08 0.83 4.17 1.00 17.51 0.64 0.47 3.35 0.20 1.05 3.20 1.52 0.28 3.38 0.37 0.32 1.56 0.49 0.34 1.99//////0.27 0.64 2.42 0.98 0.07 0.64 5.11 0.96 17.01 0.80 0.46 3.74 0.29 1.10 4.44 1.21 0.27 2.89 0.61 0.26 1.77 0.13 0.27 0.57 0.46 0.29 1.64///0.44 0.67 3.65 0.72 0.06 0.46 4.38 0.94 16.58 0.97 0.44 4.08 0.23 1.17 3.97 0.88 0.27 2.31 0.75 0.20 1.57 0.14 0.22 0.52 0.47 0.30 1.74 3.61 1.94 33.28 0.91 0.70 6.22 0.90 0.06 0.49 3.42 0.91 15.29 1.20 0.43 4.49 0.21 1.24 3.88 1.09 0.26 2.56 0.91 0.14 1.23 0.09 0.20 0.34 0.49 0.32 1.87 3.38 1.20 20.21 1.05 0.73 7.09///3.92 0.87 15.08 0.87 0.41 3.58 0.19 1.33 3.87 2.00 0.25 3.44 0.68 0.08 0.57 0.18 0.18 0.51 0.46 0.33 1.88 3.56 2.43 41.53 0.12 0.76 1.58///3.60 0.84 14.38 0.79 0.40 3.25 0.16 1.45 3.79 2.06 0.24 3.38 1.10 0.02 0.20 0.25 0.17 0.60 0.43 0.35 1.88 3.62 2.67 45.70 0.24 0.83 2.88///3.05 0.82 13.33///0.22 1.59 5.22 2.66 0.23 3.65 0.57 0.04 0.25 0.27 0.15 0.60 0.46 0.37 2.08 3.61 2.89 49.45 0.35 0.90 4.15/////////1.33 1.80 19.99//////0.16 0.15 0.37 0.51 0.39 2.40 3.57 3.03 51.79 0.92 0.99 8.83/////////0.47 2.11 12.07//////0.33 0.14 0.61 0.39 0.43 2.16///0.94 1.09 9.89/////////0.26 2.71 10.02//////0.10 0.13 0.23 Shu et al.,2007 Wei et al.,2016 Yang et al.,2002 Song et al.,2016 Zhang et al.,2007 Wu,1995 Zhang and Li,2015 Xue and Zhang,2011 Jiang et al.,2007 Rhodes et al.,1996 ID Site 1 ka 2 ka 3 ka 4 ka 5 ka 6 ka 7 ka 8 ka 9 ka 10 ka 11 ka 12 ka References Table S1 Organic C content,sediment and C accumulation rates of individual lake cores at 1000-year bin during the Holocene to be continued

    42 43 44 45 46 47 48 49 50 51 Zhuye Lake Juyanze Lake Huahai Lake Sanjiaocheng Daihai Lake Dali Lake Gonghai Lake Hulun Lake Tengger Nuur Yanhaizi Lake OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))OC(%)SAR(mm/a)CAR(g C/(m2·a))0.27 1.88 7.16///0.64 0.50 3.51///0.69 2.08 15.47 4.30 2.39 42.20 9.83 2.38 51.37 0.97 1.56 14.34 1.70 0.25 3.18 0.23 1.18 4.03 0.91 0.55 4.88 1.71 1.37 17.48 0.45 0.13 0.69 1.20 1.14 11.92 0.93 1.89 16.98 4.76 1.61 28.62 9.55 1.69 36.37 0.96 1.51 13.88 1.39 0.27 3.03 0.23 1.26 4.25 1.44 0.20 2.30 1.07 1.30 12.75 0.30 0.17 0.70 2.17 0.90 12.89 1.46 1.72 20.11 5.17 0.94 16.67 11.07 0.95 20.80 1.66 1.45 18.22 1.37 0.28 3.20 0.31 1.30 5.48 1.38 0.48 5.45 1.10 1.20 12.01 0.46 0.22 1.24 3.92 0.64 11.17 1.35 1.54 17.28 5.02 0.66 11.71 12.33 0.68 15.09 0.71 1.40 10.51 1.20 0.30 3.20 0.56 1.32 8.50 1.13 0.43 4.34 1.27 1.10 11.90 0.69 0.28 2.11 3.49 0.50 8.53 1.33 1.36 15.13 5.64 0.51 9.00 12.94 0.54 11.97 0.24 1.34 4.66 0.80 0.33 2.74 0.33 1.34 5.91 1.26 0.50 5.39 0.80 1.00 8.15 0.79 0.38 3.08 2.88 0.41 6.54 1.46 1.18 13.82 4.77 0.42 7.49 14.79 0.44 9.96 0.41 1.28 6.58 0.66 0.38 2.72 0.23 1.35 4.61 1.20 0.39 4.10 0.81 0.90 7.44 0.81 0.48 3.93 2.57 0.34 5.26 2.05 1.00 13.90 5.92 0.36 6.20 19.34 0.37 8.62 3.51 1.22 20.71 0.53 0.43 2.68 0.27 1.37 5.28 0.23 0.72 2.42 0.83 0.80 6.69 1.10 0.62 6.19 5.24 0.30 5.28 2.66 0.81 12.62 5.87 0.31 5.39 20.41 0.32 7.51 2.46 1.16 17.51 0.60 0.53 3.59 0.17 1.38 3.78 0.25 0.24 0.85 0.60 0.70 4.77 0.57 0.81 5.29 3.66 0.26 4.50 1.63 0.63 7.79 5.54 0.27 4.80 25.44 0.28 6.77 0.45 1.10 6.04 0.68 0.76 5.61 0.77 1.38 11.06 0.26 0.34 1.26 0.65 0.60 4.30 0.36 1.03 4.84 5.59 0.23 4.14 1.84 0.46 6.03 5.59 0.24 4.28 19.59 0.25 5.87 0.28 1.04 4.09 0.79 1.25 10.13 0.82 1.39 11.59 0.21 0.19 0.61 0.46 0.51 2.88 0.34 1.35 6.10 6.47 0.21 3.65 2.20 0.32 4.56 3.25 0.22 3.64 23.86 0.23 5.44 1.25 0.98 10.50///0.79 1.40 11.37 0.06 0.09 0.14///0.87 1.75 15.09 4.66 0.20 3.51///1.38 0.21 2.33 17.70 0.21 4.84 1.65 0.93 11.62///0.87 1.41 12.09 Li et al.,2013 Herzschuh et al.,2004 Wang et al.,2013 Zhang et al.,2000 Xiao et al.,2006 Fan et al.,2015 Chen et al.,2013 Hu et al.,2000 Ma et al.,2004 Chen et al.,2003 ID Site 1 ka 2 ka 3 ka 4 ka 5 ka 6 ka 7 ka 8 ka 9 ka 10 ka 11 ka 12 ka References Table S1 Organic C content,sediment and C accumulation rates of individual lake cores at 1000-year bin during the Holocene to be continued

    Table S2 Site information of Chinese lakes in this study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Bangong Co Songxi Co Naleng Lake Chen Co Nam Co Zigetang Co Ngoin Co Paru Co Pumoyum Co Koucha Lake Ximen Co Qinghai Lake Donggi Cona Lake Gahai Lake Chaka Salt Lake Genggahai Lake Erlongwan Maar Lake Xingkai Lake Sihailongwan Maar Lake Moon Lake 33°40′N 34°37′N 31°06′N 28°56′N 30°42′N 32°04′N 31°28′N 29°47′N 28°33′N 34°00′N 33°22′N 36°32′N 35°18′N 37°08′N 36°41′N 36°11′N 42°18′N 44°57′N 42°17′N 47°30′N 79°30′E 80°16′E 99°45′E 90°35′E 90°40′E 90°50′E 91°30′E 92°21′E 90°26′E 97°12′E 101°07′E 99°36′E 98°32′E 97°33′E 99°07′E 100°06′E 126°22′E 132°25′E 126°36′E 120°52′E 4,241 4,870 4,200 4,420 4,718 4,560 4,532 4,845 5,001 4,540 4,261 4,583 4,090 2,850 3,200 3,000 722 69 916 1,194 604 25 1.8 38 1,920 191.4 61.3 0.1 290 18 3.6 4,456 229 35 105 2 0.3 4,380 0.5 0.0269 28,714 1,605 470 148 10,610 3,430 1,081 2.97 1,233.9 8850 29,660 3,174/11,600/0.4 36,400 0.7/5 8//30 28.5/////21/8 30//4.5//41/36.7 31 33 39/1.2/6.9 63.3 32.8 98 15/1.8 36 10 506.5 2,465//1,250 2,350 925.1 1,000/1,770 4,400/1,502/2,000 2,074.1 1,716/587.2//109.5 126.9 852.3 358.0 430.2 400.3 486.8 550.7 390.3 508.8 812.0 333.0 354.4 252.6 284.3 325.1 787.0 549.6 849.0 485.5-5.6-6.8-2.2 1.8-0.8-2.7-2.0-2.2-2.8-6.2 0.0 1.0-2.8-0.3 3.5 3.8 4.5 4.4 2.6-2.5 29.0 34.2 175.1 82.5 97.6 91.8 106.0 112.1 87.4 101.3 153.4 71.9 73.4 55.3 61.9 67.1 160.9 100.4 170.3 106.6 5.23.95.58.77.87.08.35.64.24.04.1 11.37.4 10.8 12.0 13.9 20.0 20.2 17.9 14.8 Campo et al.,1996 Li et al.,1994 Kramer et al.,2010ab Feng et al.,2004 Zhu et al.,2008 Li et al.,2009b Wu et al.,2006 Bird et al.,2014 Nishimura et al.,2014 Aichner et al.,2010 Zhang and Mischke,2009 Matsumoto,2005 Opitz et al.,2012 Guo,2012 Liu et al.,2008a Song et al.,2012 Liu et al.,2008c Wu and Shen,2010ab Liu et al.,2005b Wu and Liu,2012 ID Site Latitude(°C)longitude(°C)Altitude(m)Lake surface area(km2)Catchment area(km2)Mean depth(m)Max depth(m)Evaporation(mm)Precipitation(mm)Temperature(°C)Summer precipitation(mm)Summer temperature(°C)References to be continued

    21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Erhai Lake Dian Chi Xima Chi Xingyun Lake Lugu Lake Huguangyan Maar Lake Dajiuhu Lake Gucheng Lake Jiangling Dahu Lake Chao Lake Taihu Lake Beihuqiao Longgan Lake Sanqing Chi Bosten Lake Aibi Lake Yitang Lake Balikun Lake Wulungu Lake 25°47′N 25°04′N 25°47′N 24°20′N 27°42′N 21°09′N 31°28′N 31°15′N 30°02′N 24°41′N 31°31′N 31°22′N 30°22′N 29°58′N 33°55′N 42°05′N 44°51′N 40°31′N 43°40′N 47°12′N 100°12′E 102°41′E 100°05′E 102°47′E 100°50′E 110°17′E 110°04′E 108°55′E 112°24′E 115°00′E 117°23′E 120°07′E 119°56′E 116°06′E 107°56′E 87°03′E 82°23′E 94°58′E 92°48′E 87°17′E 1,974 1,886 3,800 1,740 2,690 87.6 1,780 139 1,956 255 450 62 1,186 13 1,564 1,048 194 1,054 1,575 479 256.5 330/34.7 57.7 2.3 16 23.4/0.8 770 2,338.1/316.2/1,002.4 542 150 116 927 2,785 2,866/386 216 3.5 34 37.2//13,349//5,511/55,600 50,621/4,500 32,000 10.2 5/7 38.4//7//2.7 1.9/3.8/8.2 1.4/0.6 8 20.7 8/11 105.3 22/10//3.8 2.6/4.6/17 2.8/1.1 16 1,160 1,685/1,192///1,400-1,900//1,604////1,800-2,000 1,315 2,486 2,250 1,844 915.0 1,092.2 915.0 980.5 797.4 1,612.9 1,105.5 1,192.9 1,123.4 1,635.3 1,048.8 1,156.5 1,406.7 1,453.6 1,008.6 90.6 153.5 52.9 200.0 128.9 13.1 11.5 13.1 14.6 9.7 23.2 15.3 17.8 16.8 18.4 16.0 16.1 16.6 17.0 5.7 8.3 8.2 8.5 3.1 5.0 178.8 208.8 178.8 178.4 179.3 269.7 163.3 169.5 151.3 200.1 154.1 159.3 172.7 178.8 163.6 18.5 18.3 11.2 35.7 17.8 17.9 15.6 17.9 18.6 15.2 27.6 24.1 26.6 26.6 25.1 26.4 26.3 26.6 26.9 14.5 21.8 23.9 22.5 17.7 21.8 Shen et al.,2005b,2006 Wu et al.,1998 Yang et al.,2004 Yang et al.,2004 Zheng,2014 Liu et al.,2005a Zhu et al.,2006 Wang et al.,1999 Xie,2004 Zhong et al.,2010 Wang et al.,2008 Li,2013 Wei et al.,2016 Yang et al.,2002 Song et al.,2016 Zhang et al.,2007,2010 Wu,1995 Zhang and Li,2015 Tao et al.,2010 Liu et al.,2008b ID Site Latitude(°C)longitude(°C)Altitude(m)Lake surface area(km2)Catchment area(km2)Mean depth(m)Max depth(m)Evaporation(mm)Precipitation(mm)Temperature(°C)Summer precipitation(mm)Summer temperature(°C)References Table S2 Site information of Chinese lakes in this study to be continued

    41 42 43 44 45 46 47 48 49 50 51 Manas Lake Zhuye Lake Juyanze Lake Huahai Lake Sanjiaocheng Daihai Lake Dali Lake Gonghai Lake Hulun Lake Tengger Nuur Yanhaizi Lake 44°56′N 39°03′N 41°53′N 40°25′N 38°10′N 40°33′N 43°18′N 38°54′N 49°00′N 42°27′N 40°08′N 86°20′E 103°40′E 101°51′E 98°48′E 102°57′E 112°39′E 116°37′E 112°14′E 117°25′E 110°42′E 108°27′E 367 1,309 892 1,200 1,469 1,220 1,226 1,860 545 1,092 1,180 750 628 24//134 238 0.36 2,339 28.618 11,000 41,600 3,500 14,400/2,289 783/37,214/2,000//2//7.4///0.7///4.1//16.1 11 109 1.20.5 2,000-2,600 2,600 3,000/1,162 1,632/1,400-1,900 2,360 2,604 170.9 111.9 46.6 65.6 146.3 395.9 372.1 449.3 278.5 207.2 223.5 7.18.49.18.78.63.91.14.3-0.75.26.8 19.6 22.7 9.7 12.6 27.0 82.8 80.5 91.9 65.2 43.8 47.4 24.1 22.6 25.4 22.5 21.4 17.9 16.9 17.6 18.2 20.8 21.1 Rhodes et al.,1996 Li et al.,2009a,2011 Kai and Wünnemann,2009 Wang et al.,2013 Zhang et al.,2000 Xiao et al.,2004,2006 Fan et al.,2015 Chen et al.,2013 Wen et al.,2010 Guo et al.,2012 Chen et al.,2003 ID Site Latitude(°C)longitude(°C)Altitude(m)Lake surface area(km2)Catchment area(km2)Mean depth(m)Max depth(m)Evaporation(mm)2,100 Precipitation(mm)Temperature(°C)Summer precipitation(mm)Summer temperature(°C)References Table S2 Site information of Chinese lakes in this study to be continued

    Figure S1 Relationship between lake C accumulation rates(g C/(m2·a))and sediment organic carbon content(TOC,%).Gray bars suggest lake C accumulation rates and black curves indicate TOC

    Figure S2 Relationship between lake C accumulation rates(g C/(m2·a))and carbon nitrogen ratio(C/N).Gray bars suggest lake C accumulation rates and black curves indicate C/N

    Figure S3 Relationship between lake C accumulation rates(g C/(m2·a))and organic carbon isotope(δ13C,‰).Gray bars suggest lake C accumulation rates and black curves indicate δ13C

    Figure S4 Relationship between lake C accumulation rates(g C/(m2·a))and total pollen concentration(×103 grains/g or grains/cm3).Gray bars suggest lake C accumulation rates and black curves indicate total pollen concentration(TPC)

    Acknowledgments:

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 41822708 and 41571178), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA20100102), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2018-k15),and the Second Tibetan Plateau Scientific Expedition(STEP) program (Grant No. XDA20060700). The authors give special thanks to Fengju Zhang for her help in the calculation of lake C accumulation rate.

    亚洲欧美一区二区三区黑人| 日本黄色日本黄色录像| 啪啪无遮挡十八禁网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黄色淫秽网站| 亚洲第一av免费看| 日韩有码中文字幕| 中文欧美无线码| 国产欧美日韩一区二区精品| 人人妻人人澡人人看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久精品吃奶| 91av网站免费观看| 亚洲一区二区三区欧美精品| 欧美日韩视频精品一区| 亚洲成a人片在线一区二区| 国产激情久久老熟女| 午夜免费鲁丝| 美女福利国产在线| 国产片内射在线| 国产成人影院久久av| 汤姆久久久久久久影院中文字幕| 亚洲一区二区三区欧美精品| 亚洲精品自拍成人| 高清毛片免费观看视频网站 | 老司机影院毛片| 亚洲精品粉嫩美女一区| 午夜福利欧美成人| 亚洲av成人不卡在线观看播放网| 国产精品熟女久久久久浪| 久久国产精品影院| 黄色怎么调成土黄色| 脱女人内裤的视频| 亚洲国产欧美网| 黄色毛片三级朝国网站| 国产免费视频播放在线视频| 一区二区三区国产精品乱码| 国产1区2区3区精品| 咕卡用的链子| 亚洲中文字幕日韩| 99久久人妻综合| 国产一区二区激情短视频| 亚洲天堂av无毛| 国产成人av激情在线播放| 亚洲av片天天在线观看| 成人精品一区二区免费| 免费少妇av软件| 人妻 亚洲 视频| 亚洲久久久国产精品| 成在线人永久免费视频| 人妻一区二区av| 午夜激情久久久久久久| 国产人伦9x9x在线观看| 丝袜美足系列| www日本在线高清视频| 丰满少妇做爰视频| 飞空精品影院首页| 欧美午夜高清在线| 一夜夜www| 亚洲欧美一区二区三区黑人| 天天添夜夜摸| 老鸭窝网址在线观看| 丝袜美腿诱惑在线| 亚洲天堂av无毛| 国产片内射在线| av国产精品久久久久影院| 亚洲欧美精品综合一区二区三区| 欧美+亚洲+日韩+国产| av视频免费观看在线观看| 国产精品.久久久| 少妇裸体淫交视频免费看高清 | 人人妻人人爽人人添夜夜欢视频| 国产精品二区激情视频| 欧美黄色片欧美黄色片| 精品乱码久久久久久99久播| 啦啦啦 在线观看视频| 捣出白浆h1v1| 日韩三级视频一区二区三区| 免费观看av网站的网址| 黄色视频,在线免费观看| 高清黄色对白视频在线免费看| 麻豆国产av国片精品| 久久久久久久久免费视频了| 亚洲av成人不卡在线观看播放网| 国产男女超爽视频在线观看| av网站在线播放免费| 曰老女人黄片| 天堂动漫精品| 亚洲伊人久久精品综合| 手机成人av网站| 一区二区日韩欧美中文字幕| 久久午夜亚洲精品久久| 王馨瑶露胸无遮挡在线观看| 天天影视国产精品| 久久精品91无色码中文字幕| 免费在线观看日本一区| 精品亚洲成a人片在线观看| 国内毛片毛片毛片毛片毛片| 亚洲精品国产色婷婷电影| 国产亚洲av高清不卡| 人妻一区二区av| 成人黄色视频免费在线看| 日日夜夜操网爽| 亚洲专区中文字幕在线| 亚洲av第一区精品v没综合| 2018国产大陆天天弄谢| 777久久人妻少妇嫩草av网站| 久久毛片免费看一区二区三区| 十八禁人妻一区二区| 国产成人av激情在线播放| 日韩免费av在线播放| a级片在线免费高清观看视频| 熟女少妇亚洲综合色aaa.| 日韩熟女老妇一区二区性免费视频| 香蕉丝袜av| 中文字幕人妻熟女乱码| 国产精品欧美亚洲77777| 国产亚洲精品一区二区www | 亚洲三区欧美一区| 日本欧美视频一区| 日韩熟女老妇一区二区性免费视频| 国产黄色免费在线视频| 亚洲伊人久久精品综合| 亚洲综合色网址| 色视频在线一区二区三区| 亚洲精品久久午夜乱码| 久久精品亚洲精品国产色婷小说| 91九色精品人成在线观看| 国产精品一区二区精品视频观看| 9热在线视频观看99| 美女视频免费永久观看网站| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区激情| 午夜福利乱码中文字幕| 精品一品国产午夜福利视频| 人人妻人人爽人人添夜夜欢视频| av有码第一页| 亚洲av日韩在线播放| 一边摸一边抽搐一进一小说 | 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 一个人免费看片子| 成年人黄色毛片网站| 国产成人免费无遮挡视频| videos熟女内射| 高清黄色对白视频在线免费看| 久久久精品94久久精品| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 免费人妻精品一区二区三区视频| 亚洲九九香蕉| 日韩免费av在线播放| 国产野战对白在线观看| 国产真人三级小视频在线观看| 日韩三级视频一区二区三区| 精品视频人人做人人爽| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 香蕉国产在线看| 久久午夜综合久久蜜桃| 国产精品一区二区精品视频观看| 国产真人三级小视频在线观看| 国内毛片毛片毛片毛片毛片| 国产精品秋霞免费鲁丝片| 一级毛片女人18水好多| 欧美日韩黄片免| 国产一卡二卡三卡精品| 最新的欧美精品一区二区| 久久中文字幕一级| 午夜福利欧美成人| 久久人人97超碰香蕉20202| 亚洲精品在线观看二区| 97在线人人人人妻| 久久国产精品男人的天堂亚洲| 另类精品久久| 国产精品久久久久成人av| 亚洲成人手机| 蜜桃国产av成人99| 午夜免费成人在线视频| 国产午夜精品久久久久久| 亚洲七黄色美女视频| 欧美日韩成人在线一区二区| 女警被强在线播放| 两人在一起打扑克的视频| 免费久久久久久久精品成人欧美视频| 国产在线精品亚洲第一网站| av不卡在线播放| av线在线观看网站| 午夜福利一区二区在线看| 日韩熟女老妇一区二区性免费视频| 欧美在线一区亚洲| 后天国语完整版免费观看| 亚洲avbb在线观看| 日韩免费高清中文字幕av| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 午夜老司机福利片| 日韩中文字幕欧美一区二区| 亚洲一码二码三码区别大吗| 99久久99久久久精品蜜桃| 考比视频在线观看| 中文字幕色久视频| 大型黄色视频在线免费观看| 欧美日韩成人在线一区二区| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| 我的亚洲天堂| 亚洲精品久久成人aⅴ小说| 日韩有码中文字幕| 天堂俺去俺来也www色官网| 午夜福利在线免费观看网站| 精品第一国产精品| 天天躁狠狠躁夜夜躁狠狠躁| 99精品久久久久人妻精品| 色老头精品视频在线观看| 99re6热这里在线精品视频| av又黄又爽大尺度在线免费看| 丰满饥渴人妻一区二区三| 国产av精品麻豆| 最近最新中文字幕大全电影3 | 动漫黄色视频在线观看| 天天操日日干夜夜撸| 脱女人内裤的视频| 国产91精品成人一区二区三区 | 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 中文字幕制服av| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 久久狼人影院| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 电影成人av| 精品少妇内射三级| 99在线人妻在线中文字幕 | 下体分泌物呈黄色| 露出奶头的视频| 一级毛片电影观看| 国产精品久久久av美女十八| 久9热在线精品视频| 手机成人av网站| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 午夜免费成人在线视频| 精品国产乱码久久久久久小说| av免费在线观看网站| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 一本一本久久a久久精品综合妖精| 老司机午夜福利在线观看视频 | 超色免费av| 精品久久久精品久久久| 99国产精品免费福利视频| 精品欧美一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 久久九九热精品免费| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 亚洲成人手机| 亚洲中文av在线| 最新美女视频免费是黄的| 免费少妇av软件| 国产麻豆69| 日本黄色视频三级网站网址 | 国产亚洲午夜精品一区二区久久| 国产在线观看jvid| 国产成人免费观看mmmm| 老司机靠b影院| 亚洲一区二区三区欧美精品| 97人妻天天添夜夜摸| 精品久久久久久久毛片微露脸| 黑人欧美特级aaaaaa片| 嫩草影视91久久| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 国产日韩欧美在线精品| 成在线人永久免费视频| √禁漫天堂资源中文www| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 一级a爱视频在线免费观看| 又紧又爽又黄一区二区| 悠悠久久av| 欧美 日韩 精品 国产| 人人妻,人人澡人人爽秒播| av视频免费观看在线观看| 国产伦理片在线播放av一区| 国产精品成人在线| 欧美久久黑人一区二区| 国产成+人综合+亚洲专区| 精品亚洲乱码少妇综合久久| 国产精品二区激情视频| a在线观看视频网站| svipshipincom国产片| 国产精品国产高清国产av | 韩国精品一区二区三区| 天堂动漫精品| 久久性视频一级片| 人人澡人人妻人| 热re99久久精品国产66热6| 深夜精品福利| 成人国产av品久久久| 天堂动漫精品| 国产精品久久久人人做人人爽| 日韩中文字幕欧美一区二区| 在线亚洲精品国产二区图片欧美| 五月开心婷婷网| 99热网站在线观看| 岛国在线观看网站| 久久亚洲精品不卡| 欧美精品一区二区大全| 免费一级毛片在线播放高清视频 | www.999成人在线观看| 三级毛片av免费| 美女国产高潮福利片在线看| 亚洲精品美女久久av网站| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 国产高清激情床上av| tocl精华| 免费日韩欧美在线观看| 久久中文看片网| 国产精品美女特级片免费视频播放器 | 欧美久久黑人一区二区| 手机成人av网站| 日韩精品免费视频一区二区三区| 99riav亚洲国产免费| 国产人伦9x9x在线观看| 久久国产精品影院| 久久av网站| 嫁个100分男人电影在线观看| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀| 国产极品粉嫩免费观看在线| 免费在线观看视频国产中文字幕亚洲| 80岁老熟妇乱子伦牲交| 亚洲免费av在线视频| 久久精品国产a三级三级三级| 99香蕉大伊视频| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 欧美另类亚洲清纯唯美| av电影中文网址| 欧美精品高潮呻吟av久久| 国产精品成人在线| 欧美性长视频在线观看| 五月开心婷婷网| 久久久精品94久久精品| 777久久人妻少妇嫩草av网站| 国产xxxxx性猛交| 免费观看av网站的网址| 一级片'在线观看视频| 三上悠亚av全集在线观看| 黑丝袜美女国产一区| 亚洲欧洲精品一区二区精品久久久| 悠悠久久av| 午夜福利在线观看吧| 高清欧美精品videossex| 男女床上黄色一级片免费看| 又大又爽又粗| 一本久久精品| 国产精品二区激情视频| 欧美中文综合在线视频| 亚洲精品中文字幕在线视频| 国产成人精品在线电影| 2018国产大陆天天弄谢| 激情视频va一区二区三区| 男女床上黄色一级片免费看| 99热网站在线观看| 九色亚洲精品在线播放| 国产免费av片在线观看野外av| 中国美女看黄片| 9191精品国产免费久久| 日韩视频在线欧美| 国产欧美日韩一区二区精品| 一本大道久久a久久精品| 蜜桃在线观看..| tocl精华| 手机成人av网站| 女性生殖器流出的白浆| 精品久久蜜臀av无| 亚洲精品国产区一区二| 欧美激情高清一区二区三区| 久久人人爽av亚洲精品天堂| 精品人妻1区二区| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 十八禁网站网址无遮挡| 国产亚洲欧美精品永久| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲五月色婷婷综合| a级毛片在线看网站| 99国产精品99久久久久| 亚洲成av片中文字幕在线观看| 国产精品免费大片| 丁香六月天网| 国产av又大| 国产精品1区2区在线观看. | 一边摸一边抽搐一进一出视频| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 黄色 视频免费看| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产 | 飞空精品影院首页| 天堂中文最新版在线下载| 国产一区二区 视频在线| 久久人人97超碰香蕉20202| 免费看十八禁软件| 国产免费视频播放在线视频| 欧美变态另类bdsm刘玥| 精品熟女少妇八av免费久了| 精品一区二区三区av网在线观看 | 精品人妻熟女毛片av久久网站| 夜夜夜夜夜久久久久| 曰老女人黄片| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 99久久99久久久精品蜜桃| 欧美av亚洲av综合av国产av| 少妇的丰满在线观看| 日韩视频在线欧美| 91大片在线观看| 高清视频免费观看一区二区| 免费一级毛片在线播放高清视频 | 欧美黑人精品巨大| 巨乳人妻的诱惑在线观看| 18禁美女被吸乳视频| 午夜免费鲁丝| 国产xxxxx性猛交| 成人黄色视频免费在线看| 色播在线永久视频| 国产xxxxx性猛交| 99精品在免费线老司机午夜| 老熟女久久久| 免费观看av网站的网址| 久久国产亚洲av麻豆专区| 亚洲精品一二三| 99久久精品国产亚洲精品| 97人妻天天添夜夜摸| 免费观看av网站的网址| 久久99热这里只频精品6学生| 免费观看a级毛片全部| av国产精品久久久久影院| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 母亲3免费完整高清在线观看| 中文亚洲av片在线观看爽 | 亚洲国产欧美在线一区| 久久亚洲精品不卡| 怎么达到女性高潮| 国产精品av久久久久免费| 五月天丁香电影| 中国美女看黄片| 国产成人欧美| 欧美黄色淫秽网站| 80岁老熟妇乱子伦牲交| av国产精品久久久久影院| 天天添夜夜摸| 欧美日韩精品网址| 久久久国产成人免费| 男女午夜视频在线观看| 黑人猛操日本美女一级片| 精品人妻熟女毛片av久久网站| 99久久99久久久精品蜜桃| 俄罗斯特黄特色一大片| 99久久99久久久精品蜜桃| 国产三级黄色录像| 欧美精品啪啪一区二区三区| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 99热国产这里只有精品6| 新久久久久国产一级毛片| 精品熟女少妇八av免费久了| 悠悠久久av| 国产成人影院久久av| 侵犯人妻中文字幕一二三四区| 午夜久久久在线观看| 超碰97精品在线观看| 99riav亚洲国产免费| 757午夜福利合集在线观看| 99国产综合亚洲精品| 丝袜美足系列| 亚洲精品一二三| 国产成人啪精品午夜网站| 91成人精品电影| 人人妻人人澡人人看| 精品一区二区三区视频在线观看免费 | 90打野战视频偷拍视频| 两个人看的免费小视频| 考比视频在线观看| 一级毛片电影观看| 国产免费av片在线观看野外av| 多毛熟女@视频| 久久毛片免费看一区二区三区| 亚洲avbb在线观看| 日韩视频在线欧美| 成人国语在线视频| 一个人免费看片子| 日本vs欧美在线观看视频| 国产一区二区三区视频了| 丝袜人妻中文字幕| 精品福利观看| 欧美精品人与动牲交sv欧美| 国产精品国产高清国产av | 大型av网站在线播放| 久久精品亚洲熟妇少妇任你| 日韩欧美免费精品| 成人永久免费在线观看视频 | 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 大片免费播放器 马上看| 亚洲av日韩精品久久久久久密| 91精品国产国语对白视频| 大香蕉久久网| 成人精品一区二区免费| videosex国产| 免费在线观看日本一区| 岛国毛片在线播放| 国精品久久久久久国模美| 五月开心婷婷网| 9191精品国产免费久久| 肉色欧美久久久久久久蜜桃| 国产精品久久久久成人av| 国产福利在线免费观看视频| 激情在线观看视频在线高清 | 757午夜福利合集在线观看| 国产精品av久久久久免费| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| 香蕉久久夜色| 在线看a的网站| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 日韩中文字幕欧美一区二区| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 最近最新免费中文字幕在线| 在线观看免费视频日本深夜| 大香蕉久久成人网| 天堂俺去俺来也www色官网| 99精品久久久久人妻精品| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区 | 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 国产一区二区三区综合在线观看| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 成人影院久久| 亚洲成av片中文字幕在线观看| xxxhd国产人妻xxx| 国产欧美亚洲国产| 国产成人精品久久二区二区免费| 午夜福利在线免费观看网站| netflix在线观看网站| 国产福利在线免费观看视频| 亚洲欧美激情在线| 中文字幕人妻熟女乱码| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 一区福利在线观看| 免费av中文字幕在线| 美女高潮喷水抽搐中文字幕| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 精品高清国产在线一区| 黄色视频,在线免费观看| 夜夜骑夜夜射夜夜干| 男女无遮挡免费网站观看| 日韩中文字幕视频在线看片| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级| 欧美激情 高清一区二区三区| 精品国内亚洲2022精品成人 | 成人国产一区最新在线观看| 99热网站在线观看| 啦啦啦免费观看视频1| 黄色丝袜av网址大全| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| 久久中文字幕人妻熟女| 成年人午夜在线观看视频| 国产黄色免费在线视频| 亚洲国产欧美日韩在线播放| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 夫妻午夜视频| 亚洲av美国av| 国产免费视频播放在线视频| 91av网站免费观看| 变态另类成人亚洲欧美熟女 | 成人三级做爰电影| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 久久婷婷成人综合色麻豆| 亚洲国产欧美一区二区综合| 中文字幕高清在线视频| 亚洲视频免费观看视频| 大码成人一级视频| 色在线成人网| 中文字幕色久视频| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 狠狠精品人妻久久久久久综合| 91国产中文字幕| 激情视频va一区二区三区| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区|