譚鑫 李曉卉 劉振興 丁月民 趙敏 王琦
摘 要:針對(duì)智能電網(wǎng)相量測(cè)量設(shè)備競(jìng)爭(zhēng)使用有限的網(wǎng)絡(luò)通信資源時(shí),會(huì)因資源分配不均而導(dǎo)致數(shù)據(jù)包延時(shí)或丟失,進(jìn)而影響電力系統(tǒng)狀態(tài)估計(jì)的精度這一問(wèn)題,提出了一種采樣感知加權(quán)循環(huán)(SAWRR)調(diào)度算法。首先根據(jù)電網(wǎng)相量測(cè)量單元(PMU)采樣頻率和數(shù)據(jù)包大小的特性,提出了基于PMU業(yè)務(wù)流均方差的權(quán)重定義方法;然后設(shè)計(jì)了相應(yīng)的PMU采樣感知迭代循環(huán)調(diào)度算法;最后將該算法運(yùn)用到PMU采樣傳輸模型中。該算法能自適應(yīng)地感知PMU的采樣變化,及時(shí)調(diào)整數(shù)據(jù)包的傳輸。仿真結(jié)果表明,與原始的加權(quán)循環(huán)調(diào)度算法相比,SAWRR算法減少了95%的PMU采樣數(shù)據(jù)包的調(diào)度時(shí)延,降低了一半的丟包率,增加了兩倍的吞吐量。將SAWRR算法運(yùn)用到PMU數(shù)據(jù)傳輸中有利于保證智能電網(wǎng)的穩(wěn)定性。
關(guān)鍵詞:智能電網(wǎng);相量測(cè)量;調(diào)度算法;權(quán)重;采樣
Abstract: When the smart grid phasor measurement equipment competes for limited network communication resources, the data packets will be delayed or lost due to uneven resource allocation, which will affect the accuracy of power system state estimation. To solve this problem, a Sampling Awareness Weighted Round Robin (SAWRR) scheduling algorithm was proposed. Firstly, according to the characteristics of Phasor Measurement Unit (PMU) sampling frequency and packet size, a weight definition method based on mean square deviation of PMU traffic flow was proposed. Secondly, the corresponding iterative loop scheduling algorithm was designed for PMU sampling awareness. Finally, the algorithm was applied to the PMU sampling transmission model. The proposed algorithm was able to adaptively sense the sampling changes of PMU and adjust the transmission of data packets in time. The simulation results show that compared with original weighted round robin scheduling algorithm, SAWRR algorithm reduces the scheduling delay of PMU sampling data packet by 95%, halves the packet loss rate and increases the throughput by two times. Applying SAWRR algorithm to PMU data transmission is beneficial to ensure the stability of smart grid.
Key words: smart grid; phasor measurement; scheduling algorithm; weight; sampling
0 引言
隨著智能電網(wǎng)(Smart Grid)快速發(fā)展,如何保證其運(yùn)行的穩(wěn)定性和高效性是近年來(lái)研究重點(diǎn)。電網(wǎng)廣域監(jiān)測(cè)系統(tǒng)(Wide Area Measurement System, WAMS),通過(guò)在電網(wǎng)關(guān)鍵測(cè)點(diǎn)布局基于全球定位系統(tǒng)(Global Positioning System, GPS)的同步相量測(cè)量單元(Phasor Measurement Unit, PMU),實(shí)現(xiàn)對(duì)電網(wǎng)運(yùn)行主要監(jiān)測(cè)數(shù)據(jù)的實(shí)時(shí)高速率采集,并通過(guò)通信網(wǎng)絡(luò)實(shí)時(shí)傳送到廣域監(jiān)測(cè)主站系統(tǒng),從而提供對(duì)智能電網(wǎng)正常運(yùn)行與事故擾動(dòng)情況下的實(shí)時(shí)監(jiān)測(cè)與分析計(jì)算,及時(shí)獲得并掌握電網(wǎng)運(yùn)行的動(dòng)態(tài)過(guò)程,為智能電網(wǎng)提供監(jiān)測(cè)、保護(hù)和控制之用,因此PMU與主站系統(tǒng)之間數(shù)據(jù)傳輸?shù)母咝?、完整性和及時(shí)性,是實(shí)現(xiàn)智能電網(wǎng)系統(tǒng)穩(wěn)定性的重要保證[1-2]。
由于WAMS中有大量的PMU同步采樣實(shí)測(cè)數(shù)據(jù)[3]需要傳送,為了保證電網(wǎng)監(jiān)測(cè)的完備性和數(shù)據(jù)的高效性,近幾年來(lái),不少學(xué)者在PMU的布局和數(shù)據(jù)預(yù)處理上進(jìn)行研究,并取得了顯著效果。文獻(xiàn)[4]中提出了最優(yōu)PMU通信鏈路布局(Optimal PMU-communication Link Placement, OPLP),與傳統(tǒng)的最優(yōu)PMU布局模型相比,OPLP可以顯著降低總安裝成本;文獻(xiàn)[5]中提出一種線性迭代算法搜索滿足給定的同步相量可用性分布的最小數(shù)量的PMU的放置;文獻(xiàn)[6]中利用PMU數(shù)據(jù)中的固有相關(guān)性,利用空間和時(shí)間冗余,提出了一種兩階段壓縮算法,減少物理存儲(chǔ)器需求;文獻(xiàn)[7]中提出一種實(shí)時(shí)數(shù)據(jù)壓縮和適用于WAMS的IEEE C37.118協(xié)議技術(shù),該壓縮改進(jìn)協(xié)議技術(shù)可以在動(dòng)態(tài)和穩(wěn)定狀態(tài)下高精度地將數(shù)據(jù)包大小減小大約75%;然而,隨著智能電網(wǎng)的不斷普及發(fā)展,電網(wǎng)PMU的數(shù)量不斷增加,在網(wǎng)絡(luò)帶寬有限的條件下,主站系統(tǒng)通過(guò)WAMS接收PMU數(shù)據(jù)時(shí),如何設(shè)計(jì)一種公平的調(diào)度算法,以實(shí)現(xiàn)對(duì)不同采樣頻率的PMU的數(shù)據(jù)流提供實(shí)時(shí)的調(diào)度越來(lái)越引起人們的關(guān)注[8-9]。
針對(duì)這個(gè)問(wèn)題,本文將PMU采樣特性和調(diào)度算法相結(jié)合提出了一種基于采樣感知的加權(quán)循環(huán)(Sampling Awareness Weighted Round Robin, SAWRR)算法。該算法是根據(jù)每個(gè)PMU采樣頻率、包的大小和加權(quán)循環(huán)(Weighted Round Robin,WRR)權(quán)重來(lái)確定每個(gè)PMU的權(quán)重。通過(guò)對(duì)SAWRR算法和WRR算法進(jìn)行仿真分析,結(jié)果表明SAWRR算法在平均時(shí)延、丟包率和吞吐量等性能上都要優(yōu)于WRR算法。
1 WAMS結(jié)構(gòu)及調(diào)度算法
1.1 WAMS結(jié)構(gòu)
WAMS結(jié)構(gòu)如圖1所示,其基本組件是PMU和主站系統(tǒng)以及聯(lián)系兩者的廣域網(wǎng)(Wide Area Network, WAN)[10-11]。PMU是一個(gè)通過(guò)GPS信號(hào)同步采樣電流電壓測(cè)量數(shù)據(jù)并提供相位、幅值和頻率信息的設(shè)備[12]。主站收集來(lái)自不同PMU的測(cè)量值,對(duì)其進(jìn)行時(shí)間校準(zhǔn)后,送往控制中心用于電力系統(tǒng)的狀態(tài)估計(jì)、動(dòng)態(tài)監(jiān)測(cè)和暫態(tài)穩(wěn)定性分析。
由圖1可知,多個(gè)PMU將收集到的數(shù)據(jù)通過(guò)WAN傳輸給主站,主站間存在交換PMU數(shù)據(jù)的需求。未來(lái)隨著智能電網(wǎng)的不斷發(fā)展,WAMS中PMU的數(shù)量也會(huì)隨之增長(zhǎng)。如果為新增的PMU不斷增加新的網(wǎng)絡(luò)通信資源是不現(xiàn)實(shí)的。不同采樣頻率的PMU競(jìng)爭(zhēng)使用有限的網(wǎng)絡(luò)通信資源進(jìn)行傳輸時(shí),可能因?yàn)橘Y源分配不均而導(dǎo)致部分PMU因缺乏網(wǎng)絡(luò)傳輸資源而引發(fā)時(shí)延的增加和大量丟包。PMU測(cè)量值的缺失,會(huì)導(dǎo)致主站對(duì)電力系統(tǒng)狀態(tài)估計(jì)的精度降低,不利于對(duì)電網(wǎng)進(jìn)行相關(guān)的保護(hù)、檢測(cè)和控制,進(jìn)而影響電網(wǎng)的穩(wěn)定性。
為了解決上述WAMS中為PMU均衡分配網(wǎng)絡(luò)通信資源的問(wèn)題,需要在主站系統(tǒng)中引入調(diào)度算法合理均衡地為PMU分配網(wǎng)絡(luò)通信資源,減小PMU數(shù)據(jù)傳輸?shù)臅r(shí)延和丟包率。
1.2 調(diào)度算法
目前已經(jīng)存在一些經(jīng)典的調(diào)度算法:先進(jìn)先出(First In First Out, FIFO)、輪詢調(diào)度(Round Robin, RR)[13-14]、加權(quán)循環(huán)(WRR)算法[15]等。在眾多算法中,WRR算法由于引入權(quán)重來(lái)合理分配網(wǎng)絡(luò)資源,其在調(diào)度的實(shí)時(shí)性和丟包率上的性能相對(duì)較好。
WRR算法為每個(gè)隊(duì)列賦予一個(gè)權(quán)值,并設(shè)置相關(guān)的權(quán)重計(jì)數(shù)器。在進(jìn)行調(diào)度前,將權(quán)重分配給對(duì)應(yīng)的計(jì)數(shù)器,該計(jì)數(shù)器指定一輪中對(duì)應(yīng)隊(duì)列傳輸?shù)臄?shù)據(jù)包數(shù)量。如果一個(gè)隊(duì)列發(fā)送一個(gè)數(shù)據(jù)包,則該隊(duì)列權(quán)重計(jì)數(shù)器減1。繼續(xù)發(fā)送數(shù)據(jù)包,直到計(jì)數(shù)器達(dá)到零或者隊(duì)列為空。最后,所有隊(duì)列計(jì)數(shù)器都重置為其權(quán)重值。
當(dāng)在WAMS中引入調(diào)度算法合理均衡地為PMU分配網(wǎng)絡(luò)通信資源時(shí),有兩個(gè)特性是調(diào)度的依據(jù):PMU采樣頻率和2)PMU數(shù)據(jù)包的大小,因此在網(wǎng)絡(luò)資源有限的情況下,如何根據(jù)以上兩個(gè)特性合理設(shè)計(jì)調(diào)度算法是本文的重點(diǎn)。
2 SAWRR算法
結(jié)合WAMS中PMU采樣頻率和數(shù)據(jù)包大小特性,本文提出了一種基于采樣感知的加權(quán)循環(huán)調(diào)度算法SAWRR。
2.1 權(quán)重的設(shè)計(jì)
在WAMS中,PMU收集并傳輸實(shí)時(shí)廣域同步數(shù)據(jù),它的采樣頻率基本在50到150之間,其數(shù)據(jù)用于監(jiān)測(cè)電力系統(tǒng)的動(dòng)態(tài)安全性。由于PMU的采樣頻率會(huì)影響數(shù)據(jù)傳輸?shù)男?,而在WRR算法中權(quán)重的確定尤為重要,所以通過(guò)采樣頻率來(lái)計(jì)算權(quán)重,能夠?qū)MU的數(shù)據(jù)進(jìn)行比較好的調(diào)度。
其中:Wi是隊(duì)列i的WRR權(quán)重,samplei是隊(duì)列i的采樣頻率,N是總的隊(duì)列數(shù)。在WAMS中,WRR算法會(huì)造成隊(duì)列中多個(gè)數(shù)據(jù)包延遲。在隊(duì)列長(zhǎng)度有限的情況下,累計(jì)延遲的數(shù)據(jù)包會(huì)溢出隊(duì)列,最終會(huì)導(dǎo)致數(shù)據(jù)包丟失。
如圖2所示,在權(quán)重為3的情況下對(duì)4個(gè)隊(duì)列q1、q2、q3和q4進(jìn)行一輪調(diào)度時(shí),虛線框表示被調(diào)度送出隊(duì)列的數(shù)據(jù)包,實(shí)線框表示隊(duì)列中剩余的數(shù)據(jù)包。其中,隊(duì)列q1剩余數(shù)據(jù)包量最多。隨著PMU采樣的數(shù)據(jù)包不斷進(jìn)入隊(duì)列和WRR調(diào)度的持續(xù),q1的滯留數(shù)據(jù)包增加,其調(diào)度時(shí)延也相應(yīng)增加,隊(duì)列最終因延遲數(shù)據(jù)包累計(jì)而裝滿,導(dǎo)致數(shù)據(jù)包丟失。
為了解決電網(wǎng)中調(diào)度的上述問(wèn)題,需要結(jié)合采樣頻率和數(shù)據(jù)包大小重新定義權(quán)重。該權(quán)重計(jì)算主要有以下兩個(gè)步驟:
第一步 多個(gè)PMU業(yè)務(wù)流量歸一化。根據(jù)PMU采樣數(shù)據(jù)包來(lái)確定當(dāng)前多個(gè)PMU業(yè)務(wù)流量的均方差,以判定當(dāng)前多個(gè)PMU業(yè)務(wù)流的離散程度。
假設(shè)每輪進(jìn)隊(duì)列i的標(biāo)準(zhǔn)數(shù)據(jù)包大小為size_standardi,業(yè)務(wù)流為traffici,則:
第二步 確定新權(quán)重wi。由第一步可知β值越大說(shuō)明當(dāng)前多個(gè)PMU業(yè)務(wù)流差異比較大,多個(gè)業(yè)務(wù)流的調(diào)度權(quán)重也要相應(yīng)調(diào)整,此時(shí)需將帶寬劃分的模塊減小,資源分配才越均衡; β值越小說(shuō)明當(dāng)前多個(gè)PMU業(yè)務(wù)流差異較小,業(yè)務(wù)流量較均衡,多個(gè)業(yè)務(wù)流的調(diào)度權(quán)重也應(yīng)接近;但當(dāng)β<1時(shí),需要加1避免產(chǎn)生大的量化誤差[16],因此權(quán)重調(diào)整系數(shù)ωi可以定義如下:
然后通過(guò)系數(shù)ωi來(lái)調(diào)整當(dāng)前權(quán)重,為每個(gè)隊(duì)列產(chǎn)生適當(dāng)?shù)臋?quán)重:
2.2 SAWRR算法
根據(jù)上面權(quán)重,設(shè)計(jì)SAWRR算法。算法偽代碼如下。
步驟1 參數(shù)初始化。
定義隊(duì)列數(shù)量n,第k輪隊(duì)列i的數(shù)據(jù)包數(shù)為qi,k,隊(duì)列i的權(quán)重為wi,隊(duì)列i的權(quán)重計(jì)數(shù)器為WCi,循環(huán)輪數(shù)k,最大循環(huán)輪數(shù)k_max。
步驟2 進(jìn)行隊(duì)列數(shù)據(jù)包的調(diào)度。
先確定隊(duì)列是否為空,如果不為空,則根據(jù)式(6)確定wi,將每個(gè)隊(duì)列的權(quán)重賦給對(duì)應(yīng)的計(jì)數(shù)器,如果一個(gè)隊(duì)列發(fā)送一個(gè)數(shù)據(jù)包,則該隊(duì)列權(quán)重計(jì)數(shù)器減1。繼續(xù)發(fā)送數(shù)據(jù)包,直到計(jì)數(shù)器達(dá)到零或者隊(duì)列為空。然后將計(jì)數(shù)器重置為對(duì)應(yīng)的隊(duì)列權(quán)重值,重復(fù)上述過(guò)程,直到隊(duì)列為空。
當(dāng)PMU的采樣頻率或者包的大小發(fā)生改變,由于式(6)的迭代計(jì)算,該算法可以根據(jù)PMU當(dāng)前的采樣來(lái)計(jì)算權(quán)重,因此,SAWWR算法可以自適應(yīng)地感知PMU的采樣變化,及時(shí)根據(jù)PMU新的采樣頻率和數(shù)據(jù)包大小調(diào)整調(diào)度算法中的權(quán)重。通過(guò)在圖1的主站運(yùn)行SAWRR調(diào)度算法,可以達(dá)到減少PMU采樣數(shù)據(jù)包的排隊(duì)時(shí)延。
表1顯示的是基于圖2中隊(duì)列計(jì)算SAWRR算法的權(quán)重。
將表1中計(jì)算的權(quán)重用到圖2的隊(duì)列中進(jìn)行調(diào)度,可以發(fā)現(xiàn),與圖2中運(yùn)用WRR算法相比,SAWRR算法將延遲數(shù)據(jù)包的總數(shù)從6減小到0,傳輸效率明顯提高。
3 仿真結(jié)果分析
為了分析SAWRR算法在智能電網(wǎng)PMU數(shù)據(jù)傳輸中對(duì)數(shù)據(jù)傳輸?shù)母咝?、完整性和及時(shí)性的影響,本文通過(guò)在Matlab中建立傳輸調(diào)度模型,仿真實(shí)現(xiàn)了SAWRR算法、WRR算法,并比較了上述算法在不同的PMU的數(shù)目下平均時(shí)延、丟包率、吞吐量三個(gè)方面的性能。根據(jù)電網(wǎng)WAMS中PMU采樣頻率和采樣數(shù)據(jù)包大小,在仿真中PMU采樣頻率為50~150次/s隨機(jī)分布,PMU采樣數(shù)據(jù)包大小為60~80B隨機(jī)分布。
圖3顯示了SAWRR算法相對(duì)WRR算法時(shí)延減少率。從圖中可以看出,SAWRR算法的調(diào)度時(shí)延相對(duì)WRR算法減小少了95%左右。在PMU數(shù)目相同的情況下,SAWRR的權(quán)重是根據(jù)PMU采樣頻率和采樣數(shù)據(jù)包大小確定的,通過(guò)SAWRR算法調(diào)度每輪輸出的數(shù)據(jù)包數(shù)量比用WRR算法調(diào)度的多,數(shù)據(jù)包能夠更快地被傳輸,因此通過(guò)SAWRR算法調(diào)度數(shù)據(jù)包的時(shí)延要比用WRR算法調(diào)度的時(shí)延小。
圖4顯示了兩種調(diào)度算法下的丟包率的比較。從圖中可以看出來(lái),隨著PMU數(shù)量增加,兩個(gè)算法的丟包率都不會(huì)發(fā)生明顯的變化,調(diào)度的穩(wěn)定性較好;然而,SAWRR算法丟包率要低于WRR算法。在相同數(shù)目PMU的情況下,由于SAWRR可以自適應(yīng)感知PMU采樣變化而調(diào)整權(quán)重,所以用SAWRR算法調(diào)度時(shí)滯留的數(shù)據(jù)包較少,因隊(duì)列緩存滿而溢出丟包的情況也隨之減少。
圖5顯示了SAWRR算法相對(duì)WRR算法吞吐量增加率。從圖中可以看出來(lái),通過(guò)SAWRR算法調(diào)度PMU數(shù)據(jù)包的吞吐量相比用WRR算法調(diào)度的吞吐量增加了210%左右。在相同數(shù)目PMU的情況下,因?yàn)槊枯哠AWRR算法傳輸?shù)臄?shù)據(jù)包比用WRR算法多,所以SAWRR算法的總吞吐量要比WRR算法多。
4 結(jié)語(yǔ)
本文針對(duì)WAMS中不同采樣頻率的PMU競(jìng)爭(zhēng)使用有限的網(wǎng)絡(luò)通信資源可能存在不均衡的問(wèn)題,提出了一種基于電網(wǎng)PMU采樣感知的SAWRR調(diào)度算法。該算法結(jié)合了PMU的采樣頻率和數(shù)據(jù)包大小兩個(gè)特性定義了循環(huán)調(diào)度的權(quán)重,使調(diào)度的數(shù)據(jù)包得到高效的傳輸。由于權(quán)重的迭代計(jì)算,該算法可以自適應(yīng)感知PMU采樣變化,及時(shí)調(diào)整數(shù)據(jù)包傳輸。仿真結(jié)果表明,將SAWRR算法運(yùn)用到PMU中數(shù)據(jù)包的傳輸中,能夠增大數(shù)據(jù)包的吞吐量,減小數(shù)據(jù)包的時(shí)延和丟包率,從而保證數(shù)據(jù)傳輸?shù)母咝?、完整性和及時(shí)性,有利于智能電網(wǎng)的穩(wěn)定性。在后續(xù)工作中將繼續(xù)展開保證電網(wǎng)中數(shù)據(jù)高效傳輸?shù)难芯亢驮O(shè)計(jì)。
參考文獻(xiàn) (References)
[1] 謝小榮,辛耀中.基于同步相量測(cè)量技術(shù)的廣域測(cè)量系統(tǒng)應(yīng)用現(xiàn)狀及發(fā)展前景[J].電網(wǎng)技術(shù),2005,29(2):44-49.(XIE X R, XIN Y Z. Present application situation and development tendency of synchronous phasor measurement technology based wide area measurement system[J]. Power System Technology, 2005, 29(2): 44-49.)
[2] 張恒旭,靳宗帥,劉玉田.輕型廣域測(cè)量系統(tǒng)及其在中國(guó)的應(yīng)用[J].電力系統(tǒng)自動(dòng)化,2014,38(22):85-90.(ZHANG H X, JIN Z S, LIU Y T. Wide-area measurement system light and its application in China[J]. Automation of Electric Power Systems, 2014, 38(22): 85-90.)
[3] ARAVIND M N, ANJU L S, SUNITHA R. Application of compressed sampling to overcome big data issues in synchrophasors[C]// Proceedings of the 2016 IEEE 6th International Conference on Power Systems. Piscataway, NJ: IEEE, 2016: 1-5.
[4] ZHU X, WEN M H F, LI V O K, et al. Optimal PMU-communication link placement for smart grid wide-area measurement systems[J]. IEEE Transactions on Smart Grid, 2018, 10(4): 4446-4456.
[5] SARAILOO M, WU N E. A new PMU placement algorithm to meet a specified synchrophasor availability[C]// Proceedings of the 2016 Innovative Smart Grid Technologies Conference. Piscataway, NJ: IEEE, 2016: 1-5.
[6] GADDE P H, BISWAL M, BRAHMA S, et al. Efficient compression of PMU data in WAMS[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2406-2413.
[7] ZHANG F, CHENG L, LI X, et al. Application of a real-time data compression and adapted protocol technique for WAMS[J]. IEEE Transactions on Power Systems, 2015, 30(2): 653-662.
[8] 鮑興川,彭林.智能配電網(wǎng)通信多信道調(diào)度策略[J].計(jì)算機(jī)應(yīng)用,2018,38(5):1476-1480.(BAO X C, PENG L. Multi-channel scheduling strategy in smart distribution network[J]. Journal of Computer Applications, 2018, 38(5): 1476-1480.)
[9] 向敏,陳誠(chéng).基于改進(jìn)Dijkstra算法的配用電通信網(wǎng)流量調(diào)度策略[J].計(jì)算機(jī)應(yīng)用,2018,38(6):1715-1720.(XIANG M, CHEN C. Traffic scheduling strategy based on improved Dijkstra algorithm for power distribution and utilization communication network[J]. Journal of Computer Applications, 2018, 38(6): 1715-1720.)
[10] 薛禹勝,徐偉,DONG Z,等.關(guān)于廣域測(cè)量系統(tǒng)及廣域控制保護(hù)系統(tǒng)的評(píng)述[J].電力系統(tǒng)自動(dòng)化,2007,31(15):1-5.(XUE Y S, XU W, DONG Z, et al. A review of wide area measurement system and wide area control system[J]. Automation of Electric Power Systems, 2007, 31(15): 1-5.)
[11] 鞠平.電力系統(tǒng)廣域測(cè)量技術(shù)[M].北京:機(jī)械工業(yè)出版社,2008:9-24補(bǔ)充頁(yè)碼范圍.(JU P. Power System Wide Area Measurement Technology[M]. Beijing: China Machine Press, 2008: 9-24.)
[12] 竇開明,祝鑫,馬夢(mèng)宇,等.IEEE同步相量相關(guān)標(biāo)準(zhǔn)的發(fā)展與比較[J].電氣應(yīng)用,2018,37(6):41-45.(DOU K M, ZHU X, MA M Y, et al. Development and comparison of IEEE synchronous phasor related standards[J]. Electrotechnical Application, 2018, 37(6): 41-45.)
[13] HAHNE E L. Round-robin scheduling for max-min fairness in data networks[J]. IEEE Journal on Selected Areas in Communications, 1991, 9(7): 1024-1039.
[14] SHREEDHAR M, VARGHESE G. Efficient fair queuing using deficit round-robin [J]. IEEE/ACM Transactions on Networking, 1996, 4(3): 375-385.
[15] KATEVENIS M, SIDIROPOULOS S, COURCOUBETIS C. Weighted round-robin cell multiplexing in a general-purpose ATM switch chip[J]. IEEE Journal on Selected Areas in Communications, 1991, 9(8): 1265-1279.
[16] ITO Y, TASAKA S, ISHIBASHI Y. Variably weighted round robin queueing for core IP routers[C]// Proceedings of the 21st IEEE International Performance, Computing, and Communications Conference. Washington, DC: IEEE Computer Society, 2002: 159-166.