王立光
擬南芥內(nèi)膜Na+,K+/H+反向轉(zhuǎn)運(yùn)體研究進(jìn)展
王立光
甘肅省農(nóng)業(yè)科學(xué)院 生物技術(shù)研究所,甘肅 蘭州 730070
擬南芥內(nèi)膜Na,K+/H+反向轉(zhuǎn)運(yùn)體 (Endosomal NHX) 的亞細(xì)胞定位、離子轉(zhuǎn)運(yùn)特性及生物學(xué)功能闡釋取得了重要進(jìn)展。擬南芥內(nèi)膜Na+,K+/H+反向轉(zhuǎn)運(yùn)體包含AtNHX5和AtNHX6兩個(gè)成員,它們的氨基酸序列相似性為78.7%。研究表明,AtNHX5和AtNHX6具有功能冗余,它們都定位在高爾基體 (Golgi)、反面高爾基體管網(wǎng)狀結(jié)構(gòu) (TGN)、內(nèi)質(zhì)網(wǎng) (ER) 和液胞前體 (PVC),參與調(diào)控耐鹽脅迫、pH平衡和K+平衡等。有報(bào)道顯示內(nèi)膜NHXs跨膜結(jié)構(gòu)域存在能夠調(diào)控自身離子活性的酸性保守氨基酸殘基,對(duì)其自身功能具有決定性作用。最新研究結(jié)果表明,擬南芥內(nèi)膜NHXs影響囊泡運(yùn)輸和蛋白存貯,并參與生長(zhǎng)素介導(dǎo)的植物生長(zhǎng)和發(fā)育。文中主要對(duì)擬南芥內(nèi)膜NHXs的亞細(xì)胞定位、離子轉(zhuǎn)運(yùn)、功能及應(yīng)用進(jìn)展進(jìn)行了概述。
內(nèi)膜Na+,K+/H+反向轉(zhuǎn)運(yùn)體,亞細(xì)胞定位,離子轉(zhuǎn)運(yùn),囊泡運(yùn)輸,蛋白存貯
Na+,K+/H+反向轉(zhuǎn)運(yùn)體 (NHX) 是一類跨膜反向轉(zhuǎn)運(yùn)蛋白,屬于一價(jià)陽(yáng)離子/H+反向轉(zhuǎn)運(yùn)體 (Cation/proton antiporter,CPA) 基因家族中的CPA1亞家族,它們?cè)诮湍?、?xì)菌、植物和動(dòng)物等生物體內(nèi)廣泛存在,生化活力是將Na+或K+與質(zhì)子 (H+) 進(jìn)行跨膜反向轉(zhuǎn)運(yùn)[1-4]。植物內(nèi),質(zhì)膜H+-ATPase (P-ATPase)、液胞膜H+-ATPase (V-ATPase) 和H+-PPiase產(chǎn)生H+電化學(xué)勢(shì)梯度,為Na+,K+/H+反向轉(zhuǎn)運(yùn)體的離子轉(zhuǎn)運(yùn)提供驅(qū)動(dòng)力[5-8]。大量研究表明,維持細(xì)胞內(nèi)離子和pH穩(wěn)態(tài)對(duì)細(xì)胞活動(dòng)和功能至關(guān)重要,而植物Na+,K+/H+反向轉(zhuǎn)運(yùn)體是植物細(xì)胞的重要跨膜反向轉(zhuǎn)運(yùn)蛋白,對(duì)維持離子和pH平衡具有重要作用,并在各種細(xì)胞過(guò)程中扮演重要角色,包括逆境響應(yīng)、膜微囊運(yùn)輸、蛋白存貯、細(xì)胞生長(zhǎng)、滲透調(diào)節(jié)、Na+和K+離子運(yùn)輸及生長(zhǎng)與發(fā)育等生理生化過(guò)程[9-20]。
植物NHX在細(xì)胞內(nèi)廣泛分布,并多以多基因家族形式存在。植物中NHX最先由Ratner于1967年從大麥質(zhì)膜上發(fā)現(xiàn),液胞膜上的NHX活性于1985年第一次在甜菜貯藏組織中檢測(cè)到[21-22]。后來(lái),人們相繼在多種植物內(nèi)檢測(cè)到液胞Na+,K+/H+反向轉(zhuǎn)運(yùn)活性,并展開(kāi)了深入研究。但是,第一個(gè)被克隆到的成員是Gaxiala于1999年在擬南芥cDNA文庫(kù)中獲得的[23],隨后眾多基因在植物中被鑒定克隆出來(lái)。
根據(jù)亞細(xì)胞分布,植物Na+,K+/H+反向轉(zhuǎn)運(yùn)體基因家族成員被分為3類,即質(zhì)膜NHXs (Plasma membrane NHX)、液胞NHXs (Vacuolar NHX) 和內(nèi)膜NHXs (Endosomal NHX)[3]。已有研究已經(jīng)證實(shí),質(zhì)膜和液胞NHXs可以逆著Na+和K+濃度梯度運(yùn)輸,將細(xì)胞質(zhì)內(nèi)的Na+和K+外排出細(xì)胞或區(qū)室化到液胞內(nèi),降低細(xì)胞質(zhì)的滲透勢(shì),避免水分脅迫[21]。在鹽脅迫條件下,液胞NHXs對(duì)細(xì)胞質(zhì)和液胞中pH值的調(diào)控起著重要作用[24]。通過(guò)Na+,K+/H+反向轉(zhuǎn)運(yùn)體氨基酸序列分析發(fā)現(xiàn),Na+,K+/H+反向轉(zhuǎn)運(yùn)體的N端是負(fù)責(zé)轉(zhuǎn)運(yùn)的區(qū)域,C端含有多個(gè)蛋白激酶作用位點(diǎn),是活性調(diào)節(jié)區(qū)域,在離子選擇性方面起著重要作用[25]。模式植物擬南芥中NHX基因家族包含8個(gè)成員,其中質(zhì)膜NHXs (AtNHX7/SOS1、AtNHX8)、液胞NHXs (AtNHX1–4) 研究得較早,并且AtNHX7/SOS1的調(diào)節(jié)機(jī)制研究得最為清楚。研究表明,AtNHX7/SOS1的表達(dá)和蛋白活性受蛋白激酶AtSOS2/CIPK24調(diào)控,而AtSOS2/CIPK24的活性又受Ca2+感受蛋白AtSOS3/CIPK4的調(diào)控,當(dāng)AtSOS3/CIPK4與AtSOS2/CIPK24形成復(fù)合體,通過(guò)磷酸化去除AtNHX7/SOS1的C端自抑制區(qū),從而將其激活[26-30]。而液胞膜上Na+,K+/H+反向轉(zhuǎn)運(yùn)體很可能受到CBL-CIPK信號(hào)通路調(diào)控[31-32],但具體的研究還未見(jiàn)報(bào)道。通過(guò)生物技術(shù),在擬南芥、煙草、甜菜、綠豆、花生及馬鈴薯等植物中轉(zhuǎn)入擬南芥質(zhì)膜或液胞NHXs成員可以明顯提高這些植物的抗鹽、抗旱及鉀營(yíng)養(yǎng)代謝能力,有望獲得新的抗逆材料[33-36]。
擬南芥內(nèi)膜NHXs基因 (AtNHX5和AtNHX6) 雖然早已被發(fā)現(xiàn),但研究開(kāi)展相對(duì)滯后,近幾年才取得重要進(jìn)展[9,37-38]。文中根據(jù)已有的報(bào)道,結(jié)合其他植物類似基因的研究成果,對(duì)擬南芥內(nèi)膜NHXs的亞細(xì)胞定位、調(diào)節(jié)離子與pH平衡、蛋白運(yùn)輸及植物生長(zhǎng)發(fā)育中的作用機(jī)制及其應(yīng)用的研究進(jìn)展等方面進(jìn)行了綜述。
擬南芥質(zhì)膜NHXs (AtNHX7、AtNHX8) 和液胞NHXs (AtNHX1–4) 的亞細(xì)胞定位先后被報(bào)道,證明分別位于質(zhì)膜和液胞膜上[33,39-43],而擬南芥內(nèi)膜NHXs (AtNHX5、AtNHX6) 的具體亞細(xì)胞定位在相當(dāng)長(zhǎng)的時(shí)間內(nèi)未見(jiàn)報(bào)道,只被認(rèn)為是存在于質(zhì)膜和液胞膜間的內(nèi)膜上[3],直到2011年Bassil等通過(guò)帶有熒光蛋白標(biāo)簽的SYP32、VHA-a1和SPY61蛋白與AtNHX5、AtNHX6進(jìn)行共定位分析,并通過(guò)免疫電鏡技術(shù)對(duì)AtNHX6亞細(xì)胞定位進(jìn)行分析,首次報(bào)道AtNHX5和AtNHX6定位在高爾基體和反面高爾基體管網(wǎng)狀結(jié)構(gòu)[44]。王立光等通過(guò)對(duì)AtNHX5-GFP和AtNHX6-GFP與帶有熒光蛋白標(biāo)簽且位于高爾基體的SYP31、MEMB12及位于反面高爾基體管網(wǎng)狀結(jié)構(gòu)的SYP41、VTI12的蛋白進(jìn)行共定位分析也證實(shí)了AtNHX5和AtNHX6在高爾基體和反面高爾基體管網(wǎng)狀結(jié)構(gòu)存在[15]。Reguera等通過(guò)進(jìn)一步研究NHX5-YFP與反面高爾基體管網(wǎng)狀結(jié)構(gòu)marker VTI12-RFP、液胞前體 (Prevacuolar compartment) Marker ARA7-RFP和Rha1-RFP發(fā)現(xiàn),AtNHX5雖然主要存在于反面高爾基體管網(wǎng)狀結(jié)構(gòu),但在液胞前體也有分布,AtNHX5很可能在反面高爾基體管網(wǎng)狀結(jié)構(gòu)和液胞前體間穿梭,這是通過(guò)囊泡運(yùn)輸實(shí)現(xiàn)的[17]。最新研究成果進(jìn)一步擴(kuò)大了AtNHX5和AtNH6的定位范圍,利用內(nèi)質(zhì)網(wǎng)(Endoplasmic reticulum) Marker mCherry-HDEL進(jìn)行共定位分析表明,在內(nèi)質(zhì)網(wǎng)上存在內(nèi)膜NHXs分布[19]。以上研究成果表明,在質(zhì)膜和液胞膜之間的內(nèi)膜系統(tǒng)中,AtNHX5和AtNHX6廣泛存在,已經(jīng)證實(shí)存在于亞細(xì)胞結(jié)構(gòu)高爾基體、反面高爾基體管網(wǎng)狀結(jié)構(gòu)、內(nèi)質(zhì)網(wǎng)和液胞前體。目前,雖然未見(jiàn)AtNHX5和AtNHX6存在于內(nèi)膜系統(tǒng)其他部位的報(bào)道,但也不能排除其存在的可能性,因?yàn)锳tNHX5和AtNHX6很可能是隨著囊泡運(yùn)輸穿梭于這些膜結(jié)構(gòu)。在其他植物中,內(nèi)膜NHXs的亞細(xì)胞定位研究進(jìn)行得較少,遠(yuǎn)低于擬南芥內(nèi)膜NHXs,但早在2008年Rodriguez-Rosales等通過(guò)在洋蔥表皮表達(dá)LeNHX2-GFP發(fā)現(xiàn),番茄內(nèi)膜LeNHX2在液胞和細(xì)胞核周邊的泡狀結(jié)構(gòu)上存在,但進(jìn)一步的亞細(xì)胞定位卻未見(jiàn)報(bào)道[45]。擬南芥內(nèi)膜NHXs的亞細(xì)胞定位成果將為其他植物中已鑒定的類似反向轉(zhuǎn)運(yùn)體的定位提供依據(jù)和指導(dǎo)。
Yokoi等研究表明,在生長(zhǎng)21 d植株的根和莖中,通過(guò)Northern blotting能檢測(cè)到低豐度mRNA,而檢測(cè)不到mRNA,只有通過(guò)靈敏度更高的RT-PCR技術(shù)檢測(cè)到基因表達(dá)[39],這表明基因表達(dá)在根和莖中應(yīng)低于基因表達(dá)。Bassil等通過(guò)實(shí)時(shí)熒光定量PCR對(duì)和基因表達(dá)情況進(jìn)行檢測(cè)發(fā)現(xiàn),在花、花蕾、莖、蓮座葉和根中2個(gè)基因都有表達(dá),且除了果莢中的表達(dá)低于外,在其他部位的整體表達(dá)水平略高于[44]。王立光等對(duì)整株幼苗基因表達(dá)檢測(cè)發(fā)現(xiàn),在植株抽薹前,隨著幼苗生長(zhǎng),和的相對(duì)表達(dá)含量升高,且的整體相對(duì)表達(dá)明顯高于[15]。Ashnest等克隆基因上游3 kb的啟動(dòng)子,通過(guò)GUS基因檢測(cè)啟動(dòng)子活性及表達(dá)情況發(fā)現(xiàn),啟動(dòng)子在成熟胚、從早期到晚期發(fā)育的魚(yú)雷胚及萌發(fā)后的彎曲子葉中驅(qū)動(dòng)GUS明顯表達(dá)[46],預(yù)示著在這些階段和部位AtNHX6啟動(dòng)子活性高,基因表達(dá)明顯。Dragwidge等進(jìn)一步對(duì)啟動(dòng)子活性研究發(fā)現(xiàn),在主根頂端和側(cè)根原基,GUS被明顯啟動(dòng)表達(dá),這進(jìn)一步表明內(nèi)膜在根組織中表達(dá)[18]。內(nèi)膜基因的表達(dá)研究也在番茄、水稻和胡楊中展開(kāi),并進(jìn)行了報(bào)道。Venema等通過(guò)Northern blotting分析發(fā)現(xiàn)番茄基因在根和莖中強(qiáng)表達(dá),而在葉中表達(dá)較弱[47]。Fukuda等對(duì)水稻基因啟動(dòng)子研究發(fā)現(xiàn),在側(cè)根發(fā)生部位、維管束、水孔、根尖和花粉粒等處檢測(cè)到GUS表達(dá)[48],說(shuō)明該基因啟動(dòng)子在這些部位活性較強(qiáng),也暗示基因在這些部位表達(dá)。葉楚玉等克隆了胡楊中的內(nèi)膜NHX基因,通過(guò)實(shí)時(shí)熒光定量PCR分析發(fā)現(xiàn),在根、莖和葉中都檢測(cè)到該基因的表達(dá)[49]。這些結(jié)果與擬南芥和基因表達(dá)有很多相似之處,為擬南芥內(nèi)膜NHXs基因的表達(dá)研究提供了基礎(chǔ)。
Shi等研究發(fā)現(xiàn),過(guò)表達(dá)不但提高了夏瑾葉片外植體的再生率,還提高了再生植株移植到土壤中的成活率,轉(zhuǎn)入并表達(dá)基因的夏瑾比野生型開(kāi)花提前,生長(zhǎng)發(fā)育受到影響[50]。通過(guò)AtNHX5和AtNHX6的氨基酸序列比對(duì)發(fā)現(xiàn),兩者存在很高的相似性,相似率達(dá)到78.7%,單獨(dú)敲除兩者中的任何一個(gè)都不能對(duì)植株生長(zhǎng)和發(fā)育造成影響,但是同時(shí)將兩個(gè)基因敲除,雙突變植株表現(xiàn)出生長(zhǎng)遲緩、發(fā)育受阻及植株矮小,通過(guò)電鏡切片進(jìn)一步發(fā)現(xiàn)雙突變植株細(xì)胞數(shù)目變小、細(xì)胞體積變小[44]。王立光等和武學(xué)霞等也分別發(fā)現(xiàn)AtNHX5和AtNHX6同時(shí)缺失的雙突變植株矮小、蓮座葉變小、結(jié)實(shí)率降低[15-16]。最新研究發(fā)現(xiàn),AtNHX5和AtNHX6可能通過(guò)它們的運(yùn)輸活動(dòng)產(chǎn)生的pH值梯度調(diào)節(jié)生長(zhǎng)素穿越內(nèi)質(zhì)網(wǎng)的運(yùn)輸,從而參與生長(zhǎng)素介導(dǎo)的生長(zhǎng)發(fā)育[19]。同時(shí),Dragwidge等證明AtNHX5和AtNHX6通過(guò)改變質(zhì)膜上PIN蛋白豐度介導(dǎo)了植物生長(zhǎng)發(fā)育[18]。以上結(jié)果表明,AtNHX5和AtNHX6在細(xì)胞增殖和擴(kuò)展等過(guò)程中起到重要作用,調(diào)節(jié)著植物的生長(zhǎng)發(fā)育,其調(diào)節(jié)機(jī)制是通過(guò)影響生長(zhǎng)素而實(shí)現(xiàn)的。在番茄中,也有對(duì)LeNHX2相關(guān)功能的研究,Rodriguez-Rosales等通過(guò)RNA干擾技術(shù)對(duì)番茄的進(jìn)行沉默,發(fā)現(xiàn)隨著干擾程度加強(qiáng),植株生長(zhǎng)受到的抑制作用也隨著加強(qiáng),果實(shí)和種子產(chǎn)量逐漸降低,但作者的研究并未涉及是否通過(guò)生長(zhǎng)素介導(dǎo)[45]。
擬南芥質(zhì)膜NHXs和液胞NHXs介導(dǎo)Na+、K+的轉(zhuǎn)運(yùn)及調(diào)節(jié)pH平衡的功能已被證實(shí)[28,33,40,51-52],那內(nèi)膜NHXs是否具有相似的功能呢?根據(jù)這些問(wèn)題,針對(duì)內(nèi)膜NHXs相關(guān)功能的研究先后展開(kāi),并取得了重要的進(jìn)展。Yokoi等在酵母突變體AXT3K轉(zhuǎn)入AtNHX5基因,首先發(fā)現(xiàn)轉(zhuǎn)基因酵母能通過(guò)增加離子區(qū)室化增強(qiáng)酵母的鹽耐受性[39]。Bassil等通過(guò)雙突變體脅迫實(shí)驗(yàn)發(fā)現(xiàn),內(nèi)膜NHXs缺失將使種子萌發(fā)和幼苗生長(zhǎng)對(duì)鹽脅迫極為敏感,在100 mmol/L NaCl脅迫下,雙突變種子在子葉出現(xiàn)后幾乎停止生長(zhǎng),而150 mmol/L NaCl處理幼苗將導(dǎo)致鮮重顯著下降[44]。安靜等在擬南芥中過(guò)表達(dá)AtNHX5發(fā)現(xiàn),過(guò)表達(dá)能提高種子萌發(fā)和苗期的耐鹽性,過(guò)表達(dá)植株在鹽脅迫的干重、鮮重及地上部分Na+、K+含量均高于野生型植株,耐鹽性得到顯著提高[53]。王立光等運(yùn)用酵母表達(dá)系統(tǒng)研究發(fā)現(xiàn),AtNHX5和AtNHX6除了能恢復(fù)酵母突變體的耐鹽能力外,在維持K+平衡方面也具有重要作用,也能夠恢復(fù)酵母突變體耐高鉀脅迫的能力[15]。他們對(duì)AtNHX5和AtNHX6與AtCHX17在K+轉(zhuǎn)活力的異同進(jìn)行了比較,發(fā)現(xiàn)在高K+低pH下AtNHX5和AtNHX6起作用,而AtCHX17在低K+高pH下具有作用[15],這表明了擬南芥內(nèi)膜NHX與CHX的K+轉(zhuǎn)運(yùn)模式可能存在差異。他們進(jìn)一步研究發(fā)現(xiàn),在低K+條件下,的根長(zhǎng)生長(zhǎng)明顯受到抑制,而在雙突變植株內(nèi)恢復(fù)AtNHX5或AtNHX6的表達(dá)能消除這一現(xiàn)象。通過(guò)K+含量測(cè)定發(fā)現(xiàn),在正常生長(zhǎng)條件下,植株內(nèi)的K+含量明顯低于野生型植株[15]。這些研究成果表明,擬南芥內(nèi)膜NHXs與基因家族其他成員一樣,也具有調(diào)節(jié)Na+、K+平衡的作用,且轉(zhuǎn)運(yùn)模式也可能是相似的。同時(shí),有報(bào)道顯示,番茄LeNHX2、水稻OsNHX5、楊樹(shù)PeNHX6和桑樹(shù)MaNHX6都具有調(diào)節(jié)Na+、K+平衡的作用[1,45,47,49,54-55],這些預(yù)示著這類亞家族成員在植物中存在相似功能,這都將為其他植物中此類反向轉(zhuǎn)運(yùn)體的研究提供思路。
內(nèi)膜系統(tǒng)的pH穩(wěn)態(tài)對(duì)細(xì)胞的功能至關(guān)重要。Martinier等研究發(fā)現(xiàn),胞內(nèi)不同細(xì)胞器及蛋白運(yùn)輸?shù)哪そY(jié)構(gòu)囊泡的pH存在差異,而在煙草細(xì)胞內(nèi)轉(zhuǎn)入擬南芥內(nèi)膜NHXs將使液胞分選受體(Vacuolar sorting receptor,VSR)、反面高爾基體管網(wǎng)狀結(jié)構(gòu)和液胞前體等的pH升高,表明擬南芥內(nèi)膜NHXs在維持內(nèi)膜系統(tǒng)pH穩(wěn)態(tài)具有重要作用。Reguera等運(yùn)用基于熒光蛋白pHluorin的pH傳感器(pHluorin-based pH sensors) 測(cè)定了高爾基體、反面高爾基體管網(wǎng)狀結(jié)構(gòu)、次級(jí)液胞前體和液胞分選受體的pH,發(fā)現(xiàn)雙突變植株的這些部位的pH均低于野生型植株[17]。另外,王立光等通過(guò)pH敏感的熒光探針BCECF (2¢,7¢-bis (carboxyethy1)-5-(6)-carboxyfluorescein,2¢,7¢-二(羧乙基)-5(6)-羧基熒光黃) 和微電極法分別對(duì)雙突變體的根部細(xì)胞液胞和葉片細(xì)胞液的pH進(jìn)行了測(cè)定,結(jié)果顯示與野生型相比,其pH都降低[15]。樊立剛等發(fā)現(xiàn)AtNHX5和AtNHX6調(diào)節(jié)內(nèi)質(zhì)網(wǎng)的pH,雙突變植株細(xì)胞內(nèi)內(nèi)質(zhì)網(wǎng)的pH明顯降低[19]。這些結(jié)果都表明,擬南芥內(nèi)膜NHXs具有調(diào)節(jié)細(xì)胞pH平衡的功能,而在其他植物內(nèi)類似基因?qū)H平衡調(diào)節(jié)的研究還未見(jiàn)報(bào)道。
植物蛋白在核糖體中合成后,部分蛋白需經(jīng)內(nèi)質(zhì)網(wǎng)、高爾基體、反面高爾基體管網(wǎng)狀結(jié)構(gòu)和多胞體/液胞前體,最終到達(dá)相應(yīng)部位,在這個(gè)過(guò)程中,蛋白通過(guò)囊泡運(yùn)輸實(shí)現(xiàn)轉(zhuǎn)運(yùn)?,F(xiàn)有的證據(jù)已經(jīng)表明,在擬南芥中這些部位都存在內(nèi)膜NHXs,它們調(diào)節(jié)囊泡運(yùn)輸,影響蛋白的轉(zhuǎn)運(yùn)和存貯。Bassil等最先發(fā)現(xiàn)AtNHX5和AtNHX6與囊泡運(yùn)輸相關(guān),他們發(fā)現(xiàn)與野生型相比,F(xiàn)M4-64在雙突變體中運(yùn)到液胞的時(shí)間被延遲,用GFP標(biāo)記的CPY蛋白在子葉中不能進(jìn)入液胞,而是分布到了質(zhì)外體,同時(shí)轉(zhuǎn)錄組分析也顯示,內(nèi)很多與囊泡運(yùn)輸相關(guān)的蛋白轉(zhuǎn)錄水平發(fā)生了改變,如RAB、VTI12、VPS35和VSR1等[44]。后來(lái)Reguera等進(jìn)一步發(fā)現(xiàn)的種子變大,種皮變黑,種子中的PSV (Protein storage vacuoles) 體積變小而數(shù)目增多,存在大量種子貯藏蛋白的前體蛋白p2S和p12S,且種子貯藏蛋白2S和12S被運(yùn)輸?shù)劫|(zhì)外體,而非PSV中;他們深入研究認(rèn)為擬南芥內(nèi)膜NHXs缺失導(dǎo)致液胞分選受體2;1 (Vacuolar sorting receptors2;1, VSR2;1) 與其運(yùn)輸物 (Cargoes) 間的結(jié)合作用降低,從而影響了蛋白質(zhì)的運(yùn)輸過(guò)程,且內(nèi)膜NHXs對(duì)內(nèi)膜體pH的影響在蛋白質(zhì)運(yùn)輸調(diào)節(jié)方面起著重要作用[17]。Ashnest等也發(fā)現(xiàn)擬南芥內(nèi)膜NHXs影響種子蛋白存貯,并證明擬南芥內(nèi)膜NHXs的C-末端與細(xì)胞分選復(fù)合體Retromer的組分SNX1相互作用,影響液胞分選受體從反面高爾基體管網(wǎng)狀結(jié)構(gòu)回送到內(nèi)質(zhì)網(wǎng)的過(guò)程從而調(diào)節(jié)蛋白的運(yùn)輸[46]。武學(xué)霞等通過(guò)構(gòu)建三突變體發(fā)現(xiàn),三突變體植株矮小,結(jié)實(shí)率下降,種子體積增大,種子的PSV體積變小而數(shù)目增多,存在大量種子貯藏蛋白前體蛋白,這表明種子貯藏蛋白運(yùn)輸受到影響。他們發(fā)現(xiàn)在雙突變體細(xì)胞內(nèi)形成SNARE (Soluble N-ethylmaleimide- sensitive factor attachment protein receptor) 的成員SYP22和VAMP727聚集在高爾基體和反面高爾基體管網(wǎng)狀結(jié)構(gòu)中,未能被向下運(yùn)送到液胞前體內(nèi),從而影響SNARE調(diào)控液胞前體和液胞之間生物膜融合的過(guò)程,導(dǎo)致蛋白運(yùn)輸受到影響[16]。
雖然以上研究對(duì)擬南芥內(nèi)膜NHXs調(diào)節(jié)蛋白運(yùn)輸和存貯提出了不同的分子機(jī)制,但都明確了AtNHX5和AtNHX6參與調(diào)節(jié)蛋白運(yùn)輸過(guò)程。由已有的關(guān)于AtNHX5和AtNHX6的亞細(xì)胞定位報(bào)道,我們知道它們定位比較特殊,位于內(nèi)質(zhì)網(wǎng)、高爾基體、反面高爾基體管網(wǎng)狀結(jié)構(gòu)和多胞體/液胞前體,并且調(diào)節(jié)這些部位的pH平衡,而植物中很多蛋白在核糖體開(kāi)始合成后,正好需要經(jīng)過(guò)這些部位后,才能到達(dá)特定的位置,因此AtNHX5和AtNHX6會(huì)參與到蛋白運(yùn)輸?shù)脑S多環(huán)節(jié)上。
Bowers等進(jìn)行序列比對(duì)發(fā)現(xiàn),在酵母、細(xì)菌、植物和動(dòng)物的NHX的跨膜區(qū)域存在4個(gè)保守的酸性氨基酸殘基,將酵母ScNhx1p中的4個(gè)氨基酸殘基分別突變?yōu)椴粠щ姾傻臉O性氨基酸殘基 (D201N、E225Q、D230N、E355Q),其中3個(gè)突變氨基酸殘基 (D201N、E225Q、D230N) 中任何一個(gè)突變都會(huì)導(dǎo)致酵母蛋白運(yùn)輸受阻,表明這3個(gè)保守氨基酸殘基在蛋白轉(zhuǎn)運(yùn)過(guò)程中具有重要作用[56]。王立光等將AtNHX5和AtNHX6與ScNhx1p的氨基酸序列進(jìn)行比對(duì)分析,發(fā)現(xiàn)在擬南芥內(nèi)膜NHXs的跨膜結(jié)構(gòu)域也含有4個(gè)保守的酸性氨基酸殘基,AtNHX5的酸性氨基酸殘基D164、E188、D193、E320和AtNHX6的D165、E189、D194、E320氨基酸殘基,分別與酵母ScNhx1p的D201、E225、D230、E355保守氨基酸殘基相對(duì)應(yīng)[15]。通過(guò)酵母生長(zhǎng)實(shí)驗(yàn)發(fā)現(xiàn),如果AtNHX5的D164、E188、D193或AtNHX6的D165、E189、D194中任何一個(gè)保守氨基酸殘基突變,都將導(dǎo)致擬南芥內(nèi)膜NHXs在酵母內(nèi)具有的互補(bǔ)功能喪失。同時(shí),AtNHX5的D164、E188、D193或AtNHX6的D165、E189、D194中任何一個(gè)保守氨基酸殘基突變也將不能使雙突變植株生長(zhǎng)恢復(fù)到野生型水平[15]。武學(xué)霞等進(jìn)一步證實(shí),擬南芥內(nèi)膜NHXs的3個(gè)保守酸性氨基酸在種子存貯蛋白轉(zhuǎn)入PSV過(guò)程中具有重要作用,任何一個(gè)酸性保守氨基酸殘基突變都會(huì)使轉(zhuǎn)基因株系種子中存貯蛋白像雙突變的一樣,含有大量前體蛋白p2S和p12S[16]。這些結(jié)果顯示,3個(gè)保守酸性氨基酸殘基對(duì)AtNHX5和AtNHX6的離子運(yùn)輸、蛋白轉(zhuǎn)運(yùn)及調(diào)節(jié)生長(zhǎng)發(fā)育等功能至關(guān)重要,也暗示這3個(gè)保守氨基酸殘基很可能影響AtNHX5和AtNHX6對(duì)pH平衡的調(diào)節(jié)。
Shi等從擬南芥Landsberg的實(shí)生苗葉片內(nèi)克隆得到基因的cDNA序列,并導(dǎo)入藍(lán)豬耳植株內(nèi),發(fā)現(xiàn)表達(dá)的藍(lán)豬耳植株的耐鹽力獲得提高,轉(zhuǎn)基因植株能在100 mmol/L NaCl的培養(yǎng)基上生長(zhǎng),而野生型不能生長(zhǎng)[50]。他們進(jìn)一步發(fā)現(xiàn)AtNHX5不僅提高了轉(zhuǎn)基因藍(lán)豬耳葉片富集Na+的能力,還對(duì)鹽處理降低葉片K+含量有著顯著的削弱作用,證實(shí)AtNHX5能應(yīng)用于提高藍(lán)豬耳的耐鹽性,并認(rèn)為其對(duì)植物耐鹽性的改良作用與該反向轉(zhuǎn)運(yùn)體對(duì)Na+和K+的富集有關(guān)[50]。林小浩等通過(guò)AtNHX5轉(zhuǎn)化煙草發(fā)現(xiàn),轉(zhuǎn)基因植株在300 mmol/L NaCl的條件下,生長(zhǎng)明顯優(yōu)于野生型,且處理4 d后去除鹽脅迫,轉(zhuǎn)基因植株快速恢復(fù)生長(zhǎng),而野生型生長(zhǎng)停滯,這表明AtNHX5能提高煙草耐鹽性,可用于培育耐鹽煙草品種[57]。Li等分別在水稻和構(gòu)樹(shù)中表達(dá)AtNHX5發(fā)現(xiàn),轉(zhuǎn)基因水稻和構(gòu)樹(shù)不僅增強(qiáng)了對(duì)鹽脅迫的耐受力,還增強(qiáng)了抗干旱脅迫的能力,這暗示AtNHX5也可在抗逆境脅迫樹(shù)木和作物改良中進(jìn)行有效利用[58-59]。Wu等和楊權(quán)等都對(duì)基因轉(zhuǎn)化大豆開(kāi)展了研究,他們的結(jié)果都證明,AtNHX5轉(zhuǎn)化大豆能增強(qiáng)大豆的耐鹽性,可用于大豆抗鹽品種的改良利用[60-61]。另外,有研究表明,在馬鈴薯內(nèi)轉(zhuǎn)入并表達(dá)AtNHX5或AtNHX6基因,可以提高轉(zhuǎn)基因植株的耐鹽性和抗旱性,提高塊莖產(chǎn)量[62]。
內(nèi)膜NHXs亞家族作為NHXs家族重要成員之一,在植物的生長(zhǎng)發(fā)育和逆境脅迫中起到重要的作用。近些年,植物中內(nèi)膜NHXs的研究工作相繼展開(kāi),尤其AtNHX5和AtNHX6的亞細(xì)胞定位、基因表達(dá)、功能和抗逆改良應(yīng)用等取得了一系列進(jìn)展,但關(guān)于它們過(guò)表達(dá)能否影響蛋白存貯的研究還未見(jiàn)詳細(xì)報(bào)道,尚需深入研究。雖然越來(lái)越多物種的內(nèi)膜基因被鑒定和克隆,但針對(duì)內(nèi)膜NHXs的研究,大多仍圍繞模式植物擬南芥的AtNHX5和AtNHX6展開(kāi),其他植物中類似反向轉(zhuǎn)運(yùn)體的亞細(xì)胞定位、功能等研究才初步開(kāi)展。因此,其他植物的內(nèi)膜NHXs的研究有待進(jìn)一步深入。這將對(duì)培育抗逆作物新品種及提高作物產(chǎn)量具有重要的意義。
[1] Cao BN, Long DP, Zhang M, et al. Molecular characterization and expression analysis of the mulberry Na+/H+exchanger gene family. Plant Physiol Biochem, 2015, 99: 49–58.
[2] Chanroj S, Wang GY, Venema K, et al. Conserved and diversified gene families of monovalent cation/H+antiporters from algae to flowering plants. Front Plant Sci, 2012, 3: 25.
[3] Brett CL, Donowitz M, Rao RN. Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol, 2005, 288(2): C223–C239.
[4] Rodriguez-Rosales MP, Gálvez FJ, Huertas R, et al. Plant NHX cation/proton antiporters. Plant Signal Behav, 2009, 4(4): 265–276.
[5] Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochim Biophys Acta, 2000, 1465(1/2): 140–151.
[6] Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000, 12(4): 431–434.
[7] Rausch T, Kirsch M, L?w R, et al. Salt stress responses of higher plants: the role of proton pumps and Na+/H+-antiporters. Plant Physiol, 1996, 148(3/4): 425–433.
[8] Schachtman D, Liu WH. Molecular pieces to the puzzle of the interaction between potassium and sodiumuptake in plants. Trends Plant Sci, 1999, 4(7): 281–287.
[9] Bassil E, Coku A, Blumwald E. Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+antiporters in plant growth and development. J Exp Bot, 2012, 63(16): 5727–5740.
[10] Padan E, Venturi M, Gerchman Y, et al. Na+/H+antiporters. Biochim Biophys Acta, 2001, 1505(1): 144–157.
[11] Pardo JM, Cubero B, Leidi EO, et al. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot, 2006, 57(5): 1181–1199.
[12] Reguera M, Bassil E, Blumwald E. Intracellular NHX-type cation/H+antiporters in plants. Mol Plant, 2014, 7(2): 261–263.
[13] Wang LG, Feng XY, Zhao H, et al. Functional analysis of the Na+, K+/H+antiporter PeNHX3 from the tree halophytein yeast by model-guided mutagenesis. PLoS ONE, 2014, 9(8): e0117869.
[14] Andrés Z, Perez-Hormaeche J, Leidi EO, et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci USA, 2014, 111(17): E1806–E1814.
[15] Wang LG, Wu XX, Liu YF, et al. AtNHX5 and AtNHX6 control cellular K+and pH homeostasis in: three conserved acidic residues are essential for K+transport. PLoS ONE, 2015, 10(12): e144716.
[16] Wu XX, Ebine K, Ueda T, et al. AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in. PLoS ONE, 2016, 11(3): e151658.
[17] Reguera M, Bassil E, Tajima H, et al. pH Regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in. Plant Cell, 2015, 27(4): 1200–1217.
[18] Dragwidge JM, Ford BA, Ashnest JR, et al. Two endosomal NHX-type Na+/H+antiporters are involved in auxin-mediated development in. Plant Cell Physiol, 2018, 59(8): 1660–1669.
[19] Fan LG, Zhao L, Hu W, et al. Na+,K+/H+antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. Plant Cell Environ, 2018, 41(4): 850–864.
[20] Bassil E, Tajima H, Liang YC, et al. TheNa+/H+Antiporters NHX1 and NHX2 control vacuolar pH and K+homeostasis to regulate growth, flower development, and reproduction. Plant Cell, 2011, 23(9): 3482–3497.
[21] Blumwald E, Poole RJ. Na+/H+Antiport in isolated tonoplast vesicles from storage tissue of beta vulgaris. Plant Physiol, 1985, 78(1): 163–167.
[22] Ratner A, Jacoby B. Effect of K+, its counter anion, and pH on sodium efflux from barley root tips. J Exp Bot, 1976, 27(5): 843–852.
[23] Gaxiola RA, Rao R, Sherman A, et al. Theproton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA, 1999, 96(4): 1480–1485.
[24] Carden DE, Walker DJ, Flowers TJ, et al. Single-cell measurements of the contributions of cytosolic Na+and K+to salt tolerance. Plant Physiol, 2003, 131(2): 676–683.
[25] Yamaguchi T, Apse MP, Shi HZ, et al. Topological analysis of a plant vacuolar Na+/H+antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA, 2003, 100(21): 12510–12515.
[26] Tang RJ, Zhao FG, Garcia VJ, et al. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in. Proc Natl Acad Sci USA, 2015, 112(10): 3134–3139.
[27] Shi H, Ishitani M, Kim C, et al. Thesalt tolerance gene SOS1 encodes a putative Na+/H+antiporter. Proc Natl Acad Sci USA, 2000, 97(12): 6896–6901.
[28] Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8(4): 617–627.
[29] Qiu QS, Guo Y, Dietrich MA, et al. Regulation of SOS1, a plasma membrane Na+/H+exchanger in, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99(12): 8436–8441.
[30] Quintero FJ, Martinez-Atienza J, Villalta I, et al. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA, 2011, 108(6): 2611–2616.
[31] Wang XT, Zhang HL, Gao HC, et al. Research progress on the mechanism of CBL-CIPK signaling pathways in response to abiotic stress. Mol Plant Breed, 2017, 15(4): 1295–1303 (in Chinese). 王曉彤, 張海玲, 高慧純, 等. 植物CBL-CIPK信號(hào)通路響應(yīng)非生物脅迫作用機(jī)制的研究進(jìn)展. 分子植物育種, 2017, 15(4): 1295–1303.
[32] Zhu S, Zhou XP, Wu XM, et al. Structure and function of the CBL-CIPK Ca2+-decoding system in plant calcium signaling. Plant Mol Biol Rep, 2013, 31(6): 1193–1202.
[33] Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in. Science, 1999, 285(5431): 1256–1258.
[34] Jiang XY, Leidi EO, Pardo JM. How do vacuolar NHX exchangers function in plant salt tolerance?. Plant Signal Behav, 2010, 5(7): 792–795.
[35] Asif MA, Zafar Y, Iqbal J, et al. Enhanced expression of, in transgenic groundnut (L.) improves salt and drought tolerence. Mol Biotechnol, 2011, 49(3): 250–256.
[36] Sahoo DP, Kumar S, Mishra S, et al. Enhanced salinity tolerance in transgenic mungbean overexpressingantiporter (NHX1) gene. Mol Breed, 2016, 36: 144.
[37] Qiu QS. Plant endosomal NHX antiporters: activity and function. Plant Signal Behav, 2016, 11(5): e1147643.
[38] Qiu QS. AtNHX5 and AtNHX6: roles in protein transport. Plant Signal Behav, 2016, 11(6): e1184810.
[39] Yokoi S, Quintero FJ, Cubero B, et al. Differential expression and function ofNHX Na+/H+antiporters in the salt stress response. Plant J, 2002, 30(5): 529–539.
[40] Shi H, Quintero FJ, Pardo JM, et al. The putative plasma membrane Na+/H+antiporter SOS1 controls long-distance Na+transport in plants. Plant Cell, 2002, 14(2): 465–477.
[41] An R, Chen QJ, Chai MF, et al., a member of the monovalent cation: proton antiporter-1 family in, encodes a putative Li+/H+antiporter. Plant J, 2007, 49(4): 718–728.
[42] Liu H, Tang RJ, Zhang Y, et al. AtNHX3 is a vacuolar K+/H+antiporter required for low-potassium tolerance in. Plant Cell Environ, 2010, 33(11): 1989–1999.
[43] Li HT, Liu H, Gao XS, et al. Knock-out ofgene enhances tolerance to salt stress. Biochem Biophys Res Commun, 2009, 382(3): 637–641.
[44] Bassil E, Ohto MA, Esumi T, et al. Theintracellular Na+/H+antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell, 2011, 23(1): 224–239.
[45] Rodríguez-Rosales MP, Jiang XY, Galvez FJ, et al. Overexpression of the tomato K+/H+antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol, 2008, 179(2): 366–377.
[46] Ashnest JR, Huynh DL, Dragwidge JM, et al.intracellular NHX-type Sodium-proton antiporters are required for seed storage protein processing. Plant Cell Physiol, 2015, 56(11): 2220–2233.
[47] Venema K, Belver A, Marín-Manzano MC, et al. A novel intracellular K+/H+antiporter related to Na+/H+antiporters is important for K+ion homeostasis in plants. J Biol Chem, 2003, 278(25): 22453–22459.
[48] Francia ME, Wicher S, Pace DA, et al. Aprotein with homology to intracellular type Na+/H+exchangers is important for osmoregulation and invasion. Exp Cell Res, 2011, 317(10): 1382–1396.
[49] Ye CY, Zhang HC, Chen JH, et al. Molecular characterization of putative vacuolar NHX-type Na+/H+exchanger genes from the salt-resistant tree. Physiol Plant, 2009, 137(2): 166–174.
[50] Shi LY, Li HQ, Pan XP, et al. Improvement ofsalinity tolerance by expression ofAtNHX5. Funct Plant Biol, 2008, 35(3): 185–192.
[51] Barragán V, Leidi EO, Andrés Z, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in. Plant Cell, 2012, 24(3): 1127–1142.
[52] Venema K, Quintero FJ, Pardo JM, et al. TheNa+/H+exchanger AtNHX1 catalyzes low affinity Na+and K+transport in reconstituted liposomes. J Biol Chem, 2002, 277(4): 2413–2418.
[53] An J, Hou L, Kong XQ. Overexpression of AtNHX5 Increases salt tolerance of. Acta Botan Boreali-Occidental Sin, 2012, 32(6): 1106–1111 (in Chinese). 安靜, 侯蕾, 孔祥強(qiáng). AtNHX5基因過(guò)量表達(dá)對(duì)擬南芥耐鹽性的影響. 西北植物學(xué)報(bào), 2012, 32(6): 1106–1111.
[54] Huertas R, Rubio L, Cagnac O, et al. The K+/H+antiporter LeNHX2 increases salt tolerance by improving K+homeostasis in transgenic tomato. Plant Cell Environ, 2013, 36(12): 2135–2149.
[55] Fukuda A, Nakamura A, Hara N, et al. Molecular and functional analyses of rice NHX-type Na+/H+antiporter genes. Planta, 2011, 233(1): 175–188.
[56] Bowers K, Levi BP, Patel FI, et al. The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast. Mol Biol Cell, 2000, 11(12): 4277–4294.
[57] Lin XJ, Li HQ. Overexpression of AtNHX5 improves tolerance to salt stress in tobacco. Northern Horticulture, 2011(9): 123–126 (in Chinese).林小潔, 李洪清. 轉(zhuǎn)擬南芥AtNHX5基因煙草的耐鹽性研究. 北方園藝, 2011(9): 123–126.
[58] Li MR, Lin XJ, Li HQ, et al. Overexpression ofimproves tolerance to both salt and water stress in rice (L.). Plant Cell, Tissue Organ Cult, 2011, 107(2): 283–293.
[59] Li MR, Li Y, Li HQ, et al. Overexpression ofimproves tolerance to both salt and drought stress in(L.) Vent. Tree Physiol, 2011, 31(3): 349–357.
[60] Yang Q, Wang YY, Liu YG, et al. Study on optimization of soybean cotyledonary node genetic transformation system and the transformation of resistance gene At NHX5. Soybean Sci, 2015, 34(2): 205–211 (in Chinese). 楊權(quán), 王月月, 劉炎光, 等. 大豆子葉節(jié)遺傳轉(zhuǎn)化體系優(yōu)化及抗逆基因AtNHX5的轉(zhuǎn)化研究. 大豆科學(xué), 2015, 34(2): 205–211.
[61] Wu XX, Li J, Wu XD, et al. Ectopic expression ofNa+(K+)/H+antiporter gene, AtNHX5, enhances soybean salt tolerance. Genet Mol Res, 2015, 15(2): 1–12.
[62] Wan P. Transformation of potato withNa+/H+antiporter genes. Lanzhou: Lanzhou University, 2015 (in Chinese). 萬(wàn)鵬. 擬南芥Na+/H+反向交換體基因轉(zhuǎn)化馬鈴薯研究. 蘭州: 蘭州大學(xué), 2015.
Progress in endosomal Na+,K+/H+antiporter in
Liguang Wang
Biotechnology Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
Important progress has been made in the interpretation of subcellular location, ion transport characteristics and biological functions of endosomal Na+,K+/H+antiporter in. The endosomal Na+,K+/H+antiporter contain two members, AtNHX5 and AtNHX6, whose amino acid sequence similarity is 78.7%. Studies have shown that AtNHX5 and AtNHX6 are functionally redundant, and they are all located in Golgi, trans-Golgi network (TGN), endoplasmic reticulum (ER) and prevacuolar compartment (PVC). AtNHX5 and AtNHX6 are critical for salt tolerance stress and the homeostasis of pH and K+. It has been reported that there are conservative acidic amino acid residues that can regulate their ion activity in the endosomal NHXs transmembrane domain, which plays a decisive role in their own functions. The results of the latest research indicate that endosomal NHXs affect vacuolar transport and protein storage, and participate in the growth of auxin-mediated development in.. In this paper, the progress of subcellular localization, ion transport, function and application of endosomal NHXs in.was summarized.
endosomal Na+,K+/H+antipoporter, subcellular localization, ion transport, vacuolar trafficking, protein storage
December 26, 2018;
March 14, 2019
Supported by: National Natural Science Foundation of China (Nos. 31660391, 31460350), Youth Foundation of Gansu Academy of Agricultural Sciences (No. 2016GAAS53), National Oil Industry System (No. GARS-17-SYZ-6).
Liguang Wang. Tel/Fax: +86-931-7612683; E-mail: wodepengyouwlg@163.com
國(guó)家自然科學(xué)基金 (Nos. 31660391, 31460350),甘肅省農(nóng)業(yè)科學(xué)院中青年基金 (No. 2016GAAS53),國(guó)家特色油料產(chǎn)業(yè)技術(shù)體系(No. CARS-17-SYZ-6) 資助。
2019-03-28
http://kns.cnki.net/kcms/detail/11.1998.Q.20190327.1029.001.html
王立光. 擬南芥內(nèi)膜Na+,K+/H+反向轉(zhuǎn)運(yùn)體研究進(jìn)展.生物工程學(xué)報(bào), 2019, 35(8): 1424–1432.Wang LG. Progress in endosomal Na+,K+/H+ antiporter in Arabidopsis thaliana. Chin J Biotech, 2019, 35(8): 1424–1432.
(本文責(zé)編 陳宏宇)