王輝,趙爍,楊興旺,金夢(mèng)玲,杜遠(yuǎn)鵬,管雪強(qiáng),翟衡
‘裙膜’覆蓋對(duì)黃河三角洲鹽堿地土溫及春季葡萄生長(zhǎng)的影響
王輝1,趙爍1,楊興旺1,金夢(mèng)玲1,杜遠(yuǎn)鵬1,管雪強(qiáng)2,翟衡1
(1山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018;2山東省農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品研究所,濟(jì)南 250100)
【】研究鹽堿地葡萄發(fā)芽滯后的土壤原因及調(diào)控技術(shù),提高葡萄在鹽堿地土壤上春季生長(zhǎng)發(fā)育的質(zhì)量。【】以廣北二分場(chǎng)鹽堿地栽培的三年生歐美雜交種鮮食‘夏黑’葡萄為試材,行距3.0 m,株距1.5 m,籬架,單干單臂樹形,干高80 cm。于2018年3月葡萄出土上架,灌溉催芽水后搭建‘裙膜’,即在干高50 cm處沿立柱上拉一道絲,以其為頂點(diǎn)將寬幅為80 cm的白色塑料薄膜從兩側(cè)交疊用綁絲固定,兩側(cè)以約45o夾角分別向行間地面拉開,并用土壓邊,形成密封的小三角即‘裙膜’,每個(gè)處理鋪設(shè)兩行。以平栽不覆蓋‘裙膜’為對(duì)照,研究‘裙膜’對(duì)地溫及葡萄生長(zhǎng)的影響?!尽俊鼓ぁ行岣叩販氐耐瑫r(shí)改善了地上部的生長(zhǎng),促進(jìn)了鹽堿地葡萄的生長(zhǎng)發(fā)育進(jìn)程。其中,根際10 cm土層平均地溫約比平栽對(duì)照顯著提高5℃,升溫早且持續(xù)時(shí)間長(zhǎng),縮小了地溫與氣溫的差距;葡萄發(fā)芽物候期比對(duì)照提前10—15 d,外在表現(xiàn)為葡萄發(fā)芽早且發(fā)芽整齊;顯著提高了葡萄的新梢生長(zhǎng)質(zhì)量,新梢生長(zhǎng)量(長(zhǎng)度)、第三節(jié)位節(jié)間長(zhǎng)度及粗度分別比平栽對(duì)照顯著提高34.9%、23.8%、20%,葉面積、葉片重則分別顯著提高39.9%、56.6%,葉片厚度有所增加但與對(duì)照沒有顯著性差異?!鼓ぁ采w顯著提高了葡萄的葉片功能,葉片葉綠素含量、凈光合速率(n)、最大光化學(xué)效率(v/m)分別比對(duì)照顯著提高27.6%、30%、6.8%,光化學(xué)淬滅系數(shù)(qP)比對(duì)照顯著提高21.9%,表明在提高地溫環(huán)境中,PSII反應(yīng)中心開放程度大,用于光化學(xué)途徑的能量增加,光合作用得到提高。為探討鹽堿地土壤升溫滯后的原因,在泰安同一氣候條件下利用盆栽試驗(yàn)發(fā)現(xiàn),鹽堿土的土溫對(duì)氣溫的響應(yīng)明顯滯后于棕壤土,延遲3 h左右。兩種土壤的含鹽量及由其導(dǎo)致的土壤電導(dǎo)率、土壤容重及土壤孔隙度差異最大。田間測(cè)定結(jié)果表明,鹽堿土比棕壤土的通氣性差,濱海鹽土0—20 cm土層的土壤容重高達(dá)1.45 g?cm-3,屬于很緊實(shí)狀態(tài),比棕壤土的容重高11.7%,土壤孔隙度降低13.5%,土壤氧化還原電位(Eh)及土壤氧氣擴(kuò)散速率(ODR)也分別顯著比棕壤土低49.9%和13.8%?!尽俊鼓ぁ采w顯著提高鹽堿地地溫,縮小了氣溫和地溫的差異,有效改善了葡萄發(fā)芽進(jìn)程,提早了葡萄發(fā)芽物候期,改善了新梢生長(zhǎng)質(zhì)量,促進(jìn)了春季葡萄生長(zhǎng)發(fā)育。
鹽堿地;葡萄;地溫;滯后;‘裙膜’;覆蓋
【研究意義】鹽堿地在世界上分布廣泛,土壤鹽堿化是干旱和半干旱地區(qū)以及濱海地區(qū)影響作物產(chǎn)量和品質(zhì)的不利因素[1-3]。我國(guó)鹽堿土幾乎遍布全國(guó)各地,其中,濱海鹽堿土約為800萬(wàn)hm2,主要分布在山東、河北、遼寧等北方沿海地區(qū),江蘇北部的海濱沖積平原及浙江、福建、廣東等沿海部分區(qū)域[4]。隨著國(guó)家把黃河三角洲開發(fā)上升為國(guó)家戰(zhàn)略,濱海鹽堿地改良與高效經(jīng)濟(jì)作物的適應(yīng)性栽培利用又重新提上研究日程。黃河三角洲是我國(guó)北方最大的濱海鹽堿地,大部分區(qū)域地勢(shì)低平,地下水位高,河叉密集,雨季經(jīng)常造成海水倒灌,且地表排泄不暢容易積水造成農(nóng)作物澇害;而春季干旱多風(fēng),蒸發(fā)強(qiáng)烈,導(dǎo)致地表返鹽,使農(nóng)作物遭受鹽害[5]。眾所周知,鹽堿地對(duì)作物的為害包括生理干旱、離子毒害、氧化傷害等多個(gè)層面[6],而在黃河三角洲,春季是這幾個(gè)制約因素疊加強(qiáng)化危害的關(guān)鍵季節(jié)。黃河三角洲屬于暖溫帶半濕潤(rùn)季風(fēng)性大陸性氣候,春季干旱少雨,氣溫上升速度快,生產(chǎn)上觀察到包括葡萄在內(nèi)的作物發(fā)芽生長(zhǎng)的物候期卻明顯低于同緯度類似氣溫的其他地區(qū)如泰安,甚至遲于煙臺(tái)地區(qū),而膠東半島的物候期往往比內(nèi)陸晚兩周,那么是否是鹽堿土的土壤理化性狀導(dǎo)致了葡萄發(fā)芽延遲?是溫度制約了根系的活動(dòng)還是芽發(fā)育本身的原因?【前人研究進(jìn)展】溫度是影響葡萄萌芽的重要環(huán)境因子,包括氣溫和地溫[7],筆者課題組前期研究發(fā)現(xiàn)[8],土壤有效積溫和空氣有效積溫與萌芽進(jìn)程呈線性正相關(guān),且葡萄在萌芽期間對(duì)土壤有效積溫的需求更高;而鹽堿土中的鈉離子破壞土壤團(tuán)粒結(jié)構(gòu)導(dǎo)致土壤板結(jié),通透不良[9];張倩等[10]用地布覆蓋甜柚園的結(jié)果表明,覆蓋地布后10—40 cm土層的地溫能夠提升1.0—1.5℃?!颈狙芯壳腥朦c(diǎn)】為了探索鹽漬土葡萄發(fā)芽滯后的原因,本研究從土壤環(huán)境和氣候環(huán)境入手,對(duì)比研究土壤性狀的差異及其對(duì)氣溫變化的響應(yīng)特征,通過給葡萄基部搭蓋升溫更迅速的塑料‘裙膜’,研究其對(duì)地溫、發(fā)芽物候期及植株生長(zhǎng)的影響?!緮M解決的關(guān)鍵問題】探討鹽堿地葡萄發(fā)芽滯后的土壤原因及調(diào)控技術(shù),提高葡萄在鹽堿地土壤上春季生長(zhǎng)發(fā)育的質(zhì)量,為鹽漬化土壤葡萄栽培管理核心技術(shù)提供新思路。
試驗(yàn)于2018年3—11月分別在東營(yíng)廣北二分場(chǎng)及山東農(nóng)業(yè)大學(xué)(泰安)葡萄試驗(yàn)基地進(jìn)行。
廣北二分場(chǎng)是原國(guó)有農(nóng)場(chǎng),現(xiàn)為山東省農(nóng)科院科技示范園區(qū),位于東營(yíng)市南端,地理坐標(biāo)為東經(jīng)118°33′—118°45′,北緯37°13′—37°19′,地處黃河三角洲腹地,年平均降雨量537 mm,多集中在7—8月,雨季地下水位最高50 cm。屬于典型濱海鹽堿土,成土母質(zhì)為沖積性黃土,成土年齡較晚。由于獨(dú)特的地理位置,受地下高礦化度潛水影響,其土壤鹽漬化程度高。葡萄園建于2016年。
1.2.1 裙膜覆蓋試驗(yàn) 以廣北二分場(chǎng)三年生歐美雜交種鮮食‘夏黑’(‘Summer Black’,×)葡萄為試材,行距3.0 m,株距1.5 m,籬架,單干單臂樹形,干高80 cm。于2018年3月葡萄出土上架,灌溉催芽水后搭建‘裙膜’:首先在干高50 cm處沿立柱上拉一道絲,以其為頂點(diǎn)將寬幅為80 cm的白色薄膜從兩側(cè)交疊用綁絲固定,兩側(cè)以約45o夾角分別向行間地面拉開,并用土壓邊,形成密封的小三角即‘裙膜’,每個(gè)處理鋪設(shè)兩行。以不覆蓋‘裙膜’為對(duì)照,每個(gè)處理安裝2個(gè)溫度監(jiān)測(cè)儀,將溫度探頭傳感器埋于地下10 cm處,同時(shí)在第4道拉絲處安裝溫度探頭監(jiān)測(cè)大氣溫度,于5月中旬同時(shí)去除‘裙膜’及溫度監(jiān)測(cè)儀。
圖1 ‘裙膜’覆蓋示意圖
1.2.2 不同土壤類型對(duì)氣溫的響應(yīng) 為驗(yàn)證鹽堿土與非鹽堿土對(duì)春季氣溫的響應(yīng)差異,于2018年3月從廣北二分場(chǎng)葡萄基地(表層土壤容重1.45 g?cm-3,有機(jī)質(zhì)含量4.53 g?kg-1,孔隙度45%)取土拉回泰安,以葡萄園非鹽堿性棕壤土(表層土壤容重1.25 g?cm-3,有機(jī)質(zhì)含量9.34 g?kg-1,孔隙度52.8%)為對(duì)照,將2種土壤分別裝滿直徑為25 cm,高為35 cm花盆,埋于深35 cm,寬30 cm,長(zhǎng)180 cm條溝中,用自來水飽和灌溉,待土壤自然沉實(shí)后,分別將2個(gè)溫度探頭傳感器安裝至花盆內(nèi)10 cm處。每個(gè)處理各重復(fù)6盆,以葡萄園小型氣象監(jiān)測(cè)系統(tǒng)提供氣溫?cái)?shù)據(jù)。同時(shí)在相同時(shí)段分別在2個(gè)葡萄園田間取樣進(jìn)行土壤理化性狀及氧氣擴(kuò)散量等指標(biāo)的測(cè)定。
1.3.1 地溫的測(cè)定 在發(fā)芽期(3月13日至5月5日)用L92-1型溫度黑匣子測(cè)定,將溫度探頭埋于地下10 cm處,設(shè)置時(shí)間為每小時(shí)測(cè)定一次溫度。
1.3.2 土壤理化性狀的測(cè)定 常規(guī)方法測(cè)定0—20、20—40 cm土層的理化性狀,其中,土壤pH采用1﹕5水土比浸提電位法,用pH數(shù)顯式酸度計(jì)(Mettler Toledo公司,瑞士)測(cè)定;土壤電導(dǎo)率EC值按水土比1﹕5混合,用FE30梅特勒電導(dǎo)率儀(Mettler Toledo公司,瑞士)測(cè)定;土壤可溶性鹽含量按水土比1﹕5混合,用PNT3000土壤鹽堿度檢測(cè)儀(TEPS公司,德國(guó))測(cè)定;利用質(zhì)量差法計(jì)算土壤中全鹽含量;土壤容重用環(huán)刀法測(cè)定,比重用比重瓶法測(cè)定;用ODR土壤氧氣擴(kuò)散速率儀(賽弗公司,中國(guó))測(cè)定土壤氧氣擴(kuò)散速率及氧化還原電位。
1.3.3 葡萄生物指標(biāo)的測(cè)定 采取田間調(diào)查方法統(tǒng)計(jì)葡萄發(fā)芽物候期;在6月中旬每個(gè)處理選取30片葉片用Digital數(shù)顯式游標(biāo)卡尺測(cè)定葉片厚度;用JA2003N型電子天平測(cè)定葉片重;用CI-202便攜式葉面積儀測(cè)定葡萄葉面積;參照趙世杰等[11]方法測(cè)定葉綠素的含量。10月中旬用米尺從植株新梢基部到生長(zhǎng)點(diǎn)測(cè)定新梢生長(zhǎng)量,用直尺測(cè)定新梢第三節(jié)的節(jié)間長(zhǎng)度,用Digital數(shù)顯式游標(biāo)卡尺測(cè)定莖粗。
1.3.4光合參數(shù)與葉綠素?zé)晒鈪?shù)的測(cè)定 用CIRAS-3便攜式光合儀測(cè)定葡萄葉片光合指標(biāo);用Handy PEA、Fluorescence Monitoring System便攜式葉綠素?zé)晒鈨x測(cè)定葡萄葉片葉綠素?zé)晒庵笜?biāo)。
試驗(yàn)數(shù)據(jù)取3次生物學(xué)重復(fù)的平均值(數(shù)據(jù)以平均值±標(biāo)準(zhǔn)誤表示),分別用Microsoft Excel和SigmaPlot處理數(shù)據(jù)和作圖,用DPS軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析。
2.1.1 兩種土壤響應(yīng)氣溫變化的差別 在泰安同一地點(diǎn)利用盆栽條件測(cè)定鹽堿土(Sal)與棕壤土(Brun)對(duì)氣溫變化的響應(yīng),如圖2-A所示,隨著氣溫的逐漸升高,土壤日均溫都顯著性回升,而鹽堿土響應(yīng)升溫的速度更慢,土溫更低。在4月20—21日氣溫升溫時(shí)段(圖2-B),鹽堿土比棕壤土響應(yīng)氣溫上升的時(shí)間延遲3 h左右,氣溫達(dá)到最高溫時(shí),鹽堿土比棕壤土地溫低6.5℃;在21—22日降溫時(shí)段(圖2-C),鹽堿土響應(yīng)氣溫下降的時(shí)間基本與氣溫下降時(shí)段相同,鹽堿土響應(yīng)氣溫下降時(shí)段要早很多,鹽堿土與棕壤土分別比氣溫高2.6℃和6.8℃,土溫下降速度明顯滯后于氣溫,鹽堿土的下降速度更快于棕壤土,22日比棕壤土低21.8%。
圖2 鹽堿土與棕壤土溫度變化特征
Fig. 2 Temporal and spatial variation of temperature in saline-alkali soil and brown soil
2.1.2 鹽堿土與棕壤土理化性狀的比較 土壤含鹽量及電導(dǎo)率是反映土壤鹽堿化狀況的指標(biāo)[12]。取樣測(cè)定表明,鹽堿土與棕壤土可溶性鹽含量、全鹽量及電導(dǎo)率指標(biāo)在各個(gè)土層都有顯著性差異(表1),在0—20 cm土層中,鹽堿土比棕壤土分別顯著提高了31.7、23.2、24.3倍;在20—40 cm土層中也分別顯著性提高57.4、26.5、36.5倍。鹽堿土pH在0—20及20—40 cm土層中,分別比棕壤土提高28%、11%。而土壤有機(jī)質(zhì)是土壤固相部分的重要組成成分,在土壤形成、土壤肥力及農(nóng)業(yè)可持續(xù)發(fā)展等方面都有著極其重要的作用[13],通過測(cè)定發(fā)現(xiàn),鹽堿土的土壤有機(jī)質(zhì)含量與棕壤土相比在各個(gè)土層分別低51.5%、78.3%,存在極顯著差異。
田間測(cè)定表明(表2),濱海鹽土0—20 cm土層的土壤容重高達(dá)1.45g·cm-3,屬于很緊實(shí)狀態(tài),比棕壤土的容重高11.7%,土壤孔隙度低13.5%。但在20—40 cm土層中,鹽堿土和棕壤土的兩個(gè)指標(biāo)都沒有顯著性差異。鹽堿土在0—20 cm土層的土壤氧化還原電位Eh值顯著低于棕壤土49.9%,但在20—40 cm土層沒有顯著性差異。在上、下兩個(gè)土層中,鹽土的土壤氧氣擴(kuò)散速率ODR值比棕壤土分別顯著降低了13.8%和51.6%,以上指標(biāo)都說明鹽堿土比棕壤土的通氣性差。
表1 濱海鹽堿土與棕壤土理化性狀的比較
不同字母表示<0.05的顯著差異。下同
Different letters indicate a significant difference (<0.05). The same as below
表2 濱海鹽堿土與棕壤土通氣性比較
2.2.1‘裙膜’覆蓋對(duì)地溫的調(diào)控作用 從圖3可以看出,無論白天均溫(圖3-A)還是夜間均溫(圖3-B),與對(duì)照相比,‘裙膜’覆蓋可以顯著提高鹽堿地表層土(10 cm)的地溫,特別是在降溫時(shí)段,如3月16日,當(dāng)氣溫降至最低溫時(shí),‘裙膜’覆蓋與平栽對(duì)照(CK)土溫分別比氣溫高12.5℃和7.8℃,即‘裙膜’比對(duì)照提高4.7℃(圖3-C);而在升溫時(shí)段,當(dāng)氣溫達(dá)到最高溫時(shí),‘裙膜’與對(duì)照土溫分別比氣溫低8.3℃和11.8℃,也即‘裙膜’比對(duì)照高出3.5℃(圖3-D),說明‘裙膜’覆蓋顯著提高了鹽堿地的地溫,縮小了地溫與氣溫的差距。
2.2.2‘裙膜’覆蓋對(duì)葡萄發(fā)芽進(jìn)程的影響 通過‘裙膜’覆蓋有效改善了葡萄發(fā)芽進(jìn)程,表現(xiàn)為葡萄發(fā)芽早且發(fā)芽整齊(表3),對(duì)每個(gè)處理10株樹的發(fā)芽狀態(tài)進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),‘裙膜’覆蓋的葡萄發(fā)芽比對(duì)照提前10—15 d,在處理到第30天時(shí)(4月17日)統(tǒng)計(jì)發(fā)現(xiàn),‘裙膜’覆蓋處理的60%已處于發(fā)芽期(絨球38%+露綠22%),有30%處于展葉期,只有10%處于鼓包期,而對(duì)照61%還處于鼓包和絨球期階段,只有少量開始展葉。至5月4日再次統(tǒng)計(jì)發(fā)現(xiàn),‘裙膜’覆蓋能夠使葡萄發(fā)芽率達(dá)到100%,其中有69%已經(jīng)成葉4片,而對(duì)照38%集中在展葉期,只有29%有成葉4片,還有12%處于絨球期。
圖3‘裙膜’覆蓋對(duì)地溫的影響
表3 ‘裙膜’覆蓋對(duì)發(fā)芽物候期的影響
2.2.3‘裙膜’覆蓋對(duì)新梢生物量積累的影響 ‘裙膜’覆蓋可以顯著改善葡萄的新梢生長(zhǎng)質(zhì)量(表4),與平栽對(duì)照相比,新梢生長(zhǎng)量(長(zhǎng)度)、第三節(jié)位節(jié)間長(zhǎng)度及粗度分別顯著提高了34.9%、23.8%、20%,葉面積、葉片重則顯著提高了39.9%、56.6%,葉片厚度有所增加,但與對(duì)照相比沒有顯著性差異。說明‘裙膜’覆蓋在改善地溫的同時(shí),有效改善了地上部的生長(zhǎng),顯著促進(jìn)了鹽堿地葡萄的生長(zhǎng)發(fā)育過程。
2.2.4‘裙膜’覆蓋對(duì)葡萄葉片光合性能的影響 ‘裙膜’覆蓋顯著改善了葡萄葉片的功能,葉綠素含量比對(duì)照顯著提高了27.6%(表5),凈光合速率(n)比對(duì)照提高30%;PSII最大光化學(xué)效率(v/m)、實(shí)際光化學(xué)效率(v′/m′)分別比對(duì)照顯著提高6.8%、10.8%;光化學(xué)淬滅系數(shù)(qP)比對(duì)照也顯著性提高21.9%,表明在提高地溫環(huán)境中,PSII反應(yīng)中心開放程度大,用于光化學(xué)途徑的能量增加,光合作用得到提高。
表4 ‘裙膜’覆蓋對(duì)對(duì)新梢生物量積累的影響
表5 ‘裙膜’覆蓋對(duì)葉片葉綠素含量及光合性能的影響
前人研究發(fā)現(xiàn),鹽堿土中鈉鹽含量過高對(duì)土壤膠體具有很強(qiáng)的分散作用,使團(tuán)聚體崩解,土粒分散,結(jié)構(gòu)破壞,導(dǎo)致土壤濕時(shí)泥濘、干時(shí)板結(jié),通氣透水不良,不利于植物生長(zhǎng)[9],而地溫升溫的快慢,與土壤的疏松程度有關(guān),空氣相對(duì)含量降低,導(dǎo)致土壤導(dǎo)熱率降低,進(jìn)而導(dǎo)致地溫上升緩慢[14]。本研究結(jié)果發(fā)現(xiàn),濱海鹽堿土20 cm以上表層土壤容重大,土壤孔隙度小,緊實(shí)的土壤形成了一個(gè)板結(jié)層,從而可能阻礙了空氣的交換,延遲了土壤的升溫進(jìn)程,鹽堿土較低的土壤氧化還原電位(Eh)和土壤氧氣擴(kuò)散速率(ODR),也證明了這一點(diǎn)。在各個(gè)土層也明顯降低,有可能是導(dǎo)致地溫上升緩慢的關(guān)鍵因素。與濱海鹽堿土相反的是棕壤土中含有較多有機(jī)質(zhì),土壤相對(duì)疏松,表層土壤的孔隙率較大,較易交換吸收熱量,地溫響應(yīng)氣溫的時(shí)空差異變小,地溫上升加快[15]。
溫度是影響葡萄生長(zhǎng)發(fā)育最重要的環(huán)境因子[16-17],包括氣溫和地溫[7]。萌芽是葡萄周年生長(zhǎng)的開始, 萌芽進(jìn)程同樣受到溫度的調(diào)控[8],葡萄冬芽休眠解除后,隨著溫度的升高和有效積溫積累達(dá)到一定要求后,冬芽才進(jìn)入萌芽階段[7]。黃河三角洲屬于暖溫帶半濕潤(rùn)季風(fēng)性大陸性氣候,春季干旱少雨,氣溫上升速度快,而鹽堿地土溫上升速度明顯滯后于氣溫,處在較低溫度環(huán)境中根系啟動(dòng)水分和養(yǎng)分吸收的功能受到限制,尤其是根系水分供給不適應(yīng)地上部的生長(zhǎng)需要,首先外在表現(xiàn)為傷流遲滯,然后是發(fā)芽緩慢且不整齊[18-19],嚴(yán)重的時(shí)候甚至導(dǎo)致葡萄枝條抽干[8]。因此,春季土溫的快速回升能夠讓葡萄及時(shí)結(jié)束休眠,進(jìn)入傷流、萌芽期,縮短葡萄的萌芽天數(shù)。地溫越高,葡萄新梢生長(zhǎng)越快,葉片數(shù)越多,葉面積越大。設(shè)施限根栽培試驗(yàn)發(fā)現(xiàn),根際溫度升高有利于促進(jìn)新根的發(fā)生,促進(jìn)營(yíng)養(yǎng)的吸收和運(yùn)轉(zhuǎn)發(fā)芽期樹液中所含糖類物質(zhì)、含氮化合物的顯著增加,因而發(fā)芽整齊健壯,使新梢營(yíng)養(yǎng)生長(zhǎng)和花穗發(fā)育得到改善[20]。
前人研究已經(jīng)證明,采用工程技術(shù)進(jìn)行排鹽和洗鹽,降低地下水位,避免海水倒灌是濱海鹽漬化土地改良及利用的基礎(chǔ),選擇耐鹽的經(jīng)濟(jì)作物,進(jìn)行耐鹽育種及采用一定的技術(shù)措施等成為改良土壤鹽漬化的發(fā)展方向[5,21]。從本研究結(jié)果看,土壤鹽堿化且緊實(shí)是導(dǎo)致地溫上升滯后的關(guān)鍵因素,在改良鹽堿地的過程中,通過施用以有機(jī)肥為主的有機(jī)物料來促進(jìn)土壤團(tuán)粒結(jié)構(gòu)的形成,改善作物生長(zhǎng)的土壤環(huán)境,使地面空氣溫度和湍流交換系數(shù)變大[22],提高土壤微生物活動(dòng),增加微生物的數(shù)量[23],提高土壤酶活性[24],進(jìn)而加快土壤有機(jī)氮的礦化和氮肥的水解[25],促進(jìn)作物對(duì)氮的吸收[26],才能有效提高產(chǎn)量或品質(zhì)[27-28]。然而,改良土壤結(jié)構(gòu)是一個(gè)長(zhǎng)期且復(fù)雜的過程,需要大量人力、物力的投入,現(xiàn)階段針對(duì)濱海鹽堿地土壤地溫上升緩慢的現(xiàn)象,通過簡(jiǎn)單的春季搭建塑料‘裙膜’,使葡萄根區(qū)上空形成一個(gè)微型溫室結(jié)構(gòu),增加‘裙膜’內(nèi)熱空氣傳導(dǎo)空間,即可以快速提升土壤溫度,同時(shí)也能減少土壤水分蒸發(fā),起到保水作用,使水分大部分集中在作物根區(qū)[29],緩解了鹽堿地春季干旱且返鹽的問題?!鼓ぁ采w提高了葡萄的發(fā)芽整齊度,促進(jìn)了前期的新梢生長(zhǎng)和葉片功能,其作用機(jī)制有待進(jìn)一步研究探討。
濱海鹽堿土含鹽量高,土壤緊實(shí),氧氣交換率低,有可能是導(dǎo)致春季地溫低、回升緩慢的主要原因。通過‘裙膜’覆蓋顯著提高了地溫,促進(jìn)了葡萄發(fā)芽進(jìn)程,顯著改善了葡萄生長(zhǎng)前期的光合性能。
[1] Francois L E, Maas E V, Donovan T J, YOUNGS V L. Effect of salinity on grain yield and quality, vegetative growth, and germination of Semi-Dwarf and Durum Wheat 1., 1986, 78(6): 1053-1058.
[2] KATERJI N, HOORN J W V, FARES C, HAMDY A, MASTRORILLI M, OWEIS T. Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance., 2005, 75(2): 85-91.
[3] RENGASAMY P. Soil processes affecting crop production in salt-affected soils., 2010, 37(7): 613-620.
[4] 張翼夫, 李問盈, 胡紅, 陳婉芝, 王憲良. 鹽堿地改良研究現(xiàn)狀及展望. 江蘇農(nóng)業(yè)科學(xué), 2017, 45(18): 7-10.
ZHANG J F, LI W Y, HU H, CHEN W Z, WANG X L. Research status and prospect of saline land improvement., 2017, 45(18): 7-10. (in Chinese)
[5] 陸莉, 張建國(guó), 張鐵恒. 環(huán)渤海低平原鹽堿地小麥高產(chǎn)栽培技術(shù). 作物研究, 2007, 21(3): 176-178.
LU L, ZHANG J G, ZHANG T H. High yield cultivation of wheat in saline-alkali soil in low plain of bohai rim., 2007, 21(3): 176-178. (in Chinese)
[6] 王利民. 濱海鹽堿土培肥改良利用技術(shù)及植物耐鹽性研究[D]. 南京: 南京林業(yè)大學(xué), 2010.
WANG L M. Technologies of improvement and utilization of the coastal solonchak by fertilization and salt-tolerant mechanisms of plants [D]. Nanjing: Nanjing Forestry University, 2010. (in Chinese)
[7] ALURQUERQUE N, GARCIA-MONTIEL F, CARRILLO A, BURGOS L. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements., 2008, 64(2): 162-170.
[8] 孫魯龍, 許麗麗, 杜遠(yuǎn)鵬, 翟衡. 有效積溫與葡萄萌芽進(jìn)程的關(guān)系. 植物生理學(xué)報(bào), 2016, 52(8): 1263-1270.
SUN L L, XU L L, DU Y P, ZHAI H . The relationship of effective accumulated temperature and bud burst in grapevine., 2016, 52(8): 1263-1270. (in Chinese)
[9] 許卉. 鹽堿地對(duì)植樹造林的影響及耐鹽樹種的選擇. 濱州教育學(xué)院學(xué)報(bào), 1998, 14(1): 55-56.
XU H. Effects of saline land on afforestation and selection of salt-tolerant species., 1998, 14(1): 55-56. (in Chinese)
[10] 張倩, 彭龍, 張麗艷, 張洪銘. 覆地布栽培對(duì)土壤溫、濕度及甜柚幼樹生長(zhǎng)量的影響. 現(xiàn)代園藝, 2016, 39(9): 3-5.
ZHANG Q, PENG L, ZHANG L Y, ZHANG H M. Effects of overground cloth cultivation on soil temperature, humidity and growth rate of sweet pomelo saplings., 2016, 39(9): 3-5. (in Chinese)
[11] 趙世杰, 史國(guó)安, 董新純. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo). 北京: 中國(guó)農(nóng)業(yè)出版社, 2015: 55-57, 142-143.
ZHAO S J, SHI G A, DONG X C.. Beijing: China Agriculture Press, 2015: 55-57, 142-143. (in Chinese)
[12] 王學(xué)君, 董曉霞, 董亮, 田慎重, 劉盛林, 孫澤強(qiáng), 鄭東峰, 郭洪海. 鹽堿土壤改良劑對(duì)鹽堿地理化性狀的影響. 山東農(nóng)業(yè)科學(xué), 2016, 48(7): 103-105.
WANG X J, DONG X X, DONG L, TIAN S Z, LIU S L, SUN Z Q, ZHENG D F, GUO H H. Effects of a new soil amendment on soil physical and chemical characteristics in saline field.,2016, 48(7): 103-105. (in Chinese)
[13] 呂貽忠. 土壤學(xué). 北京: 中國(guó)農(nóng)業(yè)出版社, 2006.
Lü Y Z.. Beijing: China Agriculture Press, 2006. (in Chinese)
[14] 羅荻, 戴騰祥. 地溫場(chǎng)土壤疏松與否對(duì)地溫的影響. 氣象, 2003, 29(4): F002.
LUO D, DAI T X. Effects of loose soil on ground temperature field., 2003, 29(4): F002. (in Chinese)
[15] 王麗學(xué), 屈美琰. 秸稈殘茬覆蓋對(duì)土壤貯水量、地溫及大豆產(chǎn)量的影響研究. 節(jié)水灌溉, 2015, 28(6): 14-17.
WANG L X, QU M Y. Influence of straw stubble mulching on water stored in soil and soil temperature and soybean yield from., 2015, 28(6): 14-17. (in Chinese)
[16] JACKSON D I, LOMBARD P B. Environmental and management practices affecting grape composition and wine quality-A review., 1993, 44(4): 409-430.
[17] JONES G V, DAVIS R E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France., 2000, 51(3): 249-261.
[18] 范增英. 鹽堿地棉花如何保全苗促早發(fā). 農(nóng)業(yè)科技通訊, 1989, 18(4): 12-13.
FAN Z Y. How to preserve seedlings and promote early growth of saline cotton., 1989, 18(4): 12-13. (in Chinese)
[19] 李維順, 李艷華. 輕鹽堿地植棉技術(shù). 河北農(nóng)業(yè), 2011, 59(4): 23-24.
LI W S, LI Y H. Cotton planting technology in light saline soil., 2011, 59(4): 23-24. (in Chinese)
[20] 王世平, 費(fèi)全風(fēng), 秦衛(wèi)國(guó), 張才喜, 郭慶海, 朱麗娜. 根域加溫對(duì)促成栽培緋紅葡萄生長(zhǎng)發(fā)育的影響. 果樹學(xué)報(bào), 2003, 20(3): 182-185.
WANG S P, FEI Q F, QIN W G, ZHANG C X, GUO Q H, ZHU L N. Effects of Root-zone heating on the growth and development of cardinal grapevine under protected cultivation., 2003, 20(3): 182-185. (in Chinese)
[21] 牛東玲, 王啟基.鹽堿地治理研究進(jìn)展. 土壤通報(bào), 2002, 33(6): 449-455.
NIU D L, WANG Q J. Research progress on saline-alkali field control., 2002, 33(6): 449-455. (in Chinese)
[22] 方文松, 朱自璽, 劉榮花, 馬志紅, 師麗魁. 秸稈覆蓋農(nóng)田的小氣候特征和增產(chǎn)機(jī)理研究. 干旱地區(qū)農(nóng)業(yè)研究, 2009, 27(6): 123-128.
FANG W S, ZHU Z X, LIU R H, ma Z H, SHI L K. Study on microclimate characters and yield-increasing mechanism in straw mulching field., 2009, 27(6): 123-128. (in Chinese)
[23] 宋秋華, 李鳳民, 王俊, 劉洪升, 李世清.覆膜對(duì)春小麥農(nóng)田微生物數(shù)量和土壤養(yǎng)分的影響. 生態(tài)學(xué)報(bào), 2002, 22(12): 2125-2132.
SONG Q H, LI F M, WANG J, LIU H S, LI S Q. Effect of various mulching durations with plastic film on soil microbial quantity and plant nutrients of spring wheat field in se-mi-arid Loess Plateau of China., 2002, 22(12): 2125-2132. (in Chinese)
[24] 竇超銀, 康躍虎, 萬(wàn)書勤, 呂國(guó)華. 覆膜滴灌對(duì)地下水淺埋區(qū)重度鹽堿地土壤酶活性的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(3): 44-51.
DOU C Y, KANG Y H, WAN S Q, Lü G H. Effect of mulch-drip irrigation on soil enzyme activities of saline-sodic soil with shallow water table., 2010, 26(3): 44-51. (in Chinese)
[25] 謝駕陽(yáng), 王朝輝, 李生秀, 田霄鴻. 地表覆蓋對(duì)西北旱地土壤有機(jī)氮累積及礦化的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(3): 507-513.
XIE J Y, WANG Z H, LI S X, TIAN X H. Effect of different surface mulching on soil organic nitrogen accumulation and mineralization in dryland of northwestern China., 2010, 43(3): 507-513. (in Chinese)
[26] 張忠學(xué), 聶堂哲, 王棟. 黑龍江省西部半干旱區(qū)玉米膜下滴灌水、氮、磷耦合效應(yīng)分析. 中國(guó)農(nóng)村水利水電, 2016, 58(2): 1-4.
ZHANG Z X, NIE T Z, WANG D. The coupling effect of water, N and P with drip irrigation under plastic film on maize in Semi-arid region of western Heilongjiang province., 2016, 58(2): 1-4. (in Chinese)
[27] 陳慶寬, 馬玲, 張風(fēng)琴, 朱衛(wèi)東. 土壤改良鹽堿劑在釀酒葡萄上施用效果. 農(nóng)村科技, 2004, 20(7): 10.
CHEN Q K, MA L, ZHANG F Q, ZHU W D. Effect of soil improvement saline-alkali agent applied on wine grapes., 2004, 20(7): 10. (in Chinese)
[28] 王胡軍, 李純, 鐘香梅, 王淑杰. 鹽堿地改良技術(shù)研究進(jìn)展. 農(nóng)業(yè)工程, 2014, 4(Z1): 44-47.
WANG H J, LI C, ZHONG X M, WANG S J. Research progress on improvement of saline alkali soil., 2014, 4(Z1): 44-47. (in Chinese)
[29] JOSHI GANGA, SINGH P K, SRIVASTAVA P C. Effect of mulching, drip irrigation scheduling and fertilizer levels on plant growth, fruit yield and quality of litchi (Sonn.)., 2012, 40(1): 46-51.
Effects of ‘Tent’Mulching on Soil Temperature and Grape Growth in The Yellow RiverDelta Saline-Alkali in Spring
WANG Hui1, ZHAO Shuo1, YANG XingWang1, JIN MengLing1, DU YuanPeng1, GUAN XueQiang2, ZHAI Heng1
(1College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong;2Institute of Agricultural Products, Shandong Academy of Agricultural Sciences, Jinan 250100)
【】The objective of this paper was to explore the reasons of the delayed bud burst and to improve the growth of grapevine in saline land in spring.【】Three year old ‘Summer Black’ grape was used as test material, which was cultivated in Guangbei #2 field with saline land (1.5 m within rows and 3 m between rows, vertical shoot-positioning system, hedgerows, single stem and arm tree shape). Grapes were unearthed in March 2018, ‘tent’ was built after irrigating for the accelerating germination, namely, pulling a wire at a height of 50 cm, with it as the vertex, white plastic film with a width of 80 cm was superimposed on both sides with binding wire. The two sides were opened to the ground with an angle about 45o, then soil was used to cover the edge, a small hermetically sealed triangle known as the ‘tent’ mulching. Two rows were laid for each treatment, plants without covering the ‘tent’ were used as control, and effects of ‘tent’ mulching on soil temperature and grape growth was studied.【】‘Tent’ mulching in the Yellow River delta saline land promoted the growth and development of grape and effectively increased the ground temperature in saline land. The average ground temperature of the 10 cm soil layer in the rhizosphere under ‘tent’ mulching was significantly increased by about 5℃, compared with the control. The ground temperature under ‘tent’ mulching increased earlier and retained longer time than that under the control treatment, which decreased the gap between ground temperature and air temperature. The phenological period of grapes bud burst under ‘tent’ mulching were 10-15 days earlier than that under the control, and the bud burst time was earlier and consistent. ‘Tent’ mulching significantly improved the growth quality of grape shoots, growth of new shoots (length), internode length and width of the third node, which were increased by 34.9%, 23.8% and 20%, respectively, compared with the control. Leaves area and weight under ‘Tent’ mulching were increased by 39.9% and 56.6%, respectively, while leaves thickness under ‘Tent’ mulching was increased but there was no significant difference, compared with the control. ‘Tent’ mulching significantly improved the leaves function of grape, leaves chlorophyll content, net photosynthetic rate (Pn) and maximum photochemical efficiency (Fv/Fm), which were increased by 27.6%, 30% and 6.8%, significantly, compared with the control. The photochemical quenching coefficient (qP) was also significantly increased by 21.9%, which indicated that the open degree of PSII reaction center in geothermal environment was large, the energy used in the photochemical pathway was increased, and photosynthesis was increased. In order to explore the causes of delayed temperature rise in saline land, the pot experiments were conducted under the same climatic conditions in Tai'an. The results showed as follows: the response of saline soil ground temperature to air temperature was significantly delayed about 3 h than that of brown soil. The largest differences about the two soil were salt content, soil conductivity, bulk density and porosity. Field measurements showed that saline soil was less aerated than brown soil. The bulk density of the 0-20 cm soil layer in saline soil was as high as 1.45 g?cm-3, which belong to a compaction condition. The bulk density was 11.7% higher than that of brown soil, soil porosity was 13.5% lower than that of brown soil, soil reoxidation reduction potential (Eh) and oxygen diffusion rate (ODR) were 49.9% and 13.8% lower than that of brown soil, respectively.【】The ‘tent’ significantly increased the ground temperature of saline-alkali land, reduced the time-space difference of air and ground temperature, effectively improved the bud burst process of grape, advance the phenological period of bud burst, improved the growth quality of new shoots, and promoted the growth and development of grapevine in spring.
saline-alkali land; grapes; ground temperature; delayed; ‘tent’; mulching
2019-02-28;
2019-05-30
山東省重大科技創(chuàng)新工程項(xiàng)目(2018CXG0306)、山東省公益性重點(diǎn)研發(fā)計(jì)劃(2017GNC13112)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-29)、山東省農(nóng)業(yè)重大應(yīng)用創(chuàng)新項(xiàng)目
王輝,E-mail:1924412287@qq.com。
翟衡,E-mail:zhaih@sdau.edu.cn
(責(zé)任編輯 趙伶俐)