• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reynolds number effects on tonal noise generation from an airfoil

    2019-08-22 01:08:22XUSiweiLIWeipeng
    空氣動力學學報 2019年3期
    關鍵詞:來流功率密度雷諾數(shù)

    XU Siwei,LI Weipeng

    (School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China)

    Abstract:The tonal noise generation from a NACA0015 airfoil at a low (Rec=1×104)and a moderate (Rec=5×104)Reynolds number is studied by performing two-dimensional direct numerical simulations.The effects of Reynolds number result in distinguishing features on the acoustic fields and thus the spectra.For the moderate Reynolds number cases,the vortex shedding on the suction and pressure side of the airfoil contributes separately to the generation of the acoustic waves,corresponding to an individual hump with different discrete frequencies in the acoustic spectra.A linear stability analysis is used to clarify the relation between the formation of vortices with the growth of unstable Tollmien-Schlichting (T-S)waves.Results suggest that the single tone observed in the low Reynolds number cases is probably associated with the inherent hydrodynamic instability of the boundary layer,whereas the multiple tones in the moderate Reynolds number cases are considered to be associated with a feedback loop mechanism between the formation of vortices and the excitation of acoustic disturbances.Feedback loops actually exist on both sides of the airfoil rather than just on the pressure side or on the suction side of the airfoil.

    Key words:trailing edge noise;Reynolds number effect;feedback loop mechanism;linear stability analysis;NACA0015 airfoil

    0 Introduction

    Tonal noise emitted from an isolated airfoil at low and moderate Reynolds numbers has been identified as one of the most remarkable problems both in academic and engineering fields[1],especially for the

    small wind turbines and micro air vehicles.Despite the fact that many investigations have been conducted experimentally and numerically to clarify the physics behind it,the mechanism of the tonal noise generation has not yet been clearly understood.The first comprehensive study on the tonal noise from an airfoil was conducted by Paterson et al.[2],who did experimental investigations of NACA0012 and NACA0018 airfoils at a wide range of Reynolds numbers and angles of attack.They stated that the generation of the tonal noise was associated with a vortex-shedding mechanism near the trailing edge.Tam[3]argued that the hypothesis of the vortex- shedding mechanism itself was not valid.Instead,he proposed a self-excited feedback loop mechanism to explain the generation of the discrete tones.Arbey and Bataille[4]studied a NACA0012 airfoil at zero angle of attack experimentally,observing that the acoustic spectrum actually contains both broadband components with a peak frequency and discrete components in form of equal-spaced discrete frequencies.They owed the broadband components to the diffraction of Tollmien-Schlichting (T-S)waves at the sharp trailing edge of the airfoil and predicted the discrete components via Tam[3]’s feedback loop model.Lowson,Fiddes,and Nash[5]noticed that the generation of tonal noise was related to the laminar separation on the pressure side of the airfoil.Nash,Lowson,and Mcalpine[6]and Mcalpine,Nash,and Lowson[7]later investigated a NACA0012 airfoil at small angles of attack in an anechoic wind tunnel.They proposed a revised feedback loop model based on the amplification of T-S waves in the laminar separation region on the pressure side of the airfoil.Considering the two-dimensional nature of the tonal noise generation,Desquesnes,Terracol,and Sagaut[8]conducted two-dimensional direct numerical simulations(DNS)and observed similar acoustic spectra to those measured by Arbey and Bataille[4].In their efforts to explain the multiple tones in the spectra,they suggested that a secondary feedback loop is also existed on suction side of the airfoil,which serves to modulate the amplitude of the main feedback loop on the pressure side of the airfoil.Using DNS,Jones and Sandberg[9]observed that the most amplified frequency of the T-S waves did not approximate to the primary tone frequency.They proposed a mechanism involving global instabilities around the whole airfoil to account for the tonal noise generation.Tam and Ju[10]numerically examined the sound generation from NACA0012 at zero angle of attack and found only a single peak in the acoustic spectrum.They ascribed this single tone to the Kelvin-Helmholtz (K-H)instabilities in the wake rather than the T-S waves in the upstream boundary layers.Recently,active and passive flow control methods[11-12]have been successfully implemented to suppress the generation of the tonal noise by interfering the growth of T-S waves within the boundary layers,which to some extent indicate the pivotal role of boundary layer instabilities for the noise generation.

    Aforementioned studies were performed at moderate Reynolds numbers (Rec=5×104—5×105).Apart from these studies,Ikeda,Atobe,and Takagi[13]numerically investigated NACA0012 and NACA0006 airfoils at a low Reynolds number (Rec=1×104).They concluded that at zero angle of attack wake instabilities dominate the tonal noise generation.As the angle of attack and freestream Mach number increase,T-S waves are enhanced and a feedback loop is gradually established to determine the tone frequencies.The underlying mechanism of the tonal noise generation seems to differ regarding different flow conditions,such as Reynolds numbers,angles of attack,and freestream Mach numbers.

    The objective of the present study is two-fold:to put more insight into the tonal noise generation from an airfoil at both low and moderate Reynolds numbers,and to further examine the role of boundary layer instability on the suction and pressure side of the airfoil.Section II gives an introduction of the numerical methods.Section III presents analysis on acoustic fields and tonal noise generation mechanisms.Finally,concluding remarks are summarized in Section IV.

    1 Numerical methods

    1.1 Flow conditions

    Flow past a symmetric airfoil NACA0015 with a sharp trailing edge is simulated.The freestream Mach number isM=0.2,and the Reynolds number based on the chord lengthCis chosen to beRec=1×104for low Reynolds number cases andRec=5×104for moderate Reynolds number cases.Three angles of attack,0°,2° and 4°,are investigated.Details of the flow conditions are listed in Table 1.For simplicity,the simulation cases are labeled using the Reynolds number and the angle of attack.For instance,R1A0 represents the case operating at Reynolds number ofRec=1×104and zero angle of attack.

    Table 1 Flow conditions表1 來流參數(shù)

    1.2 Numerical algorithm

    The governing equations are two-dimensional unsteady compressible Navier-Stokes equations.A finite difference approach is used to solve the governing equations.In order to meet low-dispersive and low-dissipative requirements of turbulent flows and aerodynamic sound,the convective terms are discretized by means of a six-order compact differencing scheme in transformed curvilinear coordinates[14-15].An tenth-order low-pass spatial filtering scheme (with optimization parameterαf=0.494[14])is applied at each time step on the conservative variables to ensure numerical stability.Viscous terms are evaluated by a sixth-order central differencing scheme.Alternate directional implicit symmetric Gauss-Seidel (ADI-SGS)scheme[16]is performed for the time integration.A second-order temporal accuracy is obtained with three local subiterations to converge the Newton-Raphson subiterative process.

    The computational grids are shown in Figure 1.The grids are designed forRec=5×104cases and used for the low Reynolds number cases as well.Structured grids with a C-type grid-topology are adopted.The outer boundaries are about 100 times of the chord length away from the airfoil surface.Grids are divided into an upstream block from trailing edge and a wake block behind it.The two blocks are connected with 12 overlap nodes.Details about the grid points are listed in Table 2.The minimum grid sizes in wall-normal and streamwise direction,normalized by the chord lengthc,are 1×10-4and 2×10-3respectively,which ensure all grids satisfy the inequalities[17]:Δξ+<30,Δη+<1,where Δ denotes the minimum grid spacing and + denotes a normalization based on viscous unit.Non-slip and adiabatic conditions are applied on the wall surface.Zero-gradient pressure condition is employed at the outlet boundaries.

    Fig.1 Computational grids around the airfoil (every 5 grid point)圖1 翼型區(qū)域的計算網(wǎng)格(每5個網(wǎng)格)

    Table 2 Number of grid points in each direction表2 網(wǎng)格分布

    The time step non-dimensonalized by the chord length and the freestream velocity is 4×10-5,with the maximum CFL number less than unit.The total time steps calculated are 6×105,corresponding to a time duration that the freestream flow pass a distance of 24 chord length.After the computation of the first 2×105time steps,flow reaches a quasisteady state,then instantaneous flow fields of the remaining 4×105time steps are collected for obtaining time-averaged and statistical data for subsequent analysis.

    1.3 Validations

    The CFD codes in use have been extensively validated by several applications,such as cavity noise and flow over single-element airfoils[17-22].In order to ensure the validity of the current calculations,the time-averaged pressure coefficients of the R5A2 and R5A4 case are compared with the experimental data given by Asada et al.[23],as displayed in Figure 2.The experiments were conducted at eitherRec=4.4×104orRec=6.3×104.It can be seen that the simulation results have acceptable agreements with the experimental results,confirming the validity of current study.Furthermore,it is worthy to mention that Lee et al.[22](using the same CFD codes)has demonstrated that two-dimensional DNSs performed at Reynolds numbers between 1×104and 5×104can predict the aerodynamic characteristics of the airfoil qualitatively.Therefore,the two-dimensional computations are considered as an appropriate approach within the current range of Reynolds numbers.

    (a)R5A2

    (b)R5A4Fig.2 Comparison of the time-averaged pressure coefficients with Asada’s[23] experimental data 圖2 時均壓力系數(shù)與實驗(Asada[23])對比結(jié)果

    2 Results and discussions

    2.1 Acoustic fields

    The aerodynamic sound fields scattered from the trailing edge are examined.Due to the singularity of velocity in an inviscid limit,periodic vortical motions develop in the wake of the airfoil and very large vorticity variations are induced near the trailing edge[13].Contours of the divergence of instantaneous velocity·ufor the six cases are given in Figure 3.A general view is that all acoustic fields display typical bipolar behaviors,and acoustic waves are emitted from the trailing edge,which are consistent with the trailing edge noise features[8,10,13].

    (a)R1A0 (b)R1A2

    (c)R1A4 (d)R5A0

    (e)R5A2 (f)R5A4Fig.3 Contours of the divergence of instantaneous velocity, (color scaling ranges from white to black: -5×10-4 ≤·u≤5×10-4)圖3 瞬時速度散度云圖(-5×10-4 ≤·u≤5×10-4)

    The acoustic wavelengths are smaller in the moderate Reynolds number cases than those in the low Reynolds number cases,indicating higher dominant frequencies at the moderate Reynolds number.

    Power spectral density (PSD)of the acoustic signals are obtained using time histories of pressure fluctuations sampled at a station point,where locates vertically upward from the trailing edge with a distance of 3c.The sample location is chosen to avoid contamination of the acoustic signals caused by hydrodynamic fluctuations[8].Each sample set,containing 4×105pressure fluctuation points,is divided into 8 segments with 50% overlaps,and each segment is estimated with a periodogram method using a Hamming window function.Then the estimations are averaged to provide the final PSD result of the sample set.

    (a)R1A0 (b)R1A2

    (c)R1A4 (d)R5A0

    (e)R5A2 (f)R5A4Fig.4 Power spectral density of the acoustic signals at a sampling point located vertically upward from the trailing edge with a distance of 3c圖4 單點(距尾緣高度3c)聲壓信號的功率密度譜

    Table 3 Tonal frequencies in the acoustic spectra表3 尖頻噪聲頻率

    2.2 Tonal noise generation

    In this subsection,tonal noise generation from the trailing edge is investigated.Since a single tone dominates the spectrum in low Reynolds number cases,the instantaneous flow fields can be averaged into a phase-locked period using phase-averaging analysis[19].All snapshots of the instantaneous flow fields are reassembled into one typical cycle with 20 phases to filter out irregular small disturbances.Similar features are exhibited in the three cases operating at the low Reynolds number,so only the R1A2 case is used to discuss the tonal noise generation.

    Figure 5 displays one typical loop of noise generation using phase-averaged flow fields for the R1A2 case,illustrated by variations of streamwise vorticity (a1-a4),Qcriterion (b1-b4),and pressure fluctuations (c1-c4)at four different phases around the airfoil and its trailing edge.Atφ=π/2,it displays that a laminar separation without reattachment occurs in the boundary layer on the suction side of the airfoil,while the boundary layer on the pressure side of the airfoil remains attached.A vortexVphas just passed over the airfoil,and a new vortexVnis generating near the trailing edge.Low pressure region is associated with the core of the vortexVp,and the pressure gradient is balanced with the centrifugal force of the vortex[19].Atφ=π,the scale of theVngrows due to Kelvin-Helmholtz instability.The scattering of the vortexVpoccurs near the trailing edge,accompanying by velocity distortions and deformations.The balance between the pressure gradient and the centrifugal force of the vortex is broken up.The low pressure region is no longer associated with the vortex and begins to spread to the upper side of the trailing edge.High pressure values in the lower side of the trailing edge are generated because of the stagnation between two neighbored vortices.Atφ=3π/2,the vortexVnconvects downstream,and the acoustic wave propagates to a far field.A new vortexV′pis formed on the suction side of the airfoil.Atφ=2π,the passage of the vortexV′pleads to another half period of pressure oscillations near the trailing edge.The pressure oscillations near the trailing edge and the generation of the acoustic waves in the far fields are exactly related to the successive passage of vortices.

    For moderate Reynolds number cases,it is difficult to conduct phase-averaged analysis because of the multiple tones.To confirm that the tones are linked to the vortex shedding as well as to clarify different roles of the vortex shedding on the suction and pressure side of the airfoil,PSD of an integral vorticityΩalong a perpendicular line away from the airfoil surface atx/c=0.93 are calculated.The definition ofΩis given by:

    Fig.5 One typical loop of noise generation using phase-averaged flow fields for the R1A0 case圖5 一個典型周期內(nèi)的相平均流場(R1A0)

    (1)

    Table 4 Peak frequencies in the PSD of Ω表4 變量Ω功率密度譜的尖頻峰值頻率

    2.3 Linear stability analysis

    To investigate the link between hydrodynamic stabilities and vortex formation in boundary layers,linear stability analysis (LSA)is performed by solving a spatial Orr-Sommerfeld equation (OSE)to model T-S waves in the boundary layers.The spatial OSE is given as follows:

    (2)

    Local growth rates of T-S waves on both sides of the airfoil for the low Reynolds number cases are investigated.The stations are selected every 10% chord from the leading edge to the trailing edge of the airfoil.Since no amplification of T-S waves is observed on the pressure side of airfoil in the R1A2 and R1A4 case,the LSA results only on the suction side of the airfoil are plotted in Figure 6.In the R1A0 case T-S waves emerge approximately at station ofx/c=0.5,and the growth rates are amplified in the downstream,reaching a peak near the trailing edge.As the angle of attack increases,the locations where the T-S waves first detected move upstream,and the maximum growth rate of T-S waves is increased.

    (a)R1A0

    (b)R1A2

    (c)R1A4Fig.6 Local growth ratios of T-S waves on the suction side of the airfoil for the case of R1A0 R1A2 and R1A4圖6 翼型吸力面上T-S波的局部增長率(R1A0,R1A2和R1A4)

    Local growth rates of T-S waves for the moderate Reynolds number cases are plotted in Figure 7 and 8,respectively obtained from the suction and pressure side of the airfoil.It is observed that on the suction side the growth rates of T-S waves first increase and then decrease along the streamwsie direction.This is caused by the reattachment of the boundary layer on the suction side of the airfoil,which leads to a relatively stable state again,as discussed in our previous work[24].For the R5A2 and R5A4 case,amplification of T-S waves is also identified on the pressure side,as shown in Figure 8.The growth rates remain increasing till the trailing edge,similar to the observation of low Reynolds number cases.

    (a)R5A0

    (b)R5A2

    (c)R5A4Fig.7 Local growth ratios of T-S waves on suction side of the airfoil for the case of R5A0,R5A2 and R5A4圖7 翼型吸力面上T-S波的局部增長率(R5A0,R5A2和R5A4)

    (b)R5A4Fig.8 Local growth ratios of T-S waves on the pressure side of the airfoil for the case of R5A2 and R1A4圖8 翼型壓力面上T-S波的局部增長率(R5A2和R1A4)

    Fig.9 Total growth ratios of the T-S waves for the low Reynolds number cases圖9 低雷諾數(shù)算例的T-S波總增長率

    (a)Suction side

    (b)Pressure sideFig.10 Total growth ratios of the T-S waves for the moderate Reynolds number cases圖10 中等雷諾數(shù)算例的T-S波總增長率

    2.4 Feedback loop mechanism and mathematical modeling

    It has been clear that for low Reynolds number cases,the most unstable T-S waves give rise to the vortex formation and shedding at the same frequency of the unstable T-S waves.Vortex scattering near the trailing edge results in the generation of acoustic waves at that specific frequency,in terms of a single tone observed in the far field.The generation of the single tone in the low Reynolds number cases is probably associated with the inherent hydro-dynamic (local)instability[25]of the boundary layer rather than a global instability evolving acoustic excitation or interaction.It seems to be contrary to Ikeda,Atobe,and Takagi’s[13]conclusion that a feedback loop mechanism characterizes the low Reynolds number airfoils.

    For the moderate Reynolds number cases,the multiple tones in the acoustic spectra are also related with the vortex shedding and scatting near the trailing edge.However,the difference with the low Reynolds number cases is that the formation of the vortices is governed by a feedback mechanism[3-4,26].In Kingan and Pearse’s[26]feedback loop model,T-S waves propagate downstream at a phase velocitycr,and generate large-scale vortices at the same frequencies.The large-scale vortices pass over the trailing edge and emit acoustic waves with a phase shifting of π.The emitted acoustic waves propagate upstream at velocity of (a∞-U∞)and excite the boundary layer.New T-S waves are induced as long as the acoustic disturbances are strong enough and in range of the unstable natural frequencies of the boundary layer.Then the feedback loop is closed.A formula to model the feedback loop is given as

    (n=1,2,3,...)

    (3)

    wherefmis the modeled tonal frequencies,Lis the distance between the trailing edge and the location where T-S waves first emerge,andnis an arbitrary integer.The phase velocitycris estimated using the real part ofαin Eq.2,following the approach of Kingan and Pearse[26].Comparison of the total frequencies with the model predictions using Eq.3 are shown in Figure 11.Good agreements are obtained,indicating that the generation of the tonal noise are governed by the feedback loop mechanism.

    (a)Suction side

    (b)Pressure sideFig.11 Comparison of the total frequencies with the model prediction[26]圖11 尖頻噪聲頻率與預測模型的對比結(jié)果

    Feedback loops actually exist on both sides of the airfoil rather than just on the pressure side or on the suction side,which is different from Nash,Lowson,and Mcalpine[6],Chong and Joseph[12],Ikeda,Atobe,and Takagi[13]’s investigation.

    3 Conclusions

    Two-dimensional direct numerical simulations are performed to investigate the tonal noise generation in flow past a NACA0015 airfoil at a low (Rec=1×104)and a moderate (Rec=5×104)Reynolds number.The airfoil are operated at three angles of attack,i.e.α=0°,2°,4°.Key concluding remarks are highlighted as below.

    (1)The acoustic waves in all cases are emitted from the trailing edge of the airfoil,and display a type of bipolar nature.For the low Reynolds number cases the acoustic spectra is characterized by a single tone,whereas multiple tones are observed for the moderate Reynolds number cases.Due to the viscous effect,the large-scale vortices in the moderate Reynolds number cases are formed closer to the leading edge of theairfoil and exhibit much more unstable features than those in the low Reynolds number cases,especially on the pressure side of the airfoil.

    (2)The generation of the acoustic waves is studied by using phase-averaging analysis and power spectral density of vorticity fluctuations.Results show that the passage of the large-scale vortices over the trailing edge,accompanying with unsteady vorticity variations,results in periodic pressure oscillations nearby which are observed as discrete tonal noise in the far field.It confirms that for the moderate Reynolds number cases,the vortex shedding on the suction and pressure side of the airfoil contributes separately to the generation of the acoustic waves,corresponding to an individual hump with different discrete frequencies in the acoustic spectra.

    (3)To further explain the formation of the vortices,a linear stability analysis is performed.It is found that in all cases the vortex shedding frequency on each side of the airfoil is close to the most unstable frequency of the Tollmien-Schlichting (T-S)waves,indicating that the formation of the vortices is related to the growth of the unstable T-S waves.The single tone observed in the low Reynolds number cases is probably associated with the inherent hydrodynamic instability of the boundary layer,whereas the multiple tones in the moderate Reynolds number cases are considered to be associated with a feedback loop between the formation of the vortices and the excitation of the acoustic disturbances.With a comparison with Kingan and Pearse’s[26]feedback loop model,it shows that the feedback loops actually exist on both sides of the airfoil rather than just on the pressure side or on the suction side.

    Acknowledgements:The authors acknowledge the funding support of National Basic Research Program of China (973 program)granted (2014CB744802,2014CB744804)and the support of National Natural Science Foundation of China (11772194).The large-scale computations are supported by Center for High Performance Computing,Shanghai Jiao Tong University.

    猜你喜歡
    來流功率密度雷諾數(shù)
    兩種典型來流條件下風力機尾跡特性的數(shù)值研究
    能源工程(2022年2期)2022-05-23 13:51:48
    不同來流條件對溢洪道過流能力的影響
    基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
    失穩(wěn)初期的低雷諾數(shù)圓柱繞流POD-Galerkin 建模方法研究
    基于轉(zhuǎn)捩模型的低雷諾數(shù)翼型優(yōu)化設計研究
    民機高速風洞試驗的阻力雷諾數(shù)效應修正
    彈發(fā)匹配驗證試驗系統(tǒng)來流快速啟動技術研究
    高效高功率密度低噪聲電機研究
    PrimePACKTM結(jié)合最新IGBT5和.XT模塊工藝延長產(chǎn)品壽命,提高功率密度
    國內(nèi)功率密度最大中頻感應爐太鋼熱試成功
    上海金屬(2013年6期)2013-12-20 07:58:07
    电影成人av| 久热这里只有精品99| 一区在线观看完整版| 中文字幕人妻丝袜一区二区| 国产xxxxx性猛交| 巨乳人妻的诱惑在线观看| 欧美av亚洲av综合av国产av| 日韩欧美国产一区二区入口| 黄色 视频免费看| 不卡av一区二区三区| 午夜日韩欧美国产| 啦啦啦视频在线资源免费观看| 黄色毛片三级朝国网站| 亚洲国产精品一区三区| 一级毛片精品| 在线观看舔阴道视频| 欧美性长视频在线观看| 五月天丁香电影| 我要看黄色一级片免费的| 午夜福利视频精品| 国产1区2区3区精品| 色播在线永久视频| 热re99久久国产66热| 咕卡用的链子| 91九色精品人成在线观看| 在线观看舔阴道视频| 女人爽到高潮嗷嗷叫在线视频| 精品国产国语对白av| 国产成人精品久久二区二区免费| 国精品久久久久久国模美| 久久午夜综合久久蜜桃| 久久九九热精品免费| 国产欧美日韩一区二区精品| 成人黄色视频免费在线看| 久9热在线精品视频| 黄色片一级片一级黄色片| 菩萨蛮人人尽说江南好唐韦庄| 夜夜夜夜夜久久久久| 亚洲精品乱久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 美女中出高潮动态图| 久久亚洲精品不卡| 欧美午夜高清在线| 国产不卡av网站在线观看| 国产欧美日韩一区二区三 | 韩国精品一区二区三区| 亚洲精品国产av蜜桃| 国产成人欧美| 亚洲精品在线美女| 欧美日韩黄片免| 免费在线观看影片大全网站| 国产高清视频在线播放一区 | 国产色视频综合| 日本av免费视频播放| 18禁黄网站禁片午夜丰满| 老司机午夜十八禁免费视频| 女人精品久久久久毛片| 一本色道久久久久久精品综合| 可以免费在线观看a视频的电影网站| 在线av久久热| 欧美另类一区| 久久 成人 亚洲| netflix在线观看网站| 夜夜骑夜夜射夜夜干| a级毛片黄视频| 午夜激情av网站| 亚洲中文字幕日韩| 国产在线一区二区三区精| 无遮挡黄片免费观看| 国产一区有黄有色的免费视频| 一区二区日韩欧美中文字幕| 亚洲第一青青草原| 国产在线视频一区二区| 久久女婷五月综合色啪小说| 午夜福利在线免费观看网站| 高清黄色对白视频在线免费看| 18在线观看网站| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 久久久精品94久久精品| 人人妻人人添人人爽欧美一区卜| 精品卡一卡二卡四卡免费| 不卡av一区二区三区| 婷婷成人精品国产| 另类精品久久| www.自偷自拍.com| 国产欧美日韩一区二区三区在线| 欧美精品高潮呻吟av久久| 他把我摸到了高潮在线观看 | 肉色欧美久久久久久久蜜桃| a级毛片在线看网站| 操出白浆在线播放| 婷婷丁香在线五月| 青春草亚洲视频在线观看| 精品高清国产在线一区| 免费在线观看视频国产中文字幕亚洲 | 777米奇影视久久| 色视频在线一区二区三区| 精品国产乱子伦一区二区三区 | 午夜福利免费观看在线| 国产免费福利视频在线观看| 黄片大片在线免费观看| 精品熟女少妇八av免费久了| 久久久久视频综合| 免费av中文字幕在线| 亚洲 欧美一区二区三区| 超碰成人久久| 久久久久久久大尺度免费视频| 国产又爽黄色视频| 国产一区二区三区综合在线观看| 久久精品人人爽人人爽视色| 亚洲av日韩在线播放| av超薄肉色丝袜交足视频| 欧美精品一区二区大全| 男人操女人黄网站| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 啦啦啦视频在线资源免费观看| 九色亚洲精品在线播放| 少妇粗大呻吟视频| 极品少妇高潮喷水抽搐| 欧美变态另类bdsm刘玥| 亚洲精品美女久久av网站| 成年美女黄网站色视频大全免费| a在线观看视频网站| 夜夜夜夜夜久久久久| 精品一区在线观看国产| 欧美国产精品va在线观看不卡| 女人被躁到高潮嗷嗷叫费观| 国产xxxxx性猛交| 老熟妇仑乱视频hdxx| 韩国精品一区二区三区| 久久国产精品影院| 黄网站色视频无遮挡免费观看| 久久精品国产a三级三级三级| 91成人精品电影| 中文字幕制服av| 十八禁高潮呻吟视频| 12—13女人毛片做爰片一| 亚洲欧美激情在线| 国产精品久久久av美女十八| 黄片小视频在线播放| 热99久久久久精品小说推荐| 女性生殖器流出的白浆| 国产黄色免费在线视频| 国产成人av教育| 男女国产视频网站| av在线播放精品| 一边摸一边做爽爽视频免费| 男人添女人高潮全过程视频| 成年人免费黄色播放视频| 电影成人av| 欧美黄色淫秽网站| 日日夜夜操网爽| 国产精品一区二区精品视频观看| 伊人久久大香线蕉亚洲五| 久久精品熟女亚洲av麻豆精品| 日韩三级视频一区二区三区| 免费高清在线观看视频在线观看| 可以免费在线观看a视频的电影网站| 国精品久久久久久国模美| 啦啦啦啦在线视频资源| 久久久精品免费免费高清| 免费观看av网站的网址| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 少妇猛男粗大的猛烈进出视频| 久久国产精品影院| 丁香六月天网| 久久久久精品人妻al黑| 亚洲激情五月婷婷啪啪| 欧美国产精品一级二级三级| 男人爽女人下面视频在线观看| 涩涩av久久男人的天堂| 精品少妇黑人巨大在线播放| 久久精品国产亚洲av高清一级| 国产精品秋霞免费鲁丝片| 天堂8中文在线网| 国产精品99久久99久久久不卡| 午夜福利视频在线观看免费| 在线天堂中文资源库| 国产精品偷伦视频观看了| 一级片'在线观看视频| 天天躁日日躁夜夜躁夜夜| 蜜桃国产av成人99| 久久亚洲精品不卡| 亚洲九九香蕉| 国产极品粉嫩免费观看在线| 9色porny在线观看| 国产亚洲av高清不卡| 一区福利在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品成人在线| 可以免费在线观看a视频的电影网站| 中文字幕高清在线视频| 久久久久久久大尺度免费视频| 欧美老熟妇乱子伦牲交| 满18在线观看网站| 一区在线观看完整版| 久久久久精品国产欧美久久久 | 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 69av精品久久久久久 | 色综合欧美亚洲国产小说| 国产成人精品久久二区二区免费| 不卡一级毛片| 久久天堂一区二区三区四区| 高清黄色对白视频在线免费看| 国产一区二区在线观看av| 一区二区三区四区激情视频| 黄网站色视频无遮挡免费观看| 欧美午夜高清在线| 国产成人精品久久二区二区91| 欧美一级毛片孕妇| 亚洲欧美清纯卡通| 97在线人人人人妻| 日韩视频一区二区在线观看| 18禁黄网站禁片午夜丰满| 热re99久久国产66热| 久久久久久人人人人人| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频 | 久久av网站| 国产精品偷伦视频观看了| 亚洲精品国产色婷婷电影| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 午夜福利免费观看在线| 精品国产乱码久久久久久小说| 91老司机精品| 精品福利观看| 日韩精品免费视频一区二区三区| 国产av精品麻豆| av片东京热男人的天堂| 少妇猛男粗大的猛烈进出视频| 女人被躁到高潮嗷嗷叫费观| 男女床上黄色一级片免费看| 十八禁人妻一区二区| 午夜久久久在线观看| 在线 av 中文字幕| 亚洲国产毛片av蜜桃av| 亚洲精品国产精品久久久不卡| 成人手机av| 国产高清国产精品国产三级| 老司机影院成人| 国产成人系列免费观看| 99精国产麻豆久久婷婷| 日本撒尿小便嘘嘘汇集6| 91精品国产国语对白视频| 老司机靠b影院| 搡老岳熟女国产| 日本精品一区二区三区蜜桃| 在线观看免费日韩欧美大片| 国产片内射在线| 日韩 亚洲 欧美在线| 午夜福利一区二区在线看| 亚洲精品自拍成人| 精品欧美一区二区三区在线| 欧美乱码精品一区二区三区| 制服诱惑二区| 国产成人免费观看mmmm| 在线观看舔阴道视频| 乱人伦中国视频| 国内毛片毛片毛片毛片毛片| 亚洲精品乱久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 精品福利永久在线观看| 日本猛色少妇xxxxx猛交久久| 下体分泌物呈黄色| 一区福利在线观看| 成年美女黄网站色视频大全免费| 一本—道久久a久久精品蜜桃钙片| 搡老熟女国产l中国老女人| 丝瓜视频免费看黄片| 成在线人永久免费视频| 亚洲免费av在线视频| 欧美国产精品va在线观看不卡| av欧美777| 1024视频免费在线观看| 中国国产av一级| 亚洲精品在线美女| 99re6热这里在线精品视频| 国产成人影院久久av| 中文字幕最新亚洲高清| 丰满饥渴人妻一区二区三| 一二三四社区在线视频社区8| 中文字幕人妻熟女乱码| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| av网站在线播放免费| 无限看片的www在线观看| 搡老岳熟女国产| 交换朋友夫妻互换小说| 亚洲欧洲日产国产| 亚洲专区国产一区二区| 亚洲精品一二三| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频 | 亚洲精品成人av观看孕妇| 亚洲成av片中文字幕在线观看| 国产熟女午夜一区二区三区| 国产成人精品久久二区二区免费| 波多野结衣av一区二区av| 亚洲黑人精品在线| 久久久久精品国产欧美久久久 | 国产欧美日韩一区二区三 | 日日爽夜夜爽网站| 少妇精品久久久久久久| 交换朋友夫妻互换小说| 成年女人毛片免费观看观看9 | 一级黄色大片毛片| 热99久久久久精品小说推荐| tocl精华| 在线观看舔阴道视频| 美女午夜性视频免费| 十八禁人妻一区二区| 人妻人人澡人人爽人人| 美女中出高潮动态图| 制服诱惑二区| 一本综合久久免费| 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 亚洲情色 制服丝袜| 18禁观看日本| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 999久久久国产精品视频| 精品国产乱码久久久久久男人| 精品一区在线观看国产| 欧美亚洲日本最大视频资源| 美女脱内裤让男人舔精品视频| 国产激情久久老熟女| 性色av一级| 国产一区二区三区在线臀色熟女 | 天天躁日日躁夜夜躁夜夜| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 99国产精品99久久久久| tube8黄色片| 最近最新免费中文字幕在线| 黄色怎么调成土黄色| 国产在线一区二区三区精| 母亲3免费完整高清在线观看| 久久青草综合色| 十八禁高潮呻吟视频| 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 国产精品久久久久久精品古装| 19禁男女啪啪无遮挡网站| 国产成人欧美在线观看 | 十八禁人妻一区二区| 在线观看免费高清a一片| 在线观看一区二区三区激情| 免费看十八禁软件| 日日夜夜操网爽| 日本欧美视频一区| 最新的欧美精品一区二区| 91精品伊人久久大香线蕉| 欧美av亚洲av综合av国产av| 亚洲五月婷婷丁香| 国产免费一区二区三区四区乱码| 久久精品熟女亚洲av麻豆精品| 成人黄色视频免费在线看| 美国免费a级毛片| 午夜福利一区二区在线看| 中文字幕人妻熟女乱码| 超碰成人久久| 在线精品无人区一区二区三| av片东京热男人的天堂| 韩国高清视频一区二区三区| 91成年电影在线观看| 久久久久精品国产欧美久久久 | 18禁国产床啪视频网站| bbb黄色大片| 成年人午夜在线观看视频| 人妻一区二区av| 最新在线观看一区二区三区| 国产精品免费视频内射| 国产在线视频一区二区| 免费不卡黄色视频| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| 久久久精品区二区三区| 日韩视频一区二区在线观看| 国产精品1区2区在线观看. | 狂野欧美激情性xxxx| 另类精品久久| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 亚洲第一av免费看| 后天国语完整版免费观看| 99国产精品一区二区三区| 亚洲av美国av| 久久久久视频综合| 久久久久久免费高清国产稀缺| 免费观看人在逋| 亚洲色图综合在线观看| av欧美777| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区| 成年人免费黄色播放视频| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 人成视频在线观看免费观看| 久久青草综合色| 国产免费av片在线观看野外av| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 亚洲精品美女久久av网站| 中文精品一卡2卡3卡4更新| 自线自在国产av| 桃红色精品国产亚洲av| av电影中文网址| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| 99热全是精品| 久久人妻福利社区极品人妻图片| 亚洲情色 制服丝袜| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看| 亚洲专区字幕在线| 亚洲精品美女久久av网站| 男女国产视频网站| 国产亚洲精品第一综合不卡| 久久性视频一级片| 国产在视频线精品| 亚洲成av片中文字幕在线观看| 欧美另类亚洲清纯唯美| 国产深夜福利视频在线观看| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 久久久久精品人妻al黑| 欧美中文综合在线视频| 男女午夜视频在线观看| 青草久久国产| 曰老女人黄片| 黄色视频,在线免费观看| 久久综合国产亚洲精品| 精品人妻在线不人妻| 久久久久久人人人人人| 男人爽女人下面视频在线观看| 国产精品二区激情视频| 成人国产av品久久久| 一区二区三区乱码不卡18| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| 国产成人精品无人区| av电影中文网址| 黄色视频不卡| 两个人看的免费小视频| 午夜福利乱码中文字幕| 日本wwww免费看| 午夜视频精品福利| 在线观看免费日韩欧美大片| 国产精品1区2区在线观看. | 免费在线观看日本一区| kizo精华| 夫妻午夜视频| 国产日韩欧美亚洲二区| 99热国产这里只有精品6| 亚洲欧美激情在线| 亚洲国产欧美一区二区综合| 老司机亚洲免费影院| 久久女婷五月综合色啪小说| 高潮久久久久久久久久久不卡| 久久毛片免费看一区二区三区| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 日本wwww免费看| 成人国产一区最新在线观看| 91国产中文字幕| 久久人人爽人人片av| 天天操日日干夜夜撸| 久久精品亚洲熟妇少妇任你| 亚洲性夜色夜夜综合| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 黄片播放在线免费| kizo精华| av一本久久久久| 日韩视频在线欧美| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 黄网站色视频无遮挡免费观看| a级毛片在线看网站| 美女国产高潮福利片在线看| 亚洲七黄色美女视频| 精品国产国语对白av| 国产三级黄色录像| 国精品久久久久久国模美| 老汉色av国产亚洲站长工具| 我的亚洲天堂| 亚洲av美国av| 久久午夜综合久久蜜桃| 久久毛片免费看一区二区三区| svipshipincom国产片| 精品一品国产午夜福利视频| 极品人妻少妇av视频| 欧美+亚洲+日韩+国产| 最黄视频免费看| 亚洲精品中文字幕在线视频| 欧美成狂野欧美在线观看| 欧美成人午夜精品| 麻豆av在线久日| 国产精品1区2区在线观看. | 国产人伦9x9x在线观看| 亚洲欧美色中文字幕在线| 日韩中文字幕视频在线看片| 精品视频人人做人人爽| www.精华液| av欧美777| 自拍欧美九色日韩亚洲蝌蚪91| 无遮挡黄片免费观看| 99热网站在线观看| 男女午夜视频在线观看| 国产成人一区二区三区免费视频网站| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 久久人人97超碰香蕉20202| 在线观看免费午夜福利视频| 老汉色∧v一级毛片| 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| 日韩电影二区| 亚洲第一欧美日韩一区二区三区 | 成年人午夜在线观看视频| 男女免费视频国产| 女性被躁到高潮视频| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 久久人妻福利社区极品人妻图片| 在线观看舔阴道视频| 黄色视频,在线免费观看| 91九色精品人成在线观看| 亚洲九九香蕉| 无限看片的www在线观看| 肉色欧美久久久久久久蜜桃| 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 一本大道久久a久久精品| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 国产精品一区二区在线观看99| 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 热re99久久国产66热| 老司机影院毛片| 我要看黄色一级片免费的| 日本a在线网址| 岛国在线观看网站| a级毛片在线看网站| 麻豆乱淫一区二区| 两性夫妻黄色片| 成人av一区二区三区在线看 | 建设人人有责人人尽责人人享有的| 亚洲人成电影观看| 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 纯流量卡能插随身wifi吗| 18禁黄网站禁片午夜丰满| av天堂在线播放| 老司机午夜福利在线观看视频 | 午夜两性在线视频| 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 成年av动漫网址| 欧美黄色淫秽网站| 日韩视频在线欧美| 伦理电影免费视频| 亚洲男人天堂网一区| 免费一级毛片在线播放高清视频 | 国产精品影院久久| 一本色道久久久久久精品综合| 在线观看免费视频网站a站| 亚洲欧洲精品一区二区精品久久久| 蜜桃在线观看..| 精品国产乱子伦一区二区三区 | 精品国内亚洲2022精品成人 | 亚洲精品国产色婷婷电影| 欧美黑人欧美精品刺激| 一级毛片精品| 美女脱内裤让男人舔精品视频| 欧美性长视频在线观看| 交换朋友夫妻互换小说| 国产日韩欧美视频二区| 91国产中文字幕| 亚洲专区中文字幕在线| 日韩大片免费观看网站| 午夜福利乱码中文字幕| 久久久久久久久免费视频了| 性高湖久久久久久久久免费观看| 在线观看舔阴道视频| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 免费在线观看黄色视频的| 精品人妻一区二区三区麻豆| 老司机福利观看| 久久av网站| 久久ye,这里只有精品| 欧美午夜高清在线| 高潮久久久久久久久久久不卡| 91成年电影在线观看| 在线 av 中文字幕| 大香蕉久久成人网| 久久人人97超碰香蕉20202| 18禁裸乳无遮挡动漫免费视频|