• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Ammonium Hydrogen Carbonate to Metal Ions Molar Ratio on Co-precipitated Nanopowders for TGG Transparent Ceramics

    2019-08-19 11:52:34LIXiaoYingLIUQiangHUZeWangJIANGNanSHIYunLIJiang
    無機材料學報 2019年7期
    關鍵詞:碳酸氫銨石榴石材料科學

    LI Xiao-Ying, LIU Qiang, HU Ze-Wang, JIANG Nan, SHI Yun, LI Jiang

    Influence of Ammonium Hydrogen Carbonate to Metal Ions Molar Ratio on Co-precipitated Nanopowders for TGG Transparent Ceramics

    LI Xiao-Ying1,2, LIU Qiang2, HU Ze-Wang1,3, JIANG Nan1,3, SHI Yun1, LI Jiang1,3

    (1. Key Laboratory of Transparent Opto–Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Terbium gallium garnet (TGG) ceramics were successfully fabricated by air sintering at 1500 ℃ for 3 h combined with HIP post-treating at 1550 ℃ for 3 h under 150 MPa argon gas, where the TGG powders were synthesized by the co-precipitation method employing ammonium hydrogen carbonate (AHC) as precipitant. The influences of ammonium hydrogen carbonate to metal ions molar ratio (value) on phase composition and morphology of the resultant powders as well as optical transmittance and Verdet constant of the TGG ceramics were investigated systematically. The precursors with=3.6, 4.0 and 4.4 calcined at 1100 ℃ form pure TGG phase, whereas the precursor with=3.2 treated at the same temperature yields the mixed phases of TGG and Ga2O3. The TGG powder with=4.0 shows the best dispersity and homogeneity, giving rise to ceramic with the best optical quality. On the contrary, the powder with=4.4 exhibits a strong agglomeration, which is closely related to the morphology of its precursor. High quality TGG transparent ceramics with the transmittance of 80.1% at 1064 nm can be fabricated by the nanopowder with=4.0, and the Verdet constant of the TGG ceramics at 633 nm is rather close to that of the commercial TGG single crystals (-134 rad·T-1·m-1).

    Faraday material; TGG ceramics; co-precipitation method; AHC/M3+molar ratio

    Faraday rotator is one of the key optics for the isolation, the polarization control and the birefringence compen-sation of a laser amplifier for the high energy and high average power laser driven application[1-3]. The most significant properties of the Faraday material are the high Verdet constant and good optical quality, as well as a high thermal conductivity and superior size scalability for handling thermal effects[4-7]. To date, Tb-doped phosphate and silicate glasses are common Faraday material used in large aperture laser systems because of the superior size scalability[8-9]. However, amorphous glasses cannot meet the demand of high average power lasers due to its low thermal conduc-tivity[10-11]. Terbium gallium garnet is considered as a promising magneto-optical material used in the visible and near- infrared isolators because of its twice Verdet constant of Terbium-doped glass. Furthermore, the thermal conductivity of crystalline TGG is an order of magnitude greater than a typical glass[12-14]. The combination of the above factors makes TGG better suited for high average power applications. Unfortunately, the growth of high quality and large size TGG crystal is not an easy task for the evaporation of Ga2O3from the melt during the crystal growth process, which leaves it far from application in high-average- power lasers[15-17].

    With the advancement of transparent ceramics fabrication technology, ceramics with high optical quality are usually preferred over single crystal for high power applications by virtue of its outstanding optical quality and excellent size scalability[18-19]. In general, transparent ceramics can be fabricated by two main methods. In conventional solid-state reaction between the commercial oxide, high calcination temperature and prolonged calcination time are necessary to gain the pure phase[20-21]. Furthermore, the extensive milling leads to possible contamination, thus degrading the optical quality[22-23]. For this reason, several wet-chemical methods, such as Sol–Gel process[24], microemulsion[25], co-precipitation[26-27]and hydrothermal synthesis[28], exhibit considerable advantages such as intimate mixing of the starting materials, excellent chemical homogeneity and low synthesis temperature[29-30]. Among the wet-chemical methods, co-precipitation method using ammonium hydrogen carbonate as precipitant is a promising route to synthesize TGG powders possessing the proper characteristics toward transparent ceramics. Characteristics of the co-precipitated powders depend on the nature of salts solution and precipitant as well as synthesis conditions. According to Dai,[31]and Dulina,[32], precipitant to metal ions molar ratio (defined asvalue) can influence the terminal pH during the precipitation process, and the terminal pH must be controlled strictly to optimize the chemical composition and morphology of nanopowders. However, the synthesis of TGG powders using co-precipitation method is rarely studied in detail, especially the influences of ammonium hydrogen carbonate to metal ions molar ratio on the properties of precursors and TGG powders.

    In this work, TGG nanopowders were prepared by a co-precipitation route using AHC as the precipitant. With the aim of preparing pure TGG nanopowders beneficial to the fabrication of transparent ceramics, the role of thevalues on the phase composition and dispersity of the as-synthesized powders and final microstructures, optical quality and magneto-optical property of the TGG ceramics were systematically studied.

    1 Experimental

    Nanosized TGG powders, produced by a co- precipitation method, were used as starting materials for ceramic sample. Highly pure Tb and Ga nitrate solutions are prepared by dissolving appropriate amounts of Tb4O7(99.99%, Yuelong New Materials Co., Ltd., Shanghai, China) and Ga2O3(99.995%, Jining Zhongkai New Materials Co., Ltd., Shandong, China) powders in hot HNO3/H2O. Then, the metal nitrates were mixed together to form a homogeneous solution according to the stoichiometric ratio of Tb3Ga5O12and the Ga3+concentration was set to 0.3 mol/L. Precipitant solution with a concentration of 1.5 mol/L was obtained by dissolving ammonium hydrogen carbonate (Analytical grade, Aladdin) in deionized water. Ammonium sulfate (99.0%, Sinopharm Chemical Reagent Co., Ltd.) was added into the precipitant solution as the dispersant. The precursor precipitate was performed by the reverse- strike method at room temperature. The molar ratiowas chosen as 3.2, 3.6, 4.0 and 4.4, respectively. The white precipitate formed, and the reaction mixture was washed four times with deionized water and rinsed twice with absolute ethanol. Then, the precursor was dried at 70 ℃ for 48 h. After that, the dried precursor was sieved through a 75 μm screen and then calcined at 1100 ℃ for 4 h. Finally, the powders were dry- pressed to a 20-mm-diameter pellet at 20 MPa, then further cold isostatically pressed (CIP) under 250 MPa. The pellets were sintered at 1500 ℃ for 3 h in muffle furnace followed by hot isostatic pressing (HIP) post-treated at 1550 ℃for 3 h under 150 MPa in Ar atmosphere. The specimens were mirror-polished on both surfaces into 1.2-mm-thickness for further test.

    Phase identification of the as-synthesized powders was performedX-ray diffraction (XRD) analysis using a Diffractometer (XRD, Mode-l D/max2200PC, Rigaku, Japan). Specific surface area analysis was carried out by Norcross ASAP 2010 micromeritics at 77 K, using N2as the absorbate gas. The compositions of the precursors were examined by the Fourier transform infrared spectrometer (FT-IR, Bruker VERTEX 70 spectrophotometer, Ettlingen, Germany). The mor- phologies of powders and thermally-etched surfaces of the ceramic sample were submitted to FESEM characterization (S-8220, Hitachi, Japan). Grain size of the sintered sample was determined by image analysis, carried out on several micrographs acquired by FESEM and using the linear intercept method. The in-line transmittance of the specimens was measured over the wavelength region from 300 nm to 1800 nm using a spectrometer (Model Cray-5000 UV-VIS-NIR Spectrophotometer, Varian, CA, USA). The Verdet constant of the ceramics at 633 nm was measured using an instrument consisting of a He–Ne laser, two polarizers, and an electromagnet at room temperature.

    2 Results and discussion

    The FT-IR spectra of precursors synthesized with differentvalues are shown in Fig. 1. It can be seen that the positions of the main absorption peaks are almost the same in the FT-IR spectra with=3.2-4.4, which indicates that the molar ratio R has little impact on the chemical compositions of the precursors. The FT-IR spectra of precursors exhibit broad absorption bands at 3400 cm-1corresponding to the stretching vibrations of O-H bond[33]. The weaker absorption peak at 1630 cm?1can be attributed to H-O-H bending mode of molecular water. The peak at about 1520 cm-1results from the bond-stretching of NH4+. The stretching vibrations of CO32-appear as absorption peaks at 1416 cm-1, whereas the nonplanar bending CO32-vibrations are observed at 841 cm-1, indicating the presence of carbonate group in the precursors. The weak peak at 2350 cm-1is attributed to the asymmetrical stretch of CO2absorbed in air[34].The abnormal absorption peaks at 2350 cm-1of the precursors with=3.2 and 3.6 are caused by baseline scan and background subtraction, which is independent of the precursors with differentvalues.

    Fig. 1 FT-IR spectra of the precursors synthesized with different R values

    Fig. 2 shows the FESEM micrographs of the precursors synthesized with different R values. It can be seen that the precursors with=3.2 and 3.6 are composed of sub-micrometer sized near-spherical shaped particles. Additionally, the precursors with=3.2 and 3.6 are loosely agglomerated and characterized by a high homogeneity. For the precursor with=4.0, the needlelike shaped particles occur and the slight agglomeration can be observed. However, with the increase ofvalue to 4.4, large-sized aggregate with nubby morphology occurs, which is probably due to the relatively higher pH resulting in the enhancement of agglomeration between particles[35].

    Fig. 2 FESEM micrographs of the precursors synthesized with different R values

    (a)=3.2; (b)=3.6; (c)=4.0; (d)=4.4

    Fig. 3 shows the XRD results of the calcined powders with differentvalues. The results indicate that the peaks of the powders with differentvalues match well with the standard diffraction of TGG (JCPDS 88-0575), except for the powder with=3.2. The powder with=3.2 shows a feeble trace of peak consisted with Ga2O3. It might be due to the partial Ga3+ions begin to precipitate from the nitrate solutions at about pH=4.2, while the production of Tb precipitates requires a higher pH value. Asvalue decreases to 3.2, the lower terminal pH results in segregation of Tb precipitate and Ga precipitate. The average crystallite size (XRD) of the synthesized powders can be calculated from the XRD spectra using the Scherrer's formula. The average crystallite size value of TGG powders with=3.6, 4.0 and 4.4 are 125.9, 106.3 and 115.2 nm, respectively.

    Fig. 4 shows the dispersion state of TGG powders calcined at 1100 ℃ for 4 h with variousvalues. For the powder with=3.2, the obvious secondary phase can be observed and the EDS measurement demonstrates that the composition of the secondary phase is a gallium riched phase, which is in good accordance with the XRD results. As can be seen, the synthesized TGG nanopowder with=3.6 consists of loosely agglomerated dumbbell shape particles and the average particle size is about 157.4 nm. Whenvalue is 4.0, the powder exhibits good homogeneity and dispersity, and the morphology and average particle size of the powder are similar to the powder with=3.6. The specific surface areas of TGG powder with=4.0 is 5.33 and the average particle size is about 157.7 nm. Further increase ofvalue to 4.4 results in severe agglomeration, accompanying the increase of average particle size (~175.1 nm), which is detrimental to the densification of green body. The morphology of TGG powder with=4.4 is closely related to the agglomeration of its precursor. In general, these results highlight the key role of thevalue on the purity of the TGG phase, in addition,value is also used mainly for the purpose of optimizing morphology of final TGG particles.

    Fig. 3 XRD patterns of powders calcined at 1100 ℃ for 4 h with different R values

    Fig. 4 FESEM micrographs of TGG powders calcined at 1100 ℃ for 4 h with different R values

    (a)=3.2; (b)=3.6; (c)=4.0; (d)=4.4

    Fig. 5 shows the photograph and the in-line trans-mittance of the double-polished TGG ceramics (1.2 mm thick) fabricated by the nanopowders with differentvalues. It can be seen that the specimen with=3.2 is almost opaque and the in-line transmittance is less than 5% through the entire range from the visible to 1.8 μm. It is owing to a mass of second phase particles in the ceramics, which is evidenced by the FESEM micrograph shown in Fig. 6(a). Whenvalue is 3.6, the TGG ceramic sample exhibits the better transparency than the sample with=3.2, but the drastic decrease in the visible wavelength range can be observed. For the ceramic sample with=4.0, the in-line transmittance exceeds 75% in the region of 500-1600 nm, reaching about 80.1% at 1064 nm, which is equal to the theoretical value. The excellent optical quality can be attributed to the high chemical purity as well as the better dispersity of TGG powder, which result in minimum optical loss arising from the absorption or scattering in the ceramic. The result shows that there is an absorption peak centered at about 487 nm corresponding to7F6-5D4transition of Tb3+. The sample with=4.4 is opaque as the result of a large number of residual pores acted as scattering centers after the HIP post-treatment.

    Fig. 6 displays the SEM micrographs of the thermally etched surfaces of the TGG ceramics with different R values pre-sintered in a muffle furnace at 1500 ℃ for 3 h. It can be noticed that the specimen with=3.2 contains not only a small amount of intergranular pores and intragranular pores, but also a small amount of second phases. The EDS measurement reveals that the secondary phase is gallium oxide. The appearance of gallium oxide results from the composition segregation of the corresponding TGG powders. For the pre-sintered ceramic samples with=3.6, 4.0 and 4.4, all of the pre-sintered samples are opaque because there are quite a few pores in the samples. The average grain size of TGG ceramics with=3.6, 4.0 and 4.4 are 1.44, 1.63 and 1.59 μm, respectively. However, it can be obviously seen that the average grain size of TGG ceramics with=3.2 is larger than those of other samples. We deduce that the superfluous Ga2O3can enhance the migration rate of the grain boundary, which leads to the faster grain growth and the formation of intragranular pore.

    Fig. 5 (a) Photograph of TGG transparent ceramics (1.2 mm thick) sintered from powders with different R values and in-line transmission curves of (b) the samples pre-sintered at 1500 ℃ for 3 h in air with HIP post-treatment at 1550 ℃ for 3 h with different R values

    Fig. 6 FESEM micrographs of the thermally etched surfaces of TGG ceramics pre-sintered at 1500 ℃ for 3 h with different R values

    (a)=3.2; (b)=3.6; (c)=4.0; (d)=4.4

    The FESEM micrographs of the thermally etched surfaces of the HIP-treated TGG ceramics with differentvalues are shown in Fig. 7. After the HIP-treatment, a slight grain growth occurred in all the samples, and the average grain sizes of TGG ceramics with=3.2, 3.6, 4.0 and 4.4 are 9.4, 1.9, 1.8 and 2.0 μm, respectively. A mass of secondary Ga2O3phase grains are also observed in the specimen with=3.2, which act as scattering centers and lead to the low transmittance. The pores are remarkably reduced and the grain boundaries are clean without any secondary phases in the sample with=3.6. However, a small number of residual pores with sub-micrometer sized are observed in the sample with=3.6. The size of pores is comparable to incident wavelength, giving rise to the occurrence of Mie scattering[22]. Therefore, the transmittances of the TGG ceramics are still far from the theoretical value. For the specimen with=4.0, it shows a nearly pore- free microstructure without abnormal grain growth. On the opposite, no secondary phases but large quantity of residual pores are observed in the ceramic samples with=4.4, which is mainly caused by the agglomeration of the original powders.

    Faraday effect leads to the rotation of polarized light and the Faraday rotation angle can be expressed by the formula:

    =(1)

    For magneto-optical materials, the Faraday rotationis linear ratio to the Verdet constant when the length of sampleand magnetic induction intensityare fixed, so the Verdet constant is the main parameter for eva-luating the magneto-optical property. In this work, the Verdet constant of TGG ceramics with=3.2 and 4.4 was not measured, since the ceramics are non-transparent. The Verdet constants of the TGG ceramics with=3.6 and 4.0 are-137.4 and-136.5 rad·T-1·m-1, respectively, obviously indicating no significant difference between the ceramics and single crystals (-134 rad·T-1·m-1).

    Fig. 7 SEM micrographs of the mirror-polished and thermal etched surfaces of TGG ceramics pre-sintered at 1500 ℃ for 3 h in air followed by HIP at 1550 ℃for 3 h with different R values

    (a)=3.2; (b)=3.6; (c)=4.0; (d)=4.4

    3 Conclusion

    TGG precursors with differentvalues were co-precipitated using ammonium hydrogen carbonate as the precipitant. By controlling thevalue to a reasonable degree, the segregation of Tb precipitate and Ga precipitate was eliminated and single phase TGG powders were obtained. Thevalue has a significant impact on the morphology of the powders. The powder with=4.0 shows the best dispersity, giving rise to denser ceramic with finer microstructures. Using these powders as raw materials, TGG transparent ceramics were successfully fabricated by air pre-sintering at 1500 ℃ for 3 h and then HIP post-treatment at 1550 ℃for 3 h. For the TGG ceramic from the powder prepared with=4.0, the in-line transmittance is 80.1% at 1064 nm. The prepared TGG magneto-optical ceramics show excellent magneto-optical properties, which is close to the TGG crystals. In future work, further efforts will concentrate on the production of high quality TGG ceramics, able to provide large aperture as well as good transparency.

    [1] YASUHARA R, SNETKOV I, STAROBOR A,. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power., 2014, 105(24): 2175-2177.

    [2] HAO D, FENG Y, TANG Y R,. Tb3Al2.5Ga2.5O12transparent ceramic for magneto-optical application., 2016, 13(5): 816-820.

    [3] SNETOV I L, YASUHARA R, STAROBOR A V,. TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization., 2014, 22(4): 4144-4151.

    [4] YOSHIDAL H, TSUBAKIMOTO K, FUJITA H,. Large Diameter Ceramic TGG Faraday Rotator for High-average-power Laser Systems Depolarization. Lasers and Electro-Optics Pacific Rim. IEEE, 2016: 1-2.

    [5] DAI J W, SNETKOV I L, PALASHOV O V,. Fabrication, microstructure and magneto-optical properties of Tb3Al5O12transparent ceramics., 2016, 62: 205-210.

    [6] YASUHARA R, FURUSE H. Thermally induced depolarization in TGG ceramics., 2013, 38(10): 1751-1753.

    [7] WANG X Y, YANG L, CHEN Z,. Optical, magnetic susceptibilities and magneto-optical properties of neodymium doped Tb3Ga5O12with meliorated properties for near-infrared optical isolators., 2015, 649: 1085-1088.

    [8] QIU J R, TANAKA K, SUGIMOTO N,. Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses., 2015, 213-214: 193-198.

    [9] GIESEN A, SPEISER J. Fifteen years of work on thin-disk lasers: results and scaling laws., 2007, 13(3): 598-609.

    [10] YOSHIDA H, TSUBAKIMOTO K, FUJIMOTO Y,. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator., 2011, 19(16): 15181-15188.

    [11] DAI J W, LI J. Promising magneto-optical ceramics for high power Faraday isolators., 2018, 155: 78-84.

    [12] KAMINSKII A A, EICHLER H J, REICHE P,. SRS risk potential in Faraday rotator Tb3Ga5O12crystals for high-peak power lasers., 2005, 2(10): 489-492.

    [13] ZHANG W J, GUO F Y, CHEN J Z,. Growth and characterization of Tb3Ga5?xAlO12single crystal., 2007, 306(1): 195-199.

    [14] KHAZANOV E A, KULAGIN O V, YOSHIDA S,. Investigation of self-induced depolarization of laser radiation in terbium gallium garnet., 2002, 35(8): 1116-122.

    [15] SLEZAK O, YASUHARA R, LUCIANETTI A,. Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics., 2015, 23(10): 13641-13647.

    [16] ZHUANG N F, SONG C G, GUO L W,. Growth of terbium gallium garnet (TGG) magneto-optic crystals by edge-defined film-fed growth method., 2013, 381: 27-32.

    [17] STAROBOR A, ZHELEZNOV D, PALASHOV O,. Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power., 2014, 4(10): 2127-2132.

    [18] LI J, DAI J W, PAN Y B. Research progress on magneto-optical transparent ceramics., 2018, 33: 1-8.

    [19] DAI J W, PAN Y B, XIE T F,. Highly transparent Tb3Al5O12magneto-optical ceramics sintered from co-precipitated powders with sintering aids., 2018, 78: 370-374.

    [20] PALMERO P, TRAVERSO R. Co-precipitation of YAG powders for transparent materials: effect of the synthesis parameters on processing and microstructure., 2014, 7(10): 7145-7156.

    [21] LI C Q, ZUO H B, ZHANG M F,. Fabrication of transparent YAG ceramics by traditional solid-state-reaction method., 2007, 17(1): 148-153.

    [22] KRELL A, KLIMKE J, HUTZLER T. Transparent compact ceramics: inherent physical issues., 2009, 31(8): 1144-1150.

    [23] MARLOT C, BARRAUD E, GALLET S L,. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms., 2012, 191: 114-120.

    [24] BOUKERIKA A, GUERBOUS L, BRIHI N. Ce-doped YAG phosphors preparedSol–Gel method: effect of some modular parameters., 2014, 614: 383-388.

    [25] CAPONATTI E, MARTINO D C, SALADINO M L. Preparation of Nd:YAG nanopowder in a confined environment., 2007, 23(7): 3947-3952.

    [26] LI J G, IKEGAMI T, LEE J H,. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant., 2000, 20(14/15): 2395-2405.

    [27] PALMERO P, ESNOUF C, MONTANARO L,. Influence of the co-precipitation temperature on phase evolution in yttrium- aluminium oxide materials., 2005, 25(9): 1565-1573.

    [28] HUANG B T, MA Y Q, QIAN S B,. Luminescent properties of low-temperature-hydrothermally-synthesized and post-treated YAG:Ce (5%) phosphors., 2014, 36(9): 1561-1565.

    [29] LI J, CHEN F, LIU W B,. Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics., 2012, 32(11): 2971-2979.

    [30] LI J S, SUN X D, LIU S H,. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics., 2015, 41(2): 3283-3287.

    [31] DAI J W, PAN Y B, WANG W,. Fabrication of Tb3Al5O12transparent ceramics using co-precipitated nanopowders., 2017, 73: 38-44.

    [32] DULINA N A, BAUMER V N, DANYLENKO M I,. Effects of phase and chemical composition of precursor on structural and morphological properties of (Lu0.95Eu0.05)2O3nanopowders., 2013, 39(3): 2397-2404.

    [33] PUZYREV I S, IVANOV M G, KRUTIKOVA I V. Physicochemical properties of Al2O3and Y2O3nanopowders produced by laser synthesis and their aqueous dispersions., 2014, 63(7): 1504-1510.

    [34] IVANOV M G, KYNAST U, LEZNINA M. Eu3+doped yttrium oxide nano-luminophores from laser synthesis., 2016, 169: 744-748.

    [35] TONG S H, ZHAO J Y, WEN X. Preparation and properties of Pr3+/Ce3+:YAG phosphors using triethanolamine as dispersant and pH regulator., 2016, 39(6): 1515-1519.

    碳酸氫銨與金屬陽離子摩爾比對共沉淀法合成鋱鎵石榴石納米粉體及陶瓷性能的影響

    李曉英1,2, 劉強2, 胡澤望1,3, 姜楠1,3, 石云1, 李江1,3

    (1. 中國科學院 上海硅酸鹽研究所,透明光功能無機材料重點實驗室,上海 200050;2. 江蘇大學 材料科學與工程學院,鎮(zhèn)江 212013; 3.中國科學院大學 材料科學與光電工程中心,北京 100049)

    本研究以碳酸氫銨(AHC)為沉淀劑, 采用共沉淀法制備了TGG粉體。以上述粉體為原料, 將素坯于1500 ℃空氣預燒3 h, 然后于1550 ℃, 150 MPa氬氣氣氛下HIP后處理3 h獲得TGG陶瓷。系統(tǒng)研究了碳酸氫銨與金屬離子摩爾比(值)對合成粉體的相組成、形貌以及TGG陶瓷的透光率和Verdet常數的影響。=3.6, 4.0和4.4的前驅體在1100 ℃煅燒形成純相TGG粉體, 而=3.2的前驅體經相同溫度煅燒后形成了TGG和Ga2O3的混合相粉體。=4.0的TGG粉體分散性和均勻性最好, 故制備的陶瓷光學質量最佳。=4.4的粉體具有較嚴重的團聚, 這與其前驅體形貌密切相關。以=4.0的粉體為原料, 制備的TGG透明陶瓷在1064 nm處的直線透過率為80.1%。制備的TGG陶瓷在633 nm處的Verdet常數和商業(yè)TGG單晶(-134 rad·T-1·m-1)幾乎相等。

    法拉第材料; 鋱鎵石榴石陶瓷; 共沉淀法; 碳酸氫銨與金屬陽離子摩爾比

    TQ174

    A

    2018-12-05;

    2018-12-19

    National Natural Science Foundation of China (61575212)

    LI Xiao-Ying (1993-), female, candidate of Master degree. E-mail: lxy113712@163.com

    LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cn

    1000-324X(2019)07-0791-06

    10.15541/jim20180574

    猜你喜歡
    碳酸氫銨石榴石材料科學
    中海油化工與新材料科學研究院
    材料科學與工程學科
    Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質的制備
    陶瓷學報(2021年1期)2021-04-13 01:33:40
    碳酸氫銨分解性能及其施肥方法探討*
    化學與粘合(2021年1期)2021-03-08 10:22:54
    空位缺陷對釔鋁石榴石在高壓下光學性質的影響
    福建工程學院材料科學與工程學科
    不同添加劑對碳酸氫銨分解性能的影響
    安徽化工(2018年2期)2018-05-22 06:31:14
    《材料科學與工藝》2017年優(yōu)秀審稿專家
    石榴石
    中國寶玉石(2016年2期)2016-10-14 07:58:30
    餅干里真的放了化肥嗎
    国产免费视频播放在线视频| 成人国产av品久久久| 欧美一区二区亚洲| 水蜜桃什么品种好| 五月玫瑰六月丁香| 97在线视频观看| 国产真实伦视频高清在线观看| 久久久国产一区二区| 好男人视频免费观看在线| 三级国产精品片| 国产成人精品一,二区| 成人亚洲欧美一区二区av| 五月伊人婷婷丁香| 各种免费的搞黄视频| 国产精品一及| 精华霜和精华液先用哪个| 欧美日韩视频精品一区| 成人黄色视频免费在线看| 亚洲av欧美aⅴ国产| 插逼视频在线观看| 国产男女超爽视频在线观看| 内射极品少妇av片p| 国产成人精品福利久久| 女人久久www免费人成看片| 亚洲国产日韩一区二区| 亚洲电影在线观看av| 91aial.com中文字幕在线观看| 男女边摸边吃奶| 99热6这里只有精品| 亚洲欧洲日产国产| 深爱激情五月婷婷| 91久久精品国产一区二区三区| 国产亚洲最大av| 一级毛片久久久久久久久女| 一区二区三区四区激情视频| 99九九线精品视频在线观看视频| a级毛片免费高清观看在线播放| 青春草亚洲视频在线观看| 18禁在线播放成人免费| 午夜亚洲福利在线播放| 国产高清有码在线观看视频| 亚洲av电影在线观看一区二区三区 | 深爱激情五月婷婷| 一区二区三区精品91| 亚洲av国产av综合av卡| 99九九线精品视频在线观看视频| 三级国产精品片| 另类亚洲欧美激情| 日韩欧美 国产精品| xxx大片免费视频| 日韩免费高清中文字幕av| 97在线人人人人妻| 日本黄大片高清| av国产免费在线观看| 偷拍熟女少妇极品色| 青春草国产在线视频| 亚洲精华国产精华液的使用体验| 国产精品国产三级专区第一集| 欧美另类一区| 国产片特级美女逼逼视频| 亚洲av不卡在线观看| 老司机影院成人| 久久99蜜桃精品久久| 午夜福利网站1000一区二区三区| 成人毛片a级毛片在线播放| 边亲边吃奶的免费视频| 久久久久久九九精品二区国产| 日韩一本色道免费dvd| 国产精品国产三级专区第一集| 日韩欧美 国产精品| 国产精品国产三级专区第一集| 日产精品乱码卡一卡2卡三| 只有这里有精品99| 国产极品天堂在线| 久久久久久伊人网av| 一二三四中文在线观看免费高清| 熟妇人妻不卡中文字幕| 插逼视频在线观看| 国产亚洲最大av| 久久精品久久久久久久性| 97超碰精品成人国产| 欧美精品一区二区大全| 亚洲国产精品专区欧美| 国产成人免费观看mmmm| 亚洲av.av天堂| 久久久久久国产a免费观看| 好男人视频免费观看在线| 欧美日韩国产mv在线观看视频 | 麻豆成人av视频| 男女无遮挡免费网站观看| 国产欧美日韩精品一区二区| 麻豆成人av视频| 在线天堂最新版资源| 寂寞人妻少妇视频99o| 婷婷色麻豆天堂久久| 97热精品久久久久久| 狂野欧美激情性bbbbbb| 欧美成人精品欧美一级黄| 可以在线观看毛片的网站| 日日摸夜夜添夜夜添av毛片| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 2018国产大陆天天弄谢| a级毛片免费高清观看在线播放| 丝袜美腿在线中文| 亚洲国产成人一精品久久久| 在线看a的网站| 亚洲av福利一区| 51国产日韩欧美| 国产欧美日韩精品一区二区| 成人黄色视频免费在线看| 91精品伊人久久大香线蕉| 伊人久久国产一区二区| 热re99久久精品国产66热6| 日韩一区二区视频免费看| 国产永久视频网站| 久久6这里有精品| 中文字幕亚洲精品专区| 免费观看在线日韩| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 一级爰片在线观看| 男的添女的下面高潮视频| a级毛片免费高清观看在线播放| 久久久久精品性色| 亚洲国产精品成人久久小说| 成人二区视频| 国产女主播在线喷水免费视频网站| 在线免费十八禁| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 国产成人精品婷婷| 国产永久视频网站| 波多野结衣巨乳人妻| 久久99热6这里只有精品| 欧美成人a在线观看| 搡女人真爽免费视频火全软件| 日日摸夜夜添夜夜添av毛片| 美女视频免费永久观看网站| 久久久久九九精品影院| 午夜激情久久久久久久| 国产午夜精品久久久久久一区二区三区| 国产欧美亚洲国产| 国产高清三级在线| 三级国产精品片| 国产免费视频播放在线视频| 青青草视频在线视频观看| 国产成人91sexporn| 男女啪啪激烈高潮av片| av福利片在线观看| 亚洲无线观看免费| 欧美一级a爱片免费观看看| 天堂俺去俺来也www色官网| 国语对白做爰xxxⅹ性视频网站| 亚洲国产av新网站| 免费观看在线日韩| 久久鲁丝午夜福利片| 日韩一区二区视频免费看| 亚洲欧美一区二区三区国产| 视频中文字幕在线观看| 国内揄拍国产精品人妻在线| 国产女主播在线喷水免费视频网站| 观看免费一级毛片| 麻豆精品久久久久久蜜桃| 午夜福利视频精品| 少妇人妻久久综合中文| 久久99精品国语久久久| 国产熟女欧美一区二区| 国产白丝娇喘喷水9色精品| 尾随美女入室| a级一级毛片免费在线观看| 亚洲在线观看片| 国产综合懂色| 网址你懂的国产日韩在线| 免费少妇av软件| 亚洲美女搞黄在线观看| 熟女人妻精品中文字幕| 美女内射精品一级片tv| 国产av国产精品国产| 日韩成人av中文字幕在线观看| 亚洲精品国产成人久久av| 国产精品久久久久久精品电影| 只有这里有精品99| 日韩欧美精品v在线| 91午夜精品亚洲一区二区三区| 精品国产露脸久久av麻豆| 人人妻人人爽人人添夜夜欢视频 | 中文精品一卡2卡3卡4更新| 最新中文字幕久久久久| 国产亚洲5aaaaa淫片| 日韩欧美 国产精品| 精品国产露脸久久av麻豆| 搞女人的毛片| 在线播放无遮挡| 人妻一区二区av| 欧美高清成人免费视频www| 国产成人精品一,二区| 麻豆乱淫一区二区| 国产成人aa在线观看| 国产乱来视频区| 国产淫语在线视频| 国产成人freesex在线| av在线蜜桃| 美女主播在线视频| 综合色av麻豆| 久久久久网色| 亚洲不卡免费看| 看黄色毛片网站| 国产精品一区二区性色av| 日本与韩国留学比较| 爱豆传媒免费全集在线观看| 国产av国产精品国产| 三级国产精品片| 午夜精品一区二区三区免费看| 亚洲最大成人中文| 九九在线视频观看精品| 街头女战士在线观看网站| 国产精品三级大全| 18禁裸乳无遮挡免费网站照片| 又爽又黄无遮挡网站| 欧美潮喷喷水| 我的老师免费观看完整版| 黄片wwwwww| 噜噜噜噜噜久久久久久91| 中文乱码字字幕精品一区二区三区| 日本三级黄在线观看| 国产伦理片在线播放av一区| 中文天堂在线官网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 啦啦啦中文免费视频观看日本| av女优亚洲男人天堂| av在线app专区| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| 超碰av人人做人人爽久久| 欧美xxxx性猛交bbbb| 亚洲国产精品国产精品| 日韩,欧美,国产一区二区三区| 22中文网久久字幕| 亚洲av福利一区| 一区二区三区免费毛片| 亚洲精品中文字幕在线视频 | 日本与韩国留学比较| 久久人人爽人人爽人人片va| 美女内射精品一级片tv| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 午夜福利在线观看免费完整高清在| 欧美日韩在线观看h| av一本久久久久| 午夜激情福利司机影院| 国产色婷婷99| 日本-黄色视频高清免费观看| 高清日韩中文字幕在线| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 午夜视频国产福利| 男的添女的下面高潮视频| 在线观看三级黄色| 精品久久久久久久末码| 在线免费观看不下载黄p国产| 午夜精品一区二区三区免费看| 精品国产一区二区三区久久久樱花 | 久久人人爽av亚洲精品天堂 | 狂野欧美激情性bbbbbb| 午夜精品一区二区三区免费看| 在线看a的网站| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 久久久久久久国产电影| 在线精品无人区一区二区三 | 男女啪啪激烈高潮av片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线免费十八禁| 精品视频人人做人人爽| 国内精品宾馆在线| av黄色大香蕉| 国产成人精品福利久久| 在线观看一区二区三区| 中国国产av一级| 国产中年淑女户外野战色| 另类亚洲欧美激情| 亚洲一区二区三区欧美精品 | 国产一级毛片在线| 赤兔流量卡办理| 午夜福利网站1000一区二区三区| 亚洲精品乱久久久久久| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩亚洲高清精品| 搞女人的毛片| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 丝袜脚勾引网站| 直男gayav资源| 成人免费观看视频高清| 久久久午夜欧美精品| 亚洲内射少妇av| 五月天丁香电影| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 99久久精品热视频| 亚洲aⅴ乱码一区二区在线播放| 国产爽快片一区二区三区| 日韩国内少妇激情av| 日本午夜av视频| 日本av手机在线免费观看| 韩国高清视频一区二区三区| 91狼人影院| 看非洲黑人一级黄片| 一级毛片久久久久久久久女| 免费看av在线观看网站| 国产精品不卡视频一区二区| 亚洲精品,欧美精品| 亚洲,一卡二卡三卡| 免费黄网站久久成人精品| 色网站视频免费| 国产精品人妻久久久影院| 亚洲国产色片| 美女被艹到高潮喷水动态| 欧美亚洲 丝袜 人妻 在线| 久久99热这里只频精品6学生| 中文字幕免费在线视频6| 九九在线视频观看精品| 精品午夜福利在线看| 老司机影院成人| 久热这里只有精品99| 交换朋友夫妻互换小说| 中国国产av一级| 内地一区二区视频在线| 看免费成人av毛片| 久久久久久伊人网av| 18禁裸乳无遮挡免费网站照片| 免费少妇av软件| 免费高清在线观看视频在线观看| 91在线精品国自产拍蜜月| 欧美成人午夜免费资源| 亚洲欧美精品自产自拍| 麻豆国产97在线/欧美| 久久精品久久久久久久性| 九九在线视频观看精品| 大码成人一级视频| 国产美女午夜福利| 欧美激情国产日韩精品一区| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 99热这里只有是精品在线观看| 国产成人freesex在线| 久久久国产一区二区| 成人鲁丝片一二三区免费| av福利片在线观看| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 18+在线观看网站| 日韩中字成人| 免费观看无遮挡的男女| 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 国产综合精华液| a级毛色黄片| 五月开心婷婷网| 国产精品人妻久久久影院| 韩国av在线不卡| 小蜜桃在线观看免费完整版高清| 日韩av在线免费看完整版不卡| 亚洲国产精品成人综合色| 亚洲在线观看片| 91午夜精品亚洲一区二区三区| 69人妻影院| 伊人久久国产一区二区| 边亲边吃奶的免费视频| 丰满人妻一区二区三区视频av| 国产视频内射| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| 免费观看无遮挡的男女| av在线app专区| 亚洲精品乱码久久久久久按摩| 国精品久久久久久国模美| 国产成人精品一,二区| 日本色播在线视频| 一级a做视频免费观看| 丝袜美腿在线中文| 我要看日韩黄色一级片| 高清av免费在线| 免费av毛片视频| 日韩伦理黄色片| 国产黄频视频在线观看| 只有这里有精品99| 亚洲精品乱久久久久久| 麻豆成人午夜福利视频| kizo精华| 亚洲av成人精品一二三区| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 人人妻人人爽人人添夜夜欢视频 | 久久久精品欧美日韩精品| 亚洲国产成人一精品久久久| 1000部很黄的大片| 嫩草影院新地址| 国产精品麻豆人妻色哟哟久久| 国产午夜精品久久久久久一区二区三区| 一区二区三区免费毛片| 高清在线视频一区二区三区| 国产精品人妻久久久久久| 亚洲天堂av无毛| 国产免费一区二区三区四区乱码| 波多野结衣巨乳人妻| 最新中文字幕久久久久| 国产成人aa在线观看| 精品少妇黑人巨大在线播放| 国产成人免费观看mmmm| 国产视频内射| 欧美日韩综合久久久久久| 久久人人爽av亚洲精品天堂 | 黄色欧美视频在线观看| 在线观看av片永久免费下载| 久久99热这里只频精品6学生| 国产综合懂色| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说 | 王馨瑶露胸无遮挡在线观看| 成年女人在线观看亚洲视频 | 在线亚洲精品国产二区图片欧美 | 蜜臀久久99精品久久宅男| av卡一久久| 免费看不卡的av| 中国三级夫妇交换| 国产中年淑女户外野战色| 国产精品.久久久| 国产成人精品婷婷| 成年av动漫网址| 国产午夜福利久久久久久| 欧美日韩视频高清一区二区三区二| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 禁无遮挡网站| 黄色配什么色好看| 大码成人一级视频| 九九爱精品视频在线观看| 亚洲精品久久久久久婷婷小说| 少妇猛男粗大的猛烈进出视频 | 成人国产麻豆网| 亚洲精品成人av观看孕妇| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 水蜜桃什么品种好| 婷婷色av中文字幕| 寂寞人妻少妇视频99o| 听说在线观看完整版免费高清| 久久久久久久久久久丰满| av播播在线观看一区| 下体分泌物呈黄色| h日本视频在线播放| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品视频女| 插阴视频在线观看视频| 尾随美女入室| 日韩三级伦理在线观看| 内地一区二区视频在线| 亚洲欧美精品专区久久| 国产片特级美女逼逼视频| 色网站视频免费| 校园人妻丝袜中文字幕| 真实男女啪啪啪动态图| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 99精国产麻豆久久婷婷| 天美传媒精品一区二区| 精品久久久噜噜| 精品国产乱码久久久久久小说| 欧美3d第一页| 欧美精品人与动牲交sv欧美| 性色avwww在线观看| 十八禁网站网址无遮挡 | 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 香蕉精品网在线| freevideosex欧美| 日韩亚洲欧美综合| 三级经典国产精品| 欧美性感艳星| 成人美女网站在线观看视频| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 天天躁夜夜躁狠狠久久av| 国产成人免费无遮挡视频| 免费看光身美女| av一本久久久久| 免费人成在线观看视频色| 99热网站在线观看| 成年av动漫网址| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| 制服丝袜香蕉在线| 丰满少妇做爰视频| 十八禁网站网址无遮挡 | 国产亚洲av片在线观看秒播厂| 精华霜和精华液先用哪个| 国产精品国产三级国产专区5o| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 内射极品少妇av片p| 亚洲精品国产成人久久av| 欧美97在线视频| 97超视频在线观看视频| 涩涩av久久男人的天堂| 国产精品久久久久久精品电影| 中文字幕制服av| eeuss影院久久| 久久精品久久久久久久性| 国产乱人视频| 老司机影院成人| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 久久久久国产网址| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 亚洲内射少妇av| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄| 18禁动态无遮挡网站| 美女主播在线视频| 美女视频免费永久观看网站| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| 久久这里有精品视频免费| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| 99久国产av精品国产电影| .国产精品久久| 久久精品久久精品一区二区三区| 91精品一卡2卡3卡4卡| 偷拍熟女少妇极品色| 欧美日本视频| 国产av不卡久久| 日韩视频在线欧美| 国产亚洲91精品色在线| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 一级av片app| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 如何舔出高潮| 免费观看av网站的网址| 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 在线观看美女被高潮喷水网站| 尾随美女入室| 国产综合精华液| 十八禁网站网址无遮挡 | 亚洲性久久影院| 欧美少妇被猛烈插入视频| 秋霞伦理黄片| 又大又黄又爽视频免费| 啦啦啦啦在线视频资源| freevideosex欧美| 久久人人爽人人片av| 久久99蜜桃精品久久| 99热全是精品| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 国产亚洲5aaaaa淫片| 99热这里只有是精品在线观看| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 婷婷色麻豆天堂久久| 老司机影院成人| 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区| 1000部很黄的大片| 国产亚洲av嫩草精品影院| av.在线天堂| 午夜福利视频1000在线观看| 伦理电影大哥的女人| 一个人观看的视频www高清免费观看| 伦理电影大哥的女人| 亚洲欧美日韩卡通动漫| 国产精品.久久久| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看 | av免费在线看不卡| 国产成人a区在线观看| 五月玫瑰六月丁香| 最近最新中文字幕大全电影3| 久久99热这里只有精品18| 新久久久久国产一级毛片| av又黄又爽大尺度在线免费看| 可以在线观看毛片的网站| av在线天堂中文字幕| 麻豆成人av视频| 69av精品久久久久久| 人体艺术视频欧美日本| 五月天丁香电影| 亚洲精品日韩在线中文字幕| 天堂俺去俺来也www色官网| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 久久久久久伊人网av| 国产 一区 欧美 日韩| 国产av不卡久久| av在线亚洲专区| 亚洲aⅴ乱码一区二区在线播放| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看|