邵瑋璐 李莉 劉震 唐延枝
摘 要: 在3D多輸入多輸出正交頻分復(fù)用(MIMO-OFDM)系統(tǒng)模型中,分析了基于導(dǎo)頻的信道估計(jì)方案.針對(duì)線性最小均方誤差方法的算法復(fù)雜度高的問題,應(yīng)用奇異值分解(SVD)算法降低信道自相關(guān)矩陣的維數(shù),以減小算法的復(fù)雜度.仿真結(jié)果表明:所提出的基于奇異值分解的信道估計(jì)算法,能夠在保證誤碼率(BER)性能的情況下,具有更低的算法復(fù)雜度.
關(guān)鍵詞: 3D多輸入多輸出正交頻分復(fù)用(MIMO-OFDM); 信道估計(jì); 奇異值分解(SVD); 導(dǎo)頻
中圖分類號(hào): TN 929.5文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1000-5137(2019)01-0020-06
Abstract: The model of 3D multiple input multiple output and orthogonal frequency division multiplexing(MIMO-OFDM) system was introduced,and the channel estimation scheme based on pilot was analyzed.In view of the problem of high complexity of the linear least mean square error algorithm,the singular value decomposition(SVD) algorithm was proposed and applied to reduce the dimension of channel autocorrelation matrix,thus reducing computational complexity.The simulation results showed that the proposed channel estimation algorithm based on singular value decomposition could maintain the bit error rate(BER) performance with lower computational complexity.
Key words: 3D multiple input multiple output and orthogonal frequency division multiplexing(MIMO-OFDM); channel estimation; singular value decomposition(SVD); pilot
0 引 言
為了滿足通信系統(tǒng)對(duì)高傳輸速率的要求,多輸入多輸出(MIMO)與正交頻分復(fù)用(OFDM)相結(jié)合的技術(shù)一直是無線通信中的關(guān)鍵技術(shù)之一.3D MIMO技術(shù)通過引入天線的俯仰角概念,更好地利用了空間域的資源,能夠進(jìn)一步提高系統(tǒng)吞吐量和頻譜效率.
信道估計(jì)是獲取信道狀態(tài)信息的重要技術(shù),可用于接收端傳輸信號(hào)的有效恢復(fù).目前,3D MIMO系統(tǒng)的信道估計(jì)方法的優(yōu)化研究主要有兩類.第一類是從信道估計(jì)算法出發(fā),減小原有算法的復(fù)雜度或者探尋新的估計(jì)算法,優(yōu)化系統(tǒng)的誤碼率(BER)和均方誤差(MSE)等性能指標(biāo).ZHANG等[1]針對(duì)最小均方誤差(MMSE)算法復(fù)雜度高的問題,提出了一種級(jí)聯(lián)型(Cascaded)的最小均方誤差算法,該方法要對(duì)高維的自相關(guān)矩陣進(jìn)行求逆運(yùn)算,但算法復(fù)雜度依然很高.XUE等[2]從3D MIMO信道的稀疏性出發(fā),利用壓縮感知理論將信道估計(jì)問題轉(zhuǎn)化為凸優(yōu)化問題,提出了量子細(xì)菌覓食優(yōu)化(QBFO)算法,提高系統(tǒng)的MSE性能,但未討論在不同導(dǎo)頻負(fù)載情況下該方法是否仍然具有優(yōu)勢(shì).第二類是通過優(yōu)化導(dǎo)頻的設(shè)計(jì),減少導(dǎo)頻開銷、系統(tǒng)的負(fù)載.WANG等[3]引入了導(dǎo)頻負(fù)載概念,主要討論了基于壓縮感知的估計(jì)算法在不同導(dǎo)頻負(fù)載影響下的性能,但未討論其他信道估計(jì)算法的性能.ZHANG等[4]提出了基于相關(guān)性的導(dǎo)頻分配方案,優(yōu)化了導(dǎo)頻分配的復(fù)雜度,但仿真中只針對(duì)最小二乘(LS)信道估計(jì)算法,能否將其廣泛推廣有待討論.
本文作者針對(duì)3D MIMO-OFDM系統(tǒng)中線性最小均方誤差(LMMSE)估計(jì)方法的算法復(fù)雜度高的缺陷,提出了基于奇異值分解(SVD)的改進(jìn)信道估計(jì)方法,來降低算法的復(fù)雜度.
1 信道估計(jì)方案設(shè)計(jì)
1.1 信道估計(jì)模型
對(duì)于3D MIMO-OFDM系統(tǒng)在接收端的信道響應(yīng),可以建模如下[5]:
1.2 基于SVD的信道估計(jì)方案
1.3 相關(guān)算法的復(fù)雜度比較
3種算法中SVD算法的算法復(fù)雜度優(yōu)于文獻(xiàn)[1]中的級(jí)聯(lián)算法和LMMSE算法.
2 仿真分析
3 結(jié) 論
分析了3D MIMO-OFDM的信道模型和導(dǎo)頻的設(shè)計(jì)方案,對(duì)LMMSE和SVD兩種信道估計(jì)方案進(jìn)行了仿真分析,并進(jìn)行了算法復(fù)雜度比較.仿真結(jié)果表明:所提出的基于SVD的信道估計(jì)算法在所述系統(tǒng)中,能夠在保證誤碼率性能的情況下,具有更低的算法復(fù)雜度.未來可以在以下兩個(gè)方面進(jìn)行更深入的研究:一是在導(dǎo)頻設(shè)計(jì)上實(shí)現(xiàn)算法復(fù)雜度和性能的平衡;二是從信道稀疏性入手,研究以壓縮感知和生物智能為主的尋優(yōu)算法.
參考文獻(xiàn):
[1] ZHANG H,LIANG Y,LI T,et al.Low complexity channel estimation in 3D MIMO systems [C]//2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).Yangzhou:IEEE,2016:1-4.
[2] XUE J,JIANG S,LIANG Y,et al.Quantum bacterial foraging optimization based sparse channel estimation for 3D MIMO systems [C]//2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).Yangzhou:IEEE,2016:1-5.
[3] WANG A,WANG Y,XU J,et al.Low complexity compressed sensing based channel estimation in 3D MIMO systems [C]//2015 IEEE 81st Vehicular Technology Conference (VTC Spring).Glasgow:IEEE,2015:1-5.
[4] ZHANG J,HE X.Pilot aided channel estimation for 3D MIMO-OFDM systems with planar transmit antennas and elevation effect [C]//2013 IEEE 24th Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC).London:IEEE,2013:316-320.
[5] AUER G.3D MIMO-OFDM channel estimation [J].IEEE Transaction on Communication,2012,60(4):972-985.
[6] MA W,QI C.Channel estimation for 3D lens millimeter wave massive MIMO system [J].IEEE Communications Letters,2017,21(9):2045-2048.
[7] 3GPP Organizational Partners.3GPP TS38.211:V15.0.0 7-12 [S].Valbonne:3GPP Organizational Partners,2017.
[8] 孫鍇,黃威.MIMO-OFDM移動(dòng)通信技術(shù)及MATLAB實(shí)現(xiàn) [M].北京:電子工業(yè)出版社,2013.
SUN K,HUANG W.MIMO-OFDM mobile communication technology and MATLAB implementation [M].Beijing:Publishing House of Electronics Industry,2013.
[9] 杜盈.LTE上行鏈路信道估計(jì)與均衡算法研究 [D].長(zhǎng)沙:湖南大學(xué),2013.DU Y.Research on LTE uplink channel estimation and equalization algorithm [D].Changsha:Hunan University,2013.
[10] 何小丹.3D MIMO信道估計(jì)技術(shù)研究 [D].北京:北京郵電大學(xué),2013.HE X D.Research on 3D MIMO channel estimation technology [D].Beijing:Beijing University of Posts and Telecommunications,2013.
(責(zé)任編輯:包震宇,顧浩然)