• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection?

    2019-08-06 02:07:16ZishengLi李子圣HuanyuWang王煥宇andXinliangGao高新亮
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李子

    Zisheng Li(李子圣), Huanyu Wang(王煥宇),?, and Xinliang Gao(高新亮)

    1CAS Key Laboratory of Geospace Environment,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Comparative Planetology,Hefei 230026,China

    Keywords: magnetic reconnection,separatrix region,electron depletion layer

    1. Introduction

    During the topological rearrangement of magnetic field lines occurring in the magnetic reconnection, in addition to the well-known dissipation from magnetic energy into plasma kinetic energy,[1-6]the production of superthermal electrons is also an important ingredient.[7-16]The reconnection electric field in the vicinity of the X line was considered to be the only site to account for electron acceleration during magnetic reconnection until the existence of the parallel electric field was revealed by Wang et al.with cluster observation.[17]Recently,the characteristics of the separatrix region have been gaining more and more attention.[18-24]

    The separatrix region separates the ion diffusion region into the inflow and outflow regions. The ions flow toward the X line in the inflow region and move away from the X line in the outflow region.[25,26]However, because the electrons are frozen in the magnetic field while the ions are unmagnetized,the electron motions are different from those of ions.[18,26,27]The electrons move toward the X line in the separatrix region,and are then accelerated by the inductive electric field near the X line; at last, they are directed away along the magnetic field in the region,which is closer to the center of the current sheet.[7-9]This current system leads to a quadrupole structure of the Hall magnetic field (perpendicular to the reconnection plane).[25-33]At the same time, an electron depletion region where the electron density is smaller than in the nearby regions is formed in the separatrix region,which results in a net positive charge therein and an electric field pointing to the center of the current sheet.[34-36]Recently, satellite observations revealed the existence of a parallel electric field in the separatrix region, which indicates that the separatrix region also plays an important role in electron acceleration.[17,37]In this paper,with two-dimensional(2D)particle-in-cell(PIC)simulations,we study the formation of the parallel electric field,as well as the electron depletion layer in the separatrix region. The influences of the ion-to-electron mass ratio and light speed are also investigated.

    2. Simulation method

    In our 2D PIC simulation model,the electromagnetic field defined on the grids are calculated by an explicit algorithm of Maxwell equations,and the movement of particles is governed by the Lorentz force. The particles can only move in the x-z plane, and their velocities have three components. The details of our simulation model can be found in Ref. [8], and the code has been widely used to study magnetic reconnection and plasma waves.[38-43]The initial configuration is a onedimensional Harris current sheet in the reconnection plane(the x-z plane). The magnetic field and plasma density are given by the following equations:

    where B0is the asymptotical magnetic field, nbrepresents a uniform background plasma density, and n0is the peak value of the plasma density corresponding to the Harris current sheet. δ is the half width of the current sheet.

    Table 1. Simulation parameters for runs 1-7.

    Both ion and electron distributions satisfy the Maxwell function, and their drift velocities along the y direction satisfy Vi0/Ve0=-Te0/Ti0, where Vi0(Ve0) and Ti0(Te0) represent the drift velocity and the initial temperature of ions(electrons),respectively. The simulation domain is Lx×Lz=25.6di×12.8di(where di= c/Ωpiis the ion inertial length based on n0). The number of grids is 1024×512, and then the grid size is Δx=Δz=0.025di. In our simulations, we choose δ =0.5c/Ωpi, nb=0.2n0, Ti0/Te0=1, and the time step is Ωi0Δt=5.0×10-3(where Ωi0is the ion gyrofrequency based on B0). The ion-to-electron mass ratio mi/me, the ratio of the light speed to the Alfv′en speed c/vA(where vAis the Alfv′en speed based on B0and n0),and the corresponding Ωpe/Ωe0(where Ωpeis the electron plasma frequency based on n0)are listed in Table 1.The periodic boundary condition is used in the x direction;meanwhile,particles are reflected when they reach the boundary in the z direction and the conducting boundary condition is used for the electromagnetic field.More than 100 million particles are used in the simulations. Magnetic reconnection is initiated by a small flux perturbation.

    3. Simulation results

    We first describe the characteristics of the separatrix region in run 3. In run 3, the ion-to-electron mass ratio is mi/me=144,and the light speed is c/vA=15. Figure 1 plots the time evolution of the reconnected flux ψ for run 3. The reconnection electric field can be estimated by calculating the slope of the reconnection flux. From the figure, it is easy to find that the magnetic field lines begin to be reconnected at about Ωi0t =15, and the reconnection rate (the reconnection electric field at the X line)attains the maximum value at about Ωi0t=17.2.

    Fig.1. The time evolution of the reconnected flux ψ for run 3.

    Figure 2 shows the electron number density neand parallel electron bulk velocity Ve‖at Ωi0t =15,17.5,20,and 26.5 for run 3. The magnetic field lines are also shown in the figure in order to more clearly display the evolution of the electron number density and parallel electron bulk velocity. With the occurrence of magnetic reconnection at about Ωi0t =15,the electrons in the separatrix region flow toward the X line while they tend to be away from the X line along the magnetic field in the region,which is closer to the center of the current sheet. As demonstrated in Ref. [18], such an electron flow will result in an electron depletion layer in the separatrix region. Therefore, with the proceeding magnetic reconnection,an electron depletion layer is formed in the separatrix region at about Ωi0t =16. After the reconnection rate attains the maximum value, the electron flow toward the X line begins to be weaker and weaker, and then disappears. However, the electron depletion layer can last for a much longer time.

    The formation of the electron depletion layer can be exhibited more clearly in Fig. 3, which presents the electron number density nealong the grey lines(at x=22.5diparallel to the z axis)denoted in the left panels of Fig.2 at Ωi0t =15,17.5, 20, and 26.5 for run 3. In order to display these values more clearly, we only plot them from z=1.0dito z=6.0dialong the denoted lines. The separatrix region will move away from the center of the current layer as the magnetic reconnection continues. After analyzing the difference between the electron number density neand the Gaussian fit for ne,we can estimate the width of the electron depletion layer in the separatrix region as 1.2di-1.5di. The minimum value of the electron density, which can be attained in the separatrix region at almost the same time as when the reconnection rate reaches the maximum value,is about 0.16n0.

    Fig.3. The electron number density ne along the grey lines denoted in the left panels of Fig.2 at Ωi0t=15(black solid line),17.5(blue solid line),20(green solid line),and 26.5(red solid line)for run 3. The initial electron density in the inflow region nb=0.2n0 is indicated by the black dashed line in the figure.

    Figure 4 shows the time evolution of the parallel electron bulk flow velocity Ve‖along the grey lines denoted in the right panels of Fig.2 for run 3. We only plot the profile of Ve‖from z=0dito z=6.0dialong the denoted lines. At Ωi0t =17.5,the reconnection rate reaches the maximum value,and the parallel electron flow toward the X line also obtains a maximum value in the separatrix region,which is about 1.1vA. The maximum value of the parallel electron flow away from the X line occurs later at Ωi0t=26.5,and is about-3.2vA.

    Fig.4. The parallel electron bulk flow velocity Ve‖ along the grey lines denoted in the right panels of Fig.2 at Ωi0t=15(black solid line),17.5(blue solid line),20(green solid line),and 26.5(red solid line)for run 3.

    Figures 5(a) and 5(b) respectively describe the parallel electric field E‖and the parallel electrostatic potential Φ‖along the separatrix in the first quadrant at Ωi0t=15,17.5,20,and 26.5 for run 3. Here,the electrostatic potential is defined as Φ‖(l)=∫lXE‖dl,which is integrated along the separatrix in the first quadrant from the X line. Please note that the gradient of Φ‖perpendicular to the magnetic field has physical significance,and Φ‖is only a pseudo-potential that measures the work done by the electric field as an electron moves along the magnetic field line. Obviously, there exists the parallel electric field along the separatrix. At Ωi0t =15, the parallel electric field points away from the X line, and its amplitude becomes large as magnetic reconnection continues until the reconnection rate decreases. However,from about Ωi0t =17,the parallel electric field pointing toward the X line is developed near the X line. The electron flow can be accelerated in the direction along the separatrix toward the X line by the positive parallel electric field. However,in the vicinity of the X line,the negative parallel electric field,which points toward the X line,will block the electron inflow.

    The spatial distributions of net charge in the simulation domain for run 3, measured by (ni-ne)/n0, are shown in Figs. 6(a) and 6(b) at Ωi0t =17.5 and 20, respectively. It can be found that the net charge is positive in the separatrix region,which is caused by the depletion of the electron density.However,we can find that in the pileup region the net charge begins to be negative after the reconnection rate reaches the maximum value, and it is formed when the accelerated electrons from the X line are blocked. Such distribution of the net charge results in the parallel electric field described in Fig.5.

    Fig.5. The profiles of(a)the parallel electric field E‖ and(b)the parallel electrostatic potential Φ‖ along the separatrix in the first quadrant at Ωi0t =15(black solid lines),17.5(blue solid lines),20(green solid lines),and 26.5(red solid lines)for run 3. In the figure,the distance Ls is measured from the X line along the upper-right separatrix.

    Fig.6. The spatial distribution of net charge in the simulation domain for run 3 at (a) Ωi0t =17.5 and (b) Ωi0t =20. The separatrices are indicated by the black dashed lines.

    We further investigate the formation of electron flow along the separatrix for run 3. According to the guiding center theory, the electron parallel acceleration dv‖/dt is given by the following equation:[44]

    where μeis the electron magnetic moment, uEis the E×B drift velocity, ^e is B/B, and o(ε) represents the small term proportional to me/e. If we sum over all electrons in a local region and neglect the small term o(ε),equation(3)becomes

    where V‖is the electron parallel bulk velocity summed over the local region,P⊥is the electron perpendicular pressure,and neis the electron number density in the local region. If we assume that the reconnection is in a steady state,equation(4)can be further simplified as

    Fig. 7. (a) The profiles of the electron magnetic moment summed over the local region P⊥/B along the separatrix in the first quadrant at Ωi0t =26.5. (b) The parallel electron flow velocity V‖ along the separatrix in the first quadrant at Ωi0t = 26.5. (c) The integration of parallel electric field force -∫ll0 eE‖dl (green solid line),magnetic mirror force -∫l l0 P⊥?‖B/(neB)dl (red solid line), the sum

    The left-hand side of Eq. (5) is the convective derivation of electron flow, which is balanced by the parallel electric field force-eE‖and the magnetic mirror force-P⊥?‖B/(neB)on the right-hand side of Eq.(5).l (black dashed line), and the electron convective derivation∫ll0me(V ·?)V‖dl (black solid line)along the separatrix in the first quadrant at Ωi0t =26.5. In the figure,the distance Lsis measured from the X line along the upper-right separatrix.

    Figure 7(a)shows the electron magnetic moment summed over the local region P⊥/B along the separatrix in the first quadrant at Ωi0t =26.5 for run 3. The electron parallel bulk velocity V‖along the same separatrix is shown in Fig. 7(b).The integration of parallel electric field force -(green solid line) along the separatrix in the first quadrant is shown in Fig.7(c),where l0is the end point of the separatrix on the right boundary of the simulation domain. The integration of magnetic mirror force-∫dl(red solid line) is also shown in Fig. 7(c). It can be found that from the inflow region to the reconnection X line along the separatrix, both the parallel electric field force and the magnetic

    Fig.8. (a)The time evolution of the reconnected flux ψ for run 1(black solid line),run 2(blue solid line),run 3(green solid line),and run 4(red solid line). (b)The time evolution of the reconnected flux ψ for run 5(black solid line), run 6 (blue solid line), run 3 (green solid line), and run 7(red solid line).

    Figures 9(a)and 9(b)show the electron number density neand the parallel electron bulk flow velocity Ve‖along the line at x=22.5di,parallel to the z axis for run 1 at Ωi0t=21.25,run 2 at Ωi0t=19,run 3 at Ωi0t=17.5,and run 4 at Ωi0t=16.5.At these times,the reconnection rates of all runs reach the maximum. With the increase in the mass ratio,the electron depletion layer, as well as the parallel electron bulk flow velocity toward the X line in the separatrix region and away from the X line, become more salient. Figures 10(a) and 10(b) show the electron number density neand the parallel electron bulk flow velocity Ve‖along the line at x=22.5di, parallel to the z axis for run 5 at Ωi0t =21, run 6 at Ωi0t =19.5, run 3 at Ωi0t =17.5,and run 7 at Ωi0t =16.75. The decrease in light speed enhances the electron depletion and parallel flow in the separatrix region.

    Fig. 9. The profile of (a) the electron number density ne and (b) the parallel electron bulk flow velocity Ve‖ along the line at x=22.5di parallel to the z axis for run 1 at Ωi0t =21.25(black solid lines),run 2 at Ωi0t=19(blue solid lines),run 3 at Ωi0t=17.5(green solid lines),and run 4 at Ωi0t =16.5 (red solid lines). The black dashed line in panel(a)indicates the initial electron density in the inflow region nb=0.2n0.The black dashed line in panel(b)denotes the value Ve‖/vA=0.

    Fig. 10. The profile of (a) the electron number density ne and (b) the parallel electron bulk flow velocity Ve‖ along the line at x = 22.5di parallel to the z axis for run 5 at Ωi0t = 21 (black solid lines), run 6 at Ωi0t =19.5 (blue solid lines), run 3 at Ωi0t =17.5 (green solid lines), and run 7 at Ωi0t =16.75 (red solid lines). The black dashed line in panel (a) indicates the initial electron density in the inflow region nb =0.2n0. The black dashed line in panel(b) denotes the value Ve‖/vA=0.

    Figure 11(a)shows the parallel electrostatic potential Φ‖along the separatrix for run 1 at Ωi0t=21.25,run 2 at Ωi0t=19, run 3 at Ωi0t =17.5, and run 4 at Ωi0t =16.5. At these times, all runs obtain the maximum reconnection rate. It can be found that with the increase in the mass ratio, the parallel electrostatic potential Φ‖along the separatrix is enhanced.Figure 11(b) shows the Φ‖along the separatrix for run 5 at Ωi0t=21,run 6 at Ωi0t=19.5,run 3 at Ωi0t=17.5,and run 7 at Ωi0t=16.75.At these times,all runs obtain the maximum reconnection rate. With the decrease in light speed,the parallel electrostatic potential in the separatrix region also tends to be more salient.mirror force become more and more important for electron acceleration. If we compare these two mechanisms,the parallel electric field force is more important for electron acceleration;however, the magnetic mirror force cannot be neglected either.In Fig.7(c),the difference between the electron flow convective derivation∫ll0me(V ·?)V‖dl (black solid line)and the sum of the parallel electric field force and the magnetic mirror force -∫dl (black dashed line) comes from the nonadiabatic motion of some electrons, which cannot be described by the guiding center theory. This difference becomes much more obvious in the electron diffusion region(Ls<3.0di, indicated by the blue solid line in Fig.7), where the electron motion is decoupled with the local magnetic field and the guiding center theory fails.

    We also investigate the influences of the ion-to-electron mass ratio and light speed on the electron depletion layer and parallel electric field in the separatrix region. Figure 8(a)plots the time evolution of the reconnected flux ψ for runs 1-4. A group of runs have the same light speed but different ion-toelectron mass ratios. Obviously,the ion-to-electron mass ratio does not change the reconnection rate,although reconnection occurs earlier with the increase in the mass ratio. Figure 8(b)plots the time evolution of the reconnected flux ψ for runs 3 and 5-7. A group of cases have the same ion-to-electron mass ratio but different light speeds.With the decrease in light speed, reconnection occurs earlier, but the reconnection rate hardly changes.

    Fig.11. (a)The parallel electrostatic potential Φ‖ along the separatrix for run 1 at Ωi0t=21.25(black solid line),run 2 at Ωi0t=19(blue solid line), run 3 at Ωi0t =17.5(green solid line), and run 4 at Ωi0t =16.5(red solid line). (b) The parallel electrostatic potential Φ‖ along the separatrix for run 5 at Ωi0t =21 (red solid line), run 6 at Ωi0t =19.5(blue solid line), run 3 at Ωi0t =17.5 (green solid line), and run 7 at Ωi0t =16.75 (red solid line). In the figure, the black dashed lines denote the value Φ‖/vAB0di=0.

    4. Summary and discussion

    In this paper, with 2D PIC simulations, we studied the properties of the electron depletion layer and parallel electric field in the separatrix region during anti-parallel reconnection.At first,the parallel electric field pointing away from the X line is formed in the separatrix region,and then the parallel electric field pointing toward the X line is developed in the separatrix region around the X line. Both the increase in the ion-to electron mass ratio and decrease in light speed make the electron depletion layer and parallel electric field more salient in the separatrix region.

    Satellite observations have already revealed the existence of the parallel electric field in the separatrix region during magnetic reconnection.[17,45,46]Both observations and our simulations have shown that in addition to the reconnection electric field induced around the X line, there still exists the parallel electric field in the separatrix region,which may play an important role in electron acceleration during magnetic reconnection. How the parallel electric field in the separatrix region will act on electron acceleration during magnetic reconnection is a direction for our future work.

    猜你喜歡
    李子
    其樂融融過中秋
    我戰(zhàn)勝了黑暗
    小主人報(2022年7期)2022-08-16 06:59:28
    智能鼠捉鼠記
    謝謝你
    小主人報(2022年2期)2022-01-19 11:46:20
    一次難忘的生日
    秋天
    李子有多少
    給“小松”洗澡
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    我的糊涂媽媽
    日日夜夜操网爽| 日韩免费高清中文字幕av| 久久这里只有精品19| 在线天堂中文资源库| 韩国高清视频一区二区三区| 国产在视频线精品| 中文乱码字字幕精品一区二区三区| a 毛片基地| 中国国产av一级| 亚洲 欧美一区二区三区| av国产久精品久网站免费入址| 久久久精品94久久精品| 免费在线观看黄色视频的| 最新在线观看一区二区三区 | 欧美另类一区| 久久人人爽人人片av| 蜜桃国产av成人99| 国产亚洲欧美在线一区二区| 国产麻豆69| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 久久人人97超碰香蕉20202| 亚洲精品美女久久av网站| 国产在线视频一区二区| 麻豆国产av国片精品| 精品一区二区三区av网在线观看 | 久久热在线av| 日韩 亚洲 欧美在线| 精品国产一区二区三区四区第35| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 777久久人妻少妇嫩草av网站| 天天影视国产精品| 最近最新中文字幕大全免费视频 | 亚洲av综合色区一区| 丝瓜视频免费看黄片| 免费少妇av软件| 免费在线观看完整版高清| 黄色视频不卡| 久久久国产精品麻豆| 久久久国产精品麻豆| 国产成人精品久久久久久| 又大又爽又粗| 国产极品粉嫩免费观看在线| 亚洲免费av在线视频| 国产精品欧美亚洲77777| 国产成人av激情在线播放| 一级毛片我不卡| 亚洲精品第二区| 18禁观看日本| 久久久精品免费免费高清| 亚洲黑人精品在线| 欧美久久黑人一区二区| 亚洲国产成人一精品久久久| 国产一区二区三区综合在线观看| 国产一区二区在线观看av| 男男h啪啪无遮挡| 亚洲 国产 在线| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 97在线人人人人妻| cao死你这个sao货| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 国产欧美日韩一区二区三 | 亚洲天堂av无毛| 午夜免费鲁丝| 午夜精品国产一区二区电影| 免费女性裸体啪啪无遮挡网站| 免费看日本二区| 久久久久久人人人人人| 久久久精品欧美日韩精品| 亚洲欧美一区二区三区黑人| 俄罗斯特黄特色一大片| 久久香蕉激情| www.精华液| 最近最新中文字幕大全电影3 | 中文在线观看免费www的网站 | 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美精品综合一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻,人人澡人人爽秒播| 国产精品二区激情视频| 日韩大码丰满熟妇| 国产片内射在线| 无限看片的www在线观看| 妹子高潮喷水视频| 国产又色又爽无遮挡免费看| 在线免费观看的www视频| 国产亚洲欧美在线一区二区| 亚洲精品色激情综合| 90打野战视频偷拍视频| 18禁美女被吸乳视频| 日韩一卡2卡3卡4卡2021年| 国产单亲对白刺激| av免费在线观看网站| 91麻豆精品激情在线观看国产| 一本久久中文字幕| 久久久久久久久中文| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 久久精品国产99精品国产亚洲性色| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 欧美日韩一级在线毛片| 香蕉久久夜色| 少妇被粗大的猛进出69影院| 1024手机看黄色片| 91在线观看av| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 欧美日本视频| 少妇被粗大的猛进出69影院| 一进一出抽搐动态| 婷婷亚洲欧美| 亚洲熟妇中文字幕五十中出| 亚洲人成伊人成综合网2020| 国产精品1区2区在线观看.| avwww免费| 视频在线观看一区二区三区| 国产精品电影一区二区三区| 美女大奶头视频| 国产成人精品久久二区二区91| 美女扒开内裤让男人捅视频| 亚洲一区二区三区色噜噜| 欧美激情极品国产一区二区三区| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| 岛国视频午夜一区免费看| tocl精华| 国产伦一二天堂av在线观看| 亚洲激情在线av| 成年人黄色毛片网站| 亚洲 欧美一区二区三区| 国产精品久久久久久亚洲av鲁大| 一个人观看的视频www高清免费观看 | 久久久久久国产a免费观看| 三级毛片av免费| 久久久久免费精品人妻一区二区 | 国产极品粉嫩免费观看在线| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜 | 岛国在线观看网站| 美女高潮喷水抽搐中文字幕| 国产区一区二久久| 亚洲五月色婷婷综合| 亚洲久久久国产精品| 国产真实乱freesex| 欧美日本视频| 国产精品,欧美在线| 国产欧美日韩一区二区精品| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| 中国美女看黄片| 午夜免费鲁丝| 久久国产精品男人的天堂亚洲| 18美女黄网站色大片免费观看| xxx96com| 精品久久久久久,| 母亲3免费完整高清在线观看| 久久热在线av| 在线视频色国产色| 国产亚洲av嫩草精品影院| 国产精品野战在线观看| av在线播放免费不卡| www.www免费av| 可以在线观看毛片的网站| 日本五十路高清| 69av精品久久久久久| 午夜久久久久精精品| 精品国产亚洲在线| 91av网站免费观看| 日本一本二区三区精品| 午夜福利18| 亚洲av第一区精品v没综合| 国产高清videossex| 一区二区三区高清视频在线| 久久久久久久精品吃奶| 国产激情欧美一区二区| avwww免费| 1024手机看黄色片| 成年版毛片免费区| 女生性感内裤真人,穿戴方法视频| 桃色一区二区三区在线观看| 精品国产亚洲在线| 亚洲一码二码三码区别大吗| 成人欧美大片| 草草在线视频免费看| 麻豆国产av国片精品| 好看av亚洲va欧美ⅴa在| 两个人免费观看高清视频| tocl精华| 老司机在亚洲福利影院| 亚洲狠狠婷婷综合久久图片| 91大片在线观看| 97碰自拍视频| 久久性视频一级片| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| e午夜精品久久久久久久| 亚洲欧美精品综合一区二区三区| 女性生殖器流出的白浆| 日韩欧美国产在线观看| 午夜福利18| 嫁个100分男人电影在线观看| 麻豆一二三区av精品| 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| 一本综合久久免费| 国产午夜精品久久久久久| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 制服诱惑二区| 精品福利观看| 国内毛片毛片毛片毛片毛片| 啦啦啦观看免费观看视频高清| 亚洲美女黄片视频| av福利片在线| 亚洲成人免费电影在线观看| av视频在线观看入口| 我的亚洲天堂| 久久婷婷人人爽人人干人人爱| 操出白浆在线播放| 亚洲三区欧美一区| 欧美成人性av电影在线观看| 精品卡一卡二卡四卡免费| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 欧美三级亚洲精品| 一级片免费观看大全| 黄色毛片三级朝国网站| 宅男免费午夜| 色av中文字幕| 国产男靠女视频免费网站| 视频在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 日本精品一区二区三区蜜桃| 日韩欧美在线二视频| 国产爱豆传媒在线观看 | 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 国产精品久久久久久精品电影 | 久久精品人妻少妇| 国产精品免费一区二区三区在线| 黄片大片在线免费观看| 伦理电影免费视频| av免费在线观看网站| www日本黄色视频网| 最近最新免费中文字幕在线| 国产真实乱freesex| 黄色丝袜av网址大全| 国产精品电影一区二区三区| 精品少妇一区二区三区视频日本电影| 美女午夜性视频免费| 国产精品av久久久久免费| 日韩有码中文字幕| 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久久毛片| 国产精品二区激情视频| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 久久午夜亚洲精品久久| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 又黄又粗又硬又大视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成网站高清观看| 香蕉av资源在线| 少妇的丰满在线观看| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 侵犯人妻中文字幕一二三四区| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| 久久久久久国产a免费观看| 日韩欧美国产在线观看| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 欧美三级亚洲精品| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 99久久久亚洲精品蜜臀av| 精品免费久久久久久久清纯| 国产伦在线观看视频一区| 久久久水蜜桃国产精品网| 午夜成年电影在线免费观看| 99re在线观看精品视频| 欧美中文日本在线观看视频| 亚洲真实伦在线观看| 麻豆成人午夜福利视频| 精品国产亚洲在线| 一区二区三区精品91| 久久久久国产精品人妻aⅴ院| 久久久国产精品麻豆| 我的亚洲天堂| 99热只有精品国产| 久久人妻av系列| 男女下面进入的视频免费午夜 | 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 亚洲国产精品合色在线| 日日干狠狠操夜夜爽| 黑人操中国人逼视频| 十八禁网站免费在线| 中文字幕最新亚洲高清| 久久精品aⅴ一区二区三区四区| 欧美中文日本在线观看视频| 午夜影院日韩av| 国产成人av教育| 国产99白浆流出| 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影| 国产精品野战在线观看| 久久香蕉国产精品| 中文字幕av电影在线播放| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| avwww免费| 久久久久国产一级毛片高清牌| 99国产极品粉嫩在线观看| 中文字幕人妻熟女乱码| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 国产亚洲av高清不卡| 69av精品久久久久久| 又黄又粗又硬又大视频| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 成人亚洲精品一区在线观看| 亚洲av中文字字幕乱码综合 | 中文字幕精品免费在线观看视频| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 国产精品av久久久久免费| 一级毛片女人18水好多| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费| 久久久水蜜桃国产精品网| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| av片东京热男人的天堂| 2021天堂中文幕一二区在线观 | 美女大奶头视频| 国产精品美女特级片免费视频播放器 | 国产亚洲欧美精品永久| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 啦啦啦免费观看视频1| 久久草成人影院| 国产三级在线视频| 成年免费大片在线观看| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 免费看a级黄色片| 日韩有码中文字幕| 久久久久亚洲av毛片大全| 好男人在线观看高清免费视频 | 成年免费大片在线观看| 日韩成人在线观看一区二区三区| 久久草成人影院| 国产精品久久久av美女十八| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 国产不卡一卡二| 一卡2卡三卡四卡精品乱码亚洲| 国产在线观看jvid| 午夜成年电影在线免费观看| 亚洲成人国产一区在线观看| 久久久久久久久免费视频了| 国产精品一区二区三区四区久久 | 黄色女人牲交| 亚洲人成网站高清观看| 亚洲精品国产精品久久久不卡| 一级毛片女人18水好多| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 听说在线观看完整版免费高清| 黑人操中国人逼视频| 叶爱在线成人免费视频播放| 岛国在线观看网站| 1024视频免费在线观看| 夜夜看夜夜爽夜夜摸| 久久九九热精品免费| 欧美日韩黄片免| 欧美色视频一区免费| 一区二区三区高清视频在线| aaaaa片日本免费| 国产av在哪里看| 成人国语在线视频| 欧美黑人精品巨大| 日本一本二区三区精品| 国产亚洲欧美在线一区二区| 国产精品亚洲美女久久久| 搡老妇女老女人老熟妇| 亚洲精品一卡2卡三卡4卡5卡| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 亚洲色图 男人天堂 中文字幕| 老汉色∧v一级毛片| 国产极品粉嫩免费观看在线| 亚洲成人精品中文字幕电影| 午夜成年电影在线免费观看| 深夜精品福利| 午夜日韩欧美国产| 黄频高清免费视频| 在线观看66精品国产| 99riav亚洲国产免费| 成人特级黄色片久久久久久久| 日韩av在线大香蕉| 国产99久久九九免费精品| 一进一出好大好爽视频| 国产单亲对白刺激| 97碰自拍视频| 国产色视频综合| 欧美不卡视频在线免费观看 | 叶爱在线成人免费视频播放| 精品国产乱子伦一区二区三区| 国产主播在线观看一区二区| 99热6这里只有精品| 亚洲精品国产区一区二| 亚洲精华国产精华精| 欧美乱色亚洲激情| 视频区欧美日本亚洲| 久久久久久久久免费视频了| 日本 av在线| 最新在线观看一区二区三区| 国产爱豆传媒在线观看 | 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 国产久久久一区二区三区| 欧美日本亚洲视频在线播放| 制服诱惑二区| 国产视频一区二区在线看| 国产黄色小视频在线观看| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看 | 久久中文字幕一级| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| 国产麻豆成人av免费视频| ponron亚洲| 麻豆成人午夜福利视频| 亚洲成人久久性| 亚洲人成电影免费在线| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 老司机靠b影院| 精品欧美国产一区二区三| 精品一区二区三区视频在线观看免费| 国产av又大| 一进一出抽搐gif免费好疼| 久9热在线精品视频| 18禁观看日本| 女警被强在线播放| 男人舔奶头视频| e午夜精品久久久久久久| 亚洲成人精品中文字幕电影| 久久久国产成人精品二区| 国产精品久久久av美女十八| 久久草成人影院| av在线播放免费不卡| 国产精品 欧美亚洲| 草草在线视频免费看| 一本精品99久久精品77| 一级a爱片免费观看的视频| 老司机福利观看| 国产又色又爽无遮挡免费看| www国产在线视频色| 啦啦啦免费观看视频1| 性欧美人与动物交配| 亚洲中文字幕日韩| 欧美zozozo另类| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 正在播放国产对白刺激| 国产主播在线观看一区二区| 亚洲国产中文字幕在线视频| 国产免费av片在线观看野外av| 99久久综合精品五月天人人| 亚洲自拍偷在线| 午夜精品在线福利| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| 免费看日本二区| 人人妻人人澡欧美一区二区| 制服诱惑二区| 日本成人三级电影网站| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 岛国视频午夜一区免费看| svipshipincom国产片| 在线视频色国产色| 久久久精品国产亚洲av高清涩受| 欧美三级亚洲精品| 中亚洲国语对白在线视频| 日本熟妇午夜| 亚洲性夜色夜夜综合| 丁香六月欧美| 国产精品一区二区三区四区久久 | 亚洲人成网站高清观看| 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色| 男人舔女人的私密视频| 久久性视频一级片| 日本成人三级电影网站| 男女视频在线观看网站免费 | 少妇熟女aⅴ在线视频| 国产精品爽爽va在线观看网站 | 亚洲成人精品中文字幕电影| 在线看三级毛片| 波多野结衣高清无吗| x7x7x7水蜜桃| 波多野结衣av一区二区av| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频 | 成人av一区二区三区在线看| 一区二区三区精品91| 日韩中文字幕欧美一区二区| 久久久久九九精品影院| 久久精品91蜜桃| 一本一本综合久久| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 午夜福利高清视频| 无人区码免费观看不卡| 伊人久久大香线蕉亚洲五| 免费在线观看亚洲国产| 午夜影院日韩av| 久久久久国产一级毛片高清牌| av在线播放免费不卡| 日本三级黄在线观看| 精品国产美女av久久久久小说| 国产又黄又爽又无遮挡在线| 亚洲成av片中文字幕在线观看| 我的亚洲天堂| 国产一区二区激情短视频| 精品久久久久久久人妻蜜臀av| 99国产精品一区二区蜜桃av| 亚洲专区中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| or卡值多少钱| 日本成人三级电影网站| 亚洲成a人片在线一区二区| 18禁国产床啪视频网站| 又黄又粗又硬又大视频| 国产欧美日韩一区二区精品| 国产又色又爽无遮挡免费看| 真人做人爱边吃奶动态| 免费看十八禁软件| 亚洲美女黄片视频| 欧美一级a爱片免费观看看 | 国产精品永久免费网站| 免费高清在线观看日韩| 日本黄色视频三级网站网址| 中出人妻视频一区二区| 女生性感内裤真人,穿戴方法视频| 免费无遮挡裸体视频| 三级毛片av免费| 91麻豆精品激情在线观看国产| 美国免费a级毛片| 亚洲色图 男人天堂 中文字幕| 一a级毛片在线观看| 亚洲av中文字字幕乱码综合 | 此物有八面人人有两片| 一本精品99久久精品77| 性色av乱码一区二区三区2| 12—13女人毛片做爰片一| 成人亚洲精品av一区二区| 亚洲av日韩精品久久久久久密| 少妇 在线观看| xxxwww97欧美| 美女高潮喷水抽搐中文字幕| 日韩精品中文字幕看吧| 99久久国产精品久久久| 亚洲第一青青草原| 欧美国产精品va在线观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品香港三级国产av潘金莲| 亚洲av片天天在线观看| 青草久久国产| 国产不卡一卡二| 人人妻人人看人人澡| 男人的好看免费观看在线视频 | 免费搜索国产男女视频| 午夜免费成人在线视频| 精品一区二区三区av网在线观看| 大型av网站在线播放| 亚洲精品在线观看二区| 精品久久久久久久久久免费视频| 亚洲欧美一区二区三区黑人| 好男人电影高清在线观看| 久久午夜综合久久蜜桃| 满18在线观看网站| 国内少妇人妻偷人精品xxx网站 | 成人三级做爰电影| 淫秽高清视频在线观看| 久久精品91蜜桃| 精品久久久久久成人av| 亚洲人成77777在线视频| 亚洲 欧美 日韩 在线 免费| 精品日产1卡2卡| 一个人免费在线观看的高清视频| 亚洲国产高清在线一区二区三 | 久久人人精品亚洲av| 成人欧美大片| 又大又爽又粗|