• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Experimental Study of Non-contact Power Transmission Device in Static Push-type Rotary Steering Drilling System

    2019-08-04 08:45:06ZHUJieranZOUDeyongZHANGYuHOUYukun

    ZHU Jieran ; . ZOU Deyong; ZHANG Yu ; HOU Yukun

    [a] China University of Petroleum (Hua Dong), Qingdao, Shandong, China.

    [b] MWD&LWD Technology Center Sinopec Shengli Oilfield Services Corporation. Dongying, Shandong, China.

    Abstract For improvement of contactless power transformer which is used in rotary steering system, this paper uses simulation method to study on the influence of the shape of the ferrite, the number os turns and installation position on the efficiency and power of the contactless power transformer.As well as, the author take several test to study the influence of environment, fixed position, etc.on this equipment and the regularity of power and efficiency. The research shows that the contactless power transformer is competent for rotary steering system, and the axial installation error impact the transmission efficiency and power which has the most power and efficiency at-3mm axial fixed position and ±3mm fixed position error can meet the rotary steering system requirements.

    Key words: Oil and gas; Drilling; Rotary steering system; Contactless power transformer;Simulation; Experiment

    The execution system of the static push-type rotary steerable drilling system consists of a non-rotating casing and a rotating shaft, and does not rotate the relative rotation between the casing and the rotating shaft, and the measuring and executing power unit is mounted on the non-rotating casing, so that the electric energy needs to be transmitted from the rotating shaft to the rotating shaft Do not rotate the jacket. The traditional contact electric transmission forms such as slip rings and carbon brushes cannot meet the harsh working environment of downhole sealing, rotation, vibration, high temperature, etc. Non-contact electromagnetic induction transmission is a suitable form (Chen, et al, 2009; Fu, Chen, & Lu, 2011; Ma & Sun, 2010).

    Non-contact energy transmission (Yan, et al, 2014; Wang, et al, 2015) technology (Inductive contractless power transmission), ICPT as a new type of power transmission mode, in the electric vehicle charging (Boys & Green,1995), robots (Atsuo & Kazuaki, 1996), medical electronics (Wang, et al, 2005) and other industries gradually become widespread Application (Yang, Wang, & Ouyang, 2008). Based on ICPT technology (Song & Tu, 2016),the application of mutual inductance model theory and Maxwell simulation calculation combined with experimental verification for the coupling performance, transmission efficiency and primary and secondary resonance of non-contact rotating electromagnetic mechanism The compensation measures were optimized.

    1. COUPLER STRUCTURE DESIGN AND MODEL ANALYSIS

    1.1 Coupler Structure Size Design

    According to the overall design of the rotary steerable drilling tool, the coupler structure is designed in the form of inner and outer cylinders. The minimum and maximum diameters of the inner and outer rings are subject to the overall size requirements of the tool. The specific structure is shown in Fig. 1. In this paper, the maximum installation diameter, minimum installation diameter, air gap and ferrite thickness of the existing structure are maintained. The groove width, tooth width, number of coils and input voltage of the ferrite are discussed. The coupler output power, coupling coefficient, transmission efficiency and maximum magnetic density of ferrite were simulated and tested, and then the direction design of the coupler design for engineering application was guided.

    Figure 1: Coupler structure size diagram

    Suitable for ferrite in high temperature environment,the initial magnetic permeability of the magnetic core is≥2000, and the saturation magnetic density is ≥200mT;

    1.2 Simple Model Analysis of Coupler Power Transmission

    The mutual inductance model theory based on the principle of electromagnetic induction (Sun, et al, 2005), the non-contact transmission of system energy is realized by ICPT technology. The primary and secondary coils are respectively wound around a relatively separated and coaxial core to form a loosely coupled transformer, the primary coil. The magnetic field is generated by a high-frequency excitation current, and the secondary coil can induce an alternating current signal of the same frequency。

    Compared with the ideal transformer, the loosely coupled transformer has the effect of the edge effect on the air gap reluctance when the magnetic circuit is analyzed for the loosely coupled transformer due to the existence of the air gap. For a loosely coupled transformer, the air gap of the ideal transformer is relatively large, the magnetizing inductance is relatively small, and the leakage inductance is relatively large, and the relationship between the voltage and current of the primary and secondary sides does not completely conform to the turns ratio relationship.

    1.2.1 Magnetic Circuit Analysis

    Using the U-shaped core for formula derivation, the coupler dimensioning and magnetic circuit are shown below.

    Figure 2: U core size

    Figure 3: Coupler simplified schematic

    Figure 4: Coupler equivalent magnetic circuit

    In the figure, lm is the average magnetic path length, lg is the air gap length, and Rc and Rg are the magnetic core reluctance and the air gap reluctance, respectively.

    The concept of a magnetic circuit corresponds in form to the concept of a circuit. A magnetic flux, like the current in a circuit, is always closed and circulates in a path of low reluctance according to the shortest path principle. The closed path through which the flux passes is called the magnetic circuit. The correspondence between the magnetic circuit and the circuit is as follows:

    Table 1 Magnetic Circuit Nouns and Codes

    1.2.2 Coupling Coefficient Analysis

    In order to facilitate the analysis of the energy transfer characteristics of the loosely coupled transformer, the loosely coupled transformer is simplified as follows: the magnetic cores on both sides have the same shape and positional symmetry; the turns ratio of the windings on both sides is 1: 1, the shape is the same, and the position is symmetrical. From the above simplification, it can be considered that the parameters of the loosely coupled transformer have symmetry, the self-inductances L1 and L2 of the windings on both sides are equal, and the leakage inductances L1 and L2 of the windings on both sides are equal.

    The T-equivalent model of the loosely coupled transformer is shown in the dashed box (the winding resistance on the winding is ignored in the model) where Lmis the magnetizing inductance or the coupled inductor. When the AC voltage source outputs a sine wave with an angular frequency of ω, the load voltage transmission ratio is analyzed by the AC impedance method. The load voltage transmission ratio is defined as the ratio of the AC voltage amplitude URon the load R to the AC voltage source amplitude UAC. Recorded as Gk.

    Figure 5: Loosely coupled transformer T-equivalent model

    In order to facilitate the formula derivation, four equivalent impedances of Z0, Z1, Z2, and Z3 are marked at the four ports in the equivalent model diagram, and the impedance values are respectively given by the following formulas.

    Then the voltage transfer ratio Gkcan be expressed as

    Define Q as the ratio of the self-inductance and the equivalent load R resistance of the primary winding

    Under the condition that the parameters of the loosely coupled transformer are constant, the larger the Q value,the smaller the load is, the smaller the resistance of R is. Therefore, the higher the efficiency, the better the quality of the inductor component.

    Definition of coupling coefficient K

    Define the coupling coefficient of the coupler to

    When the turns ratio is 1, the coupling coefficient can be obtained from the above two equations.

    The coupling coefficient can be expressed in the form of magnetoresistance

    It can be seen from the above formula that the higher the coupling coefficient, the better the energy transfer performance of the coupler; the air gap size, the number of turns of the coil, the magnetic reluctance of the core and the area of the end and the area of the erection will affect the coupling coefficient.

    Therefore, according to the structure, the air gap cannot be zero, here fixed 5mm, and the transmission efficiency of the system is studied from the width of the ferrite tooth, the width of the ridge and the number of turns of the coil.

    Figure 6: Functional block diagram of coupled simulation experiment

    2. COUPLER SIZE OPTIMIZATION SIMULATION

    Based on the Maxwell electromagnetic field finite element simulation platform, the non-contact energy transmission system is simulated from the model establishment, the excitation source application, the boundary condition given to the later cloud image extraction.

    2.1 Simulation Modeling

    Under the Maxwell simulation platform, the geometric model of the can core is drawn. The outer diameter of the coupler is 170mm, the inner diameter is 100mm, the air gap is 5mm, and the thickness of the ferrite is 4. 2mm.The model sets the soft ferrite core. The magnetic permeability is 2000, and the saturation magnetic density is≥200mT. The conductivity is 0. The boundary conditions for determining the finite element calculation are primary fixed and secondary rotation, and the excitation applied to the primary coil is a high frequency alternating current signal.

    Equivalent Circuit:

    Figure 7: Coupler equivalent circuit

    The coupler simulation model was built using Ansys Maxwell simulation software. Apply a sinusoidal current to the winding, calculate the flux linkage of the primary and secondary windings, respectively, to calculate the inductance parameter of the coupler; short-circuit the secondary winding, apply a sinusoidal current to the primary winding, calculate the flux linkage of the primary winding, and calculate the coupler Short circuit inductance.

    According to the calculated circuit parameters, the external circuit is built as shown in Fig. 8. The simulation model of the coupled field circuit coupling is established to calculate the performance of the coupler.

    Figure 8: External circuit

    2.2 Effect of Groove Width Variation on Transmission Power and Efficiency

    The initial size of the single winding adjusts the window width first to obtain different structures and their electromagnetic parameters. In this process, the axial dimension of the coupler remains the same.

    The window width was changed from 20mm to 23. 5mm, 27mm and 30mm respectively, and the winding turns were changed from 6 to 7 beams, 8 beams and 9 beams respectively. The four structures of the coupler were simulated separately to obtain the magnetic field distribution and magnetic cloud. Figure and electromagnetic parameters are as follows:

    Figure 9: Magnetic field distribution and magnetic dense cloud image with same window width

    The windings of the four structures are respectively connected to the alternating current of amplitude 10A, and the maximum magnetic core density of the core is measured to be about 70mT, 72mT, 76mT and 79mT,respectively, all of which are much smaller than the saturation magnetic density of the ferrite of 200mT.

    Pspice software is used to bring the electromagnetic parameters of each structure into the simulation circuit diagram. The input voltage is 36V and the frequency is 40KHz. The leakage inductance of the four structures is 3.34uH, 3. 89uH, 4. 44uH and 5. 08uH respectively, and the corresponding compensation resonant capacitance is 4.41uF respectively. , 4. 07uF, 3. 56uF and 3. 12uF, the magnetizing inductances are 39. 33uH, 54. 32uH, 71. 89uH and 91. 97uH, respectively. The copper loss resistance 0.6Ω in the figure is estimated based on the actual coupler test data.

    Calculate the output power = U2*U2/8Ω(output power + copper loss), the output power and efficiency of each structure are shown below:

    Figure 10: Output power and efficiency curves for different slot widths

    2.3 Effect of Tooth Width Variation on Transmission Power and Efficiency

    When the windings are 8 bundles, the window width and the number of winding turns are kept unchanged, and the tooth width is changed from 15 mm to 18 mm, 21 mm and 24 mm, respectively, that is, the total length is changed from 57 mm to 63 mm, 69 mm and 75 mm, respectively, and the four structures of the coupler are separately performed. Simulation, the magnetic field distribution, magnetic density cloud map and electromagnetic parameters are as follows:

    Figure 11: Magnetic field distribution and magnetic dense cloud diagram of 8 winding

    The windings of the four structures are respectively connected to the alternating current of amplitude 10A, and the maximum magnetic core density of the core is measured to be about 76mT, 79mT, 82mT and 84mT,respectively, all of which are much smaller than the saturation magnetic density of the ferrite of 200mT.

    The output power, loss and efficiency of each structure are shown in the following table:

    The efficiency curve and coupler efficiency curve for different tooth widths are as follows:

    Figure 12: 8 Winding efficiency and transmission efficiency with 8 winding

    2.4 Fixed 9 Bundle Window Width, Tooth Width Change

    When the winding is 9匝, the window width and the number of winding turns are kept unchanged, and the tooth width is changed from 15mm to 18mm, 21mm and 24mm respectively, that is, the total length is changed from 60mm to 66mm, 72mm and 78mm, and the four structures of the coupler are separately performed. Simulation,the magnetic field distribution, magnetic density cloud map and electromagnetic parameters are as follows:

    Figure 13: Magnetic field distribution and magnetic dense cloud diagram of 9 winding

    The windings of the four structures are respectively connected to the alternating current of amplitude 10A, and the maximum magnetic core density of the core is measured to be about 79mT, 81mT, 85mT and 93mT,respectively, all of which are much smaller than the saturation magnetic density of the ferrite of 200mT. 。

    Figure 14: Influence of different tooth widths of 9 winding on output power and coupling efficiency

    2.5 Coupler Offset Simulation

    In order to simulate the up and down offset of the magnetic core, the simulation model shown in Fig. 15 is established to move the inner cylinder core down by 5 mm.

    The resonant capacitor is kept at C=1. 11uF, and the load characteristics of the coupler are calculated as shown in Table 2.

    Figure 15: Coupler simulation model

    Table 2 Coupler load characteristics (Resonant capacitor C=1. 11uF)

    After the inner cylinder core is moved down by 5 mm, the short-circuit inductance of the coupler actually becomes Lk=17. 50uH, and when the inner cylinder core is shifted by 5mm, the output voltage and efficiency vary with the load as shown in Fig. 16 (the abscissa is the load resistance unit Ω). The ordinate is the voltage unit V). If the original resonant capacitor is still maintained at 1. 11uF, the output voltage and efficiency will be small; but if the resonant capacitor is re-selected, the output voltage will increase even higher than the original value, and the efficiency will be slightly improved, but still lower than the original value.

    Figure 16: Output voltage-load characteristics

    Figure 17: Schematic diagram of the experimental test of the coupler

    3. LAB TESTING

    Under the conditions of the laboratory, the primary circuit for non-contact power transmission by inputting 36V DC voltage is processed by the primary circuit into AC and then transmitted to the secondary circuit through the induction coil. The secondary circuit is connected to a 10Ω high-power resistor. Measuring the current at the input and the voltage of the load can get the input power and output power, which can calculate the efficiency of the whole transmission system.

    Figure 18: Influence of the variation of axialdisplacement of magnetic ring on coupling efficiency

    Figure 19: Influence of radial offset on transmission efficiency

    Figure 18 shows that the inner and outer magnetic rings are most efficient at a fixed location, and the efficiency is reduced at both points of efficiency. According to the existing model, the inner and outer magnetic rings are the most efficient at the -3 position, and the efficiency is not less than 85% in the range of -8 to +2, and the power is not less than 120W. Therefore, the actual application efficiency point is required as the installation point.

    At the 0 o'clock position, the inner magnetic ring is at the center position of the outer magnetic ring, and 1/2/3/4 respectively represents the point 90° apart on the circumference, and the data measured at the time when the outer magnetic ring is in contact with the state. It can be seen that the radial offset does not have much influence on power and efficiency. As far as practical application is concerned, there is no mechanical interference.

    Table 3 Output with the inner and outer magnetic rings rotate

    When the inner magnetic ring rotates coaxially with respect to the outer magnetic ring, the input and output have response fluctuations. The input and output fluctuations remain basically unchanged when the speed is changed,indicating that the rotation itself has little effect on the input and output, and the input and output. The transformation may be caused by the uneven magnetic or axial set, which can be further tested here.

    Table 4 Output with the inner and outer magnetic rings immerse in water

    As can be seen from the above table, due to the different magnetic permeability of liquid and air, the measurement results have a relatively large influence, and the output power and efficiency in air are higher than in water. Therefore, the experimental results in the air need to be verified under the conditions of water immersion.

    Table 5 Output with a iron core or not

    The same principle, due to the different magnetic permeability of the iron core and air, has a relatively large impact on the measurement results. The output power and efficiency are higher in the center than in the air.

    CONCLUSIONAND SUGGESTION

    In this paper, the magnetic coupling energy transmission system of the downhole rotary guiding system is modeled and analyzed, and the main factors affecting the transmission efficiency and output power and its main theoretical models are compared and analyzed. Through the comparison of experimental data, the following conclusions can be obtained:

    a) The coupling coefficient K is the ability to characterize the energy transfer of the coupler. In the same condition, in order to increase the K value of the coupling coefficient, the air gap can be minimized and the permeability of the ferrite can be improved within the engineering allowable range. Rate, increase the core end face area and the core area;

    b) Transmission efficiency and maximum output power can be effectively improved by compensating capacitors;

    c) The compensation capacitor is sensitive to the coupled magnetic circuit. In order to achieve the best effect, it is necessary to match the compensation capacitor. In the case of downhole vibration, it is necessary to debug a wider working area;

    d) The maximum transmission efficiency and the maximum output power do not coincide. The compensation capacitor has limited improvement in the transmission efficiency of useful work. In fact, the main function is to increase the maximum output power.

    The above conclusions have a good guiding significance for the development of non-contact energy transmission systems, but it is necessary to further determine the influence laws and scope of the following factors:

    · The effect of the actual effective space downhole on the coupled magnetic circuit and its extent;

    · The influence of effective magnetic flux and compensation capacitance on the working area and its law;

    · The maximum transmission efficiency should consider the influence of the latter stage circuit on the virtual power compensation capability, thus taking into account the maximum output power.

    啦啦啦在线观看免费高清www| 亚洲国产精品一区二区三区在线| 新久久久久国产一级毛片| 国产无遮挡羞羞视频在线观看| a 毛片基地| 亚洲精品国产av成人精品| 久久午夜综合久久蜜桃| 亚洲美女黄色视频免费看| 成人免费观看视频高清| 亚洲少妇的诱惑av| 建设人人有责人人尽责人人享有的| 女人爽到高潮嗷嗷叫在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产av新网站| 久久精品成人免费网站| 国产有黄有色有爽视频| 一区福利在线观看| 亚洲精品国产av蜜桃| 久久久久国产精品人妻一区二区| 最近手机中文字幕大全| 人人妻人人添人人爽欧美一区卜| 日韩大码丰满熟妇| 捣出白浆h1v1| 久久亚洲精品不卡| 国产亚洲av片在线观看秒播厂| 免费在线观看影片大全网站 | 国产男人的电影天堂91| 久久免费观看电影| 日韩精品免费视频一区二区三区| 99热全是精品| 真人做人爱边吃奶动态| 免费久久久久久久精品成人欧美视频| 日韩制服骚丝袜av| 成年人黄色毛片网站| 免费看十八禁软件| 天天添夜夜摸| 丝袜喷水一区| 亚洲午夜精品一区,二区,三区| √禁漫天堂资源中文www| 最新的欧美精品一区二区| 一二三四社区在线视频社区8| 久久人人97超碰香蕉20202| 国产免费一区二区三区四区乱码| xxx大片免费视频| 亚洲五月婷婷丁香| 岛国毛片在线播放| 亚洲欧美色中文字幕在线| 97人妻天天添夜夜摸| 国产高清videossex| 国产精品一国产av| 99re6热这里在线精品视频| 97在线人人人人妻| 欧美精品啪啪一区二区三区 | 亚洲精品美女久久av网站| 一个人免费看片子| 久久久久网色| 丝袜脚勾引网站| 亚洲熟女毛片儿| 亚洲五月色婷婷综合| 建设人人有责人人尽责人人享有的| 麻豆乱淫一区二区| 久久 成人 亚洲| 黑人猛操日本美女一级片| 十分钟在线观看高清视频www| 精品久久蜜臀av无| 久久久久精品国产欧美久久久 | 女性生殖器流出的白浆| 精品人妻熟女毛片av久久网站| 人妻 亚洲 视频| avwww免费| 另类亚洲欧美激情| 国产精品国产av在线观看| 精品一区二区三卡| 亚洲欧美精品综合一区二区三区| 看免费av毛片| 日韩av在线免费看完整版不卡| 久久久久久久大尺度免费视频| 久久久久精品国产欧美久久久 | 19禁男女啪啪无遮挡网站| 色网站视频免费| 免费观看av网站的网址| www.av在线官网国产| 精品国产一区二区三区四区第35| 久久人人97超碰香蕉20202| 久久久久久久大尺度免费视频| 久久久精品区二区三区| 国产精品一二三区在线看| 亚洲熟女毛片儿| 激情视频va一区二区三区| 国产精品一二三区在线看| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区久久| www日本在线高清视频| 精品卡一卡二卡四卡免费| 久久午夜综合久久蜜桃| 50天的宝宝边吃奶边哭怎么回事| av国产精品久久久久影院| 亚洲,一卡二卡三卡| 高清欧美精品videossex| 日日夜夜操网爽| 亚洲情色 制服丝袜| 日韩大片免费观看网站| 日韩中文字幕视频在线看片| 免费久久久久久久精品成人欧美视频| 搡老乐熟女国产| 亚洲,一卡二卡三卡| 国产片内射在线| 一本色道久久久久久精品综合| 一区在线观看完整版| 最新的欧美精品一区二区| 天天操日日干夜夜撸| 国产熟女欧美一区二区| 女人久久www免费人成看片| 蜜桃在线观看..| 久久久欧美国产精品| 免费在线观看完整版高清| 90打野战视频偷拍视频| videosex国产| avwww免费| videos熟女内射| 老司机靠b影院| 亚洲精品一卡2卡三卡4卡5卡 | 九草在线视频观看| 亚洲精品一卡2卡三卡4卡5卡 | 一本综合久久免费| 亚洲欧美一区二区三区久久| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 精品一区二区三区四区五区乱码 | 一个人免费看片子| 国产片内射在线| 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全免费视频 | 中文字幕人妻丝袜一区二区| 一边亲一边摸免费视频| 久热这里只有精品99| 精品一区在线观看国产| 熟女av电影| 一区二区三区精品91| 亚洲专区国产一区二区| 最新的欧美精品一区二区| 亚洲专区国产一区二区| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 香蕉丝袜av| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| 国产精品 国内视频| 亚洲三区欧美一区| 成年人黄色毛片网站| 久久久久久久大尺度免费视频| 国产成人一区二区三区免费视频网站 | 成年人免费黄色播放视频| 国语对白做爰xxxⅹ性视频网站| 只有这里有精品99| 日韩制服丝袜自拍偷拍| 国产成人91sexporn| 日本欧美视频一区| 两个人看的免费小视频| 又大又黄又爽视频免费| 你懂的网址亚洲精品在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲专区中文字幕在线| 悠悠久久av| 午夜福利一区二区在线看| 精品国产一区二区三区久久久樱花| 成人黄色视频免费在线看| 成人三级做爰电影| 久久ye,这里只有精品| 免费日韩欧美在线观看| 亚洲精品在线美女| 国产亚洲精品第一综合不卡| 欧美97在线视频| 国产欧美日韩一区二区三 | 成人国产一区最新在线观看 | 久久久国产一区二区| 精品卡一卡二卡四卡免费| 日韩熟女老妇一区二区性免费视频| 成人手机av| 精品少妇久久久久久888优播| 亚洲熟女毛片儿| 免费看不卡的av| 在线看a的网站| 欧美人与性动交α欧美精品济南到| 黑人欧美特级aaaaaa片| 少妇 在线观看| 成年动漫av网址| 男女下面插进去视频免费观看| 爱豆传媒免费全集在线观看| 在线观看免费高清a一片| 国产高清视频在线播放一区 | 精品亚洲乱码少妇综合久久| 大香蕉久久网| 国产精品av久久久久免费| 高清黄色对白视频在线免费看| 只有这里有精品99| 视频区图区小说| 精品国产一区二区久久| 免费不卡黄色视频| 亚洲国产欧美在线一区| 亚洲综合色网址| 欧美中文综合在线视频| av一本久久久久| 黑人欧美特级aaaaaa片| 日日摸夜夜添夜夜爱| 男人操女人黄网站| 国产成人欧美在线观看 | 国产成人精品无人区| av网站免费在线观看视频| 最近最新中文字幕大全免费视频 | a级毛片黄视频| 亚洲国产精品成人久久小说| 一二三四在线观看免费中文在| 麻豆乱淫一区二区| 午夜视频精品福利| 国产精品麻豆人妻色哟哟久久| 精品人妻在线不人妻| 深夜精品福利| 久久鲁丝午夜福利片| 国产精品av久久久久免费| 国产成人精品无人区| 国产色视频综合| 老司机午夜十八禁免费视频| av又黄又爽大尺度在线免费看| 制服人妻中文乱码| 丁香六月欧美| 色婷婷久久久亚洲欧美| 国产精品国产三级国产专区5o| 国产成人系列免费观看| 人妻一区二区av| 夫妻性生交免费视频一级片| 一级片免费观看大全| 久久这里只有精品19| 在线观看国产h片| 中文字幕精品免费在线观看视频| 久久久精品区二区三区| 男人添女人高潮全过程视频| 午夜福利免费观看在线| 久久天躁狠狠躁夜夜2o2o | 妹子高潮喷水视频| 精品亚洲成a人片在线观看| 亚洲精品美女久久av网站| 欧美精品一区二区大全| 18禁黄网站禁片午夜丰满| 亚洲情色 制服丝袜| 老司机影院成人| 嫩草影视91久久| 99re6热这里在线精品视频| 国产成人影院久久av| 在线观看国产h片| 无限看片的www在线观看| 欧美日韩黄片免| 亚洲第一av免费看| 亚洲国产日韩一区二区| 亚洲一码二码三码区别大吗| 欧美黄色淫秽网站| 国产精品欧美亚洲77777| xxxhd国产人妻xxx| 中文乱码字字幕精品一区二区三区| 老司机靠b影院| 美女午夜性视频免费| 久热这里只有精品99| av有码第一页| 男女下面插进去视频免费观看| 18在线观看网站| 国产精品偷伦视频观看了| 99热国产这里只有精品6| 一本久久精品| 久久久久国产精品人妻一区二区| 在线亚洲精品国产二区图片欧美| 人人妻,人人澡人人爽秒播 | 午夜福利一区二区在线看| www.999成人在线观看| 久久女婷五月综合色啪小说| 永久免费av网站大全| bbb黄色大片| √禁漫天堂资源中文www| 中文字幕高清在线视频| 亚洲三区欧美一区| 亚洲伊人色综图| 男女床上黄色一级片免费看| 国产熟女欧美一区二区| 日韩av在线免费看完整版不卡| 只有这里有精品99| 精品久久久久久电影网| 国产成人啪精品午夜网站| 久久国产亚洲av麻豆专区| www日本在线高清视频| 美女国产高潮福利片在线看| 久久久久久人人人人人| 国产主播在线观看一区二区 | 国产亚洲午夜精品一区二区久久| 青春草亚洲视频在线观看| 一本综合久久免费| 免费在线观看影片大全网站 | 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线进入| 母亲3免费完整高清在线观看| 操出白浆在线播放| 美女福利国产在线| 免费看av在线观看网站| 国产不卡av网站在线观看| 国产成人精品久久二区二区91| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 日韩电影二区| 日韩人妻精品一区2区三区| 自拍欧美九色日韩亚洲蝌蚪91| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 国产男女超爽视频在线观看| 视频区图区小说| 国精品久久久久久国模美| 蜜桃国产av成人99| 男人添女人高潮全过程视频| 交换朋友夫妻互换小说| 国产精品免费大片| 99九九在线精品视频| 人人妻,人人澡人人爽秒播 | 久久性视频一级片| 黄色a级毛片大全视频| 悠悠久久av| 久久女婷五月综合色啪小说| 日韩制服骚丝袜av| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 午夜福利视频精品| 精品亚洲乱码少妇综合久久| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 一本综合久久免费| 欧美97在线视频| 中文字幕人妻丝袜制服| 日韩一卡2卡3卡4卡2021年| xxxhd国产人妻xxx| 欧美亚洲日本最大视频资源| 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 欧美日本中文国产一区发布| 午夜av观看不卡| 一级毛片电影观看| 少妇 在线观看| 国产主播在线观看一区二区 | 午夜日韩欧美国产| 中文字幕亚洲精品专区| 黄色视频不卡| 女人精品久久久久毛片| 色婷婷久久久亚洲欧美| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 成年女人毛片免费观看观看9 | 免费观看a级毛片全部| 欧美中文综合在线视频| 每晚都被弄得嗷嗷叫到高潮| h视频一区二区三区| 伊人亚洲综合成人网| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产 | 亚洲国产成人一精品久久久| 国产高清不卡午夜福利| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 免费看不卡的av| 国产成人一区二区三区免费视频网站 | 一级片'在线观看视频| 一区二区三区激情视频| 国产欧美日韩一区二区三 | 一本一本久久a久久精品综合妖精| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 国产亚洲一区二区精品| 精品少妇黑人巨大在线播放| 国产一区二区三区av在线| 99热网站在线观看| 国产老妇伦熟女老妇高清| 欧美97在线视频| 国产精品国产三级专区第一集| 国产精品欧美亚洲77777| 999精品在线视频| www.av在线官网国产| 中文字幕人妻熟女乱码| 美女福利国产在线| 97在线人人人人妻| 久久国产精品大桥未久av| 国产成人一区二区三区免费视频网站 | 一区二区av电影网| 亚洲色图综合在线观看| 三上悠亚av全集在线观看| 午夜福利在线免费观看网站| 国产一区二区在线观看av| 啦啦啦在线免费观看视频4| 少妇 在线观看| 宅男免费午夜| 美女主播在线视频| 色播在线永久视频| 天天影视国产精品| 人成视频在线观看免费观看| 伦理电影免费视频| 亚洲三区欧美一区| 午夜福利,免费看| 中文字幕人妻熟女乱码| 好男人视频免费观看在线| 在线观看人妻少妇| 国产女主播在线喷水免费视频网站| 多毛熟女@视频| 国产日韩欧美视频二区| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 国产精品久久久久久精品电影小说| 高清视频免费观看一区二区| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 久久av网站| 性少妇av在线| a级毛片黄视频| 亚洲,欧美,日韩| 国产成人免费观看mmmm| 下体分泌物呈黄色| 国产熟女欧美一区二区| 国产精品九九99| 亚洲国产精品一区二区三区在线| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播 | 51午夜福利影视在线观看| av网站在线播放免费| 少妇粗大呻吟视频| 美女大奶头黄色视频| 50天的宝宝边吃奶边哭怎么回事| 黄网站色视频无遮挡免费观看| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 欧美少妇被猛烈插入视频| 老司机在亚洲福利影院| 黄色视频不卡| 少妇的丰满在线观看| 老司机靠b影院| 亚洲黑人精品在线| 亚洲成人手机| 免费看不卡的av| 一级片'在线观看视频| 悠悠久久av| 国产精品av久久久久免费| 日本猛色少妇xxxxx猛交久久| 丰满饥渴人妻一区二区三| 国产高清不卡午夜福利| 国产成人啪精品午夜网站| 每晚都被弄得嗷嗷叫到高潮| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 亚洲少妇的诱惑av| 日韩一本色道免费dvd| 好男人视频免费观看在线| av视频免费观看在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品一卡2卡三卡4卡5卡 | 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 两人在一起打扑克的视频| 日韩一区二区三区影片| 国产男女超爽视频在线观看| 国产人伦9x9x在线观看| 国产精品久久久av美女十八| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 19禁男女啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 99久久人妻综合| 日韩大码丰满熟妇| 免费日韩欧美在线观看| 99国产精品免费福利视频| 高清av免费在线| 久久久久久久国产电影| 国产女主播在线喷水免费视频网站| 日本av手机在线免费观看| 老熟女久久久| 久久精品亚洲av国产电影网| www日本在线高清视频| 捣出白浆h1v1| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| bbb黄色大片| 97精品久久久久久久久久精品| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 老司机靠b影院| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 国产在线视频一区二区| 777米奇影视久久| 欧美成人精品欧美一级黄| 老鸭窝网址在线观看| 色播在线永久视频| 欧美人与善性xxx| 一级毛片电影观看| 天天影视国产精品| 国产精品久久久久久精品古装| 99国产精品一区二区蜜桃av | 黑人欧美特级aaaaaa片| 国产淫语在线视频| 最新在线观看一区二区三区 | 久久精品熟女亚洲av麻豆精品| 视频区图区小说| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 国产免费一区二区三区四区乱码| 国产91精品成人一区二区三区 | 男女无遮挡免费网站观看| 国产97色在线日韩免费| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 又黄又粗又硬又大视频| 看十八女毛片水多多多| 黄片播放在线免费| 国产伦理片在线播放av一区| av一本久久久久| 午夜福利一区二区在线看| 一级毛片 在线播放| 午夜视频精品福利| 成人手机av| 手机成人av网站| 久久国产精品大桥未久av| 青青草视频在线视频观看| 考比视频在线观看| 一级毛片电影观看| 另类亚洲欧美激情| 成人影院久久| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 国产在线免费精品| 美女福利国产在线| 热99久久久久精品小说推荐| 狂野欧美激情性xxxx| 国产高清视频在线播放一区 | 免费观看av网站的网址| 亚洲成人手机| 国产三级黄色录像| 亚洲欧美日韩高清在线视频 | 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看 | 亚洲人成77777在线视频| 黄片播放在线免费| 国产欧美日韩一区二区三 | 香蕉丝袜av| 亚洲中文日韩欧美视频| 国产精品九九99| 99国产精品99久久久久| 视频区欧美日本亚洲| 亚洲,一卡二卡三卡| 亚洲精品美女久久av网站| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 精品国产一区二区三区久久久樱花| 国语对白做爰xxxⅹ性视频网站| 人体艺术视频欧美日本| 99九九在线精品视频| 国产一区二区激情短视频 | 国产免费一区二区三区四区乱码| 久久国产精品大桥未久av| 婷婷色综合www| 国产免费福利视频在线观看| 国产片特级美女逼逼视频| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 免费av中文字幕在线| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 青春草视频在线免费观看| xxx大片免费视频| 国产精品久久久av美女十八| 国产精品亚洲av一区麻豆| 极品少妇高潮喷水抽搐| 日韩一卡2卡3卡4卡2021年| 自线自在国产av| 日韩制服骚丝袜av| av在线老鸭窝| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| svipshipincom国产片| 久久久精品免费免费高清| 欧美中文综合在线视频| 一区福利在线观看| 夫妻午夜视频| 欧美黑人精品巨大| 黑人猛操日本美女一级片| 人妻 亚洲 视频| 欧美少妇被猛烈插入视频| 久久久精品免费免费高清| 亚洲国产精品一区三区| 国产一区二区激情短视频 | 久久久久久久久免费视频了| 亚洲av美国av| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 国产av国产精品国产| 成人免费观看视频高清| 久久 成人 亚洲| 少妇裸体淫交视频免费看高清 | 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 中文精品一卡2卡3卡4更新|