• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Routh table test for stability of commensurate fractional degree polynomials and their commensurate fractional order systems

    2019-07-26 06:31:28ShengGuoWANGShuLIANGLiangMAKaixiangPENG
    Control Theory and Technology 2019年3期

    Sheng-Guo WANG ,Shu LIANG ,Liang MA ,Kaixiang PENG

    1.College of Engineering and College of Computing and Informatics,University of North Carolina at Charlotte,NC 28223-0001,U.S.A.;

    2.School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Received 22 June 2018;revised 18 November 2018;accepted 4 January 2019

    Abstract A Routh table test for stability of commensurate fractional degree polynomials and their commensurate fractional order systems is presented via an auxiliary integer degree polynomial.The presented Routh test is a classical Routh table test on the auxiliary integer degree polynomial derived from and for the commensurate fractional degree polynomial.The theoretical proof of this proposed approach is provided by utilizing Argument principle and Cauchy index.Illustrative examples show efficiency of the presented approach for stability test of commensurate fractional degree polynomials and commensurate fractional order systems.So far,only one Routh-type test approach[1]is available for the commensurate fractional degree polynomials in the literature.Thus,this classical Routh-type test approach and the one in[1]both can be applied to stability analysis and design for the fractional order systems,while the one presented in this paper is easy for peoples,who are familiar with the classical Routh table test,to use.

    Keywords:Fractional order systems,stability,commensurate fractional degree polynomials,Routh table test

    1 Introduction

    Fractional order systems(FOSs)have attracted increasing attention and gained growing development during the past few years due to the FOSs existence in physical experiments[2,3],and the development of flexible methodologies for easy study and favorable performance of fractional order control systems[1-5].It is noticed that the research of fractional-order circuits and systems has been as an emerging interdisciplinary research area in the circuits and systems because of physical FOS behavior existing in real capacitors[3].One core research subject of FOSs from the control viewpoint is the stability analysis and synthesis.In the research field of systems and control,synthesis methods have been fertilized by using fractional order system analysis to achieve flexible and robust controllers[3,4,6,7].Particularly,commensurate FOSs(CFOSs)have become an important type of FOSs because CFOSs share similar structures to the integer order dynamic systems and maintain the characteristic of general FOSs[8].

    Routh table test is well-known for the stability analysis and synthesis of control systems,which provides zeros distribution of the system characteristic function via finite steps of simple algebraic calculations.However,the classical Routh test is not directly applicable to FOSs.Thus,despite those substantial achievements of FOSs,the Routh table test[9,10],as the most useful stability test with the lowest calculation load for classical integer order systems,is rarely investigated for FOSs,except our recent work[1].

    Moreover,the advanced root(zero)finding methods for any general polynomials with degrees greater than four are approximate methods as well-known from Galois theory as discussed in[1].Even powerful Matlab tools may also give mistake roots(zeros)in the right-half plane for a stable integer polynomial[1].However,the Routh table can give correct results for the root(zero)distribution of any general integer degree polynomials because it is a strictly mathematically proved method,not an approximation method.This fundamental merit is significant as Routh-type methods for polynomials.

    Therefore,what is current status in the Routh-type tests for the commensurate fractional degree polynomials?Thus,let us briefly review[1]for it.The main contribution of reference[1]is as the first paper in the literature:1)to ask if there are Routh-type tests and methods for general commensurate fractional degree polynomials(CFDPs);2)to present the uniform Routhtype tests and formulas for zero distribution of CFDPs and integer degrees polynomials(IDPs);3)to handle the singular cases easily and correctly as much better than the classical Routh table test;4)to reveal the symmetric property of zero distribution in the second singular case for the CFDPs;and 5)the last but not least,to present the strict theoretical mathematical proof for their Routh-type table tests and methods.On the other hand,the Routh-type table tests in[1]need to check the sign change numbers of both head column and non-zero tail“column”(i.e.,non-zero tail sequence)in the table.

    Thus,it is natural to ask if there is a possible approach to check only the sign change number of the head column of the Routh-type table for CFOSs as the classical Routh table test.If it is possible,what kind of that Routhtype table will be?

    Motivated by the above discussions,this paper derives a method such that the classical Routh test can be applicable to CFOSs.To be specific,given a CFDP,we propose an auxiliary integer degree polynomial(AIDP)and use the classical Routh test on this AIDP for the CFDP.Then the zero distribution of the original CFDP is obtained via quite simple calculations of the classical Routh test on the AIDP.Thus,we give an affirmative answer that the classical Routh table test can be extended for CFOSs by applying this new method on the AIDP.Also,this new method for CFOSs inherits the merits of the classical Routh test for integer order systems,revealing the relationship between the coefficients and zero distribution,and how these coefficients will impact the system stability.Note that such an analytical result is not shared by computing zeros numerically for the stability checking.On the other hand,it also inherits the same special needs of classical Routh test to treat special singular cases,i.e.,the first type of singular cases and the second type of singular cases,even they happen together.In order to solve this well-known singular case problems in the classical Routh table,many other alternately modified methods are developed for it,e.g.,in[1,11-13].In these singular cases,the reference methods in[1]have their benefit as the simplest way to treat these special cases and with the fewest rows.

    The main difference between the method proposed in this paper and the only comparable existing method in[1]is listed as follows.a)The proposed method is to use the classical Routh table test,while the method[1]uses the Routh-type table test for CFDPs;b)The proposed method uses the auxiliary integer degree polynomial(AIDP),while the method[1]does not use AIDP;c)The proposed method only checks the number of sign changes in the head column of the Routh table on the AIDP,while the method[1]needs to check the numbers of sign changes in the head column and the non-zero tail“column”(non-zero tail sequence)of its Routh-type table;d)The determination formula of the proposed method is easier than the one in[1];e)On the other hand,the number of the rows in the table may be larger than the one in[1];and f)Both methods are accurate with strict theoretical proofs for their respective objectives.

    Thus,the main contribution and novelty of this paper are summarized as follows:

    1)as the first paper in the literature to ask if there is a classical Routh test method still valid for general CFDPs;

    2)to present an AIDP for the CFDPs and their stability problems;

    3)as the first to advance the classical Routh table test on the proposed new AIDP for the CFDP and its stability problems;

    4)to develop a new approach via the classical Routh table test for analyzing various systems stability and revealing the relationship between the polynomial data(commensurate order and coefficients)and their zero distributions for the system synthesis;

    5)to have advantage of determining the stability of CFDPs via the Routh table as shown in[1],i.e.,an easiest way to determine the stability,while the stability is the first important issue for all systems including the fractional order systems;

    6)to have potential applications for fractional order system stability problems and in emerging new areas in view of the broad applications of classical Routh table test for various stability problems in science and engineering[14-16];

    7)to present the theoretical proof for the classical Routh table test on the CFDP stability via a similar base proof approach as in[1];and

    8)to present an easy and accurate method for stability analysis of CFDPs and fractional order systems compared to all common existing methods which are via essential approximation way by taking direct roots/poles calculation or linear matrix inequality for stability analysis of general fractional degree polynomials and systems,except the method in[1].

    Table 1 is for the notations of symbols used in this paper.

    Table 1 Notations.

    2 Preliminaries

    In this section,we introduce preliminary background knowledge of this paper.

    A fractional order integrator of degree α has the inputoutput relation as

    as in time domain and frequency domain respectively,where α >0 and Γ(·)is the Gamma function.In contrast to the integer order one,the magnitude curve of a fractional order integrator has flexible slope as-20α dB/dec,determined by the fractional order α.In general,a linear time-invariant fractional order system with single input and single output has its transfer function[8]as

    where αn>αn-1>...>α0≥0 and βm>βm-1>...>β0≥0.Either the numerator or the denominator of G(s)is a so-called fractional degree polynomial(FDP).System G(s)is said to be of commensurate order if there exists α >0 such that αk=kα,βl=lα for k=1,...,n,and l=1,...,m.Correspondingly,its numerator and the denominator both are CFDPs.A general CFDP can be written as

    where the commensurate α >0,and k=0,1,...,n.The definitions in(1)-(3)are used to define a fractional order system,where equation(4)may represent its system characteristic polynomial.

    The Riemann surface RS is defined aswhere the kth Riemann sheet RSkis defined as RSk?{s|-π+2kπ <arg(s)≤π+2kπ}for any k ∈I.Particularly,the Riemann principal sheet RPS is defined as the central Riemann sheet as RPS ?RS0={s|-π <arg(s)≤π},i.e.,k=0.

    The transfer function G(s)has its single-valued branch on each RSk.Specifically,the branch in the RPS is utilized to describe the fractional order system,because it determines the Cauchy principal value of the integral corresponding to the inverse Laplace transformation of G(s).The direct application of residue theorem implies that only the poles of G(s)in the RPS determine the system stability and dynamic performance.In particular,the following lemma with respect to stability of G(s)is well-known.

    Lemma 1[17,18] The following two stability criterions hold.

    Criterion 1:A fractional system(3)is BIBO stable if and only if its transfer function has no pole in the closed right half complex plane of the RPS,i.e.,nr(F)=0 and ni(F)=0.

    Because this paper focuses on the CFOSs stability via their characteristic polynomials,i.e.,CFDPs,therefore different from most existing works based on Criterion 2,only[1]and our test for zeros distribution are associated with Criterion 1 in Lemma 1.Especially,here our proposed method is via the classical Routh table test on the associated AIDP for the CFDP,making its uniqueness.

    We describe the key preliminaries as summarized below as the Cauchy index and two lemmas,which will be used to prove our main result Theorem 1 in Section 3.

    Lemma 2Consider a function Φ(x)?f(x)+jg(x):R →C,where f(x)and g(x)are continuous real functions.If Φ(x)≠0 for x ∈(a,b),then its net phase changearg(Φ(x))as x changes from a to b can be calculated by using the Cauchy index as

    or

    ProofThe phase function can be represented as arg.If arg(φ(x))is continuous in the region x ∈(a,b),then

    Otherwise,arg(Φ(x))is discontinuous at some points in the region x ∈(a,b).To be specific,as x passes a discontinuous point c ∈(a,b),the phase arg(Φ(x))will have a change of π.Then we can use Cauchy index from a to b to identify its phase change as

    where J1and J2are the jump numbers as in Definition 1.Thus equation(6)holds.Note that the phase function can be also represented asthen equation(7)holds similarly to(6). □

    Next we brief famous Routh table as a Lemma 3 here.It refers to[9,10].

    Lemma 3(Routh,[9,10]) Consider a real coefficient integer degree polynomial P(s)as

    where m is a positive integer number.Then nr(P)and ni(P)can be determined by the Routh table test on P(s)as follows:

    i)The number ni(P)is equal to the number of real zeros of d(x)=d(ω)?gcd(R(P(jω)),J(P(jω))).

    ii)The following equality with respect to Cauchy index holds:

    Remark 1Lemma 3 basically states that the zeros distribution of integer degree polynomial P(s)in(10)can be calculated via the Routh test,which is a well-known result.Lemma 3 presents an important analytical tool for the zeros distribution via the Cauchy index.

    The key features of the proposed approach in this paper are as the same as the classical Routh table test has.Thus,it is easy for readers,who are familiar with the classical Routh test,to use it.

    3 Routh test for CFDPs

    In this section,we present the result that advances the classical Routh test for CFDPs as Theorem 1.

    Theorem 1Consider a commensurate fractional degree polynomial function F(s)as

    where its coefficients c0,c1,...,cn∈R and c0≠0,cn≠0,and the commensurate α >0.Construct an auxiliary integer degree polynomial P(s)from F(s)as

    where the coefficients of P(s)are

    Then we have

    where ni(F)and nr(F)are the numbers of zeros of the CFDP F(s)on the imaginary axis and in the righthalf-plane(RHP)of the RPS respectively,while ni(P)and nr(P)are numbers of zeros of the AIDP P(s)on the imaginary axis and in the RHP of the complex plane respectively,and〈·〉is a round-off operator as x=m+γ,m ∈N,0 ≤γ <1,and

    ProofThe approach of the proof is via the Argument Principle(to calculate zeros numbers in the RHP and imaginary axis and phase change of a complex function),the Cauchy index and Lemmas 2 and 3.The considered zeros numbers are ni(·)on the imaginary axis and nr(·)in the RHP of the RPS.The Argument Principle takes the Nyquist path as shown in Fig.1 as Γ1and-Γ2.Notice that the imaginary roots are the roots of the gcd of the real part and the imaginary part of the complex polynomial function.The goal is to prove ni(F)=ni(P),and to present nr(F)by nr(P)and its fractional factor.

    Fig.1 Contour of the right half plane in RPS.

    The proof consists of the following four steps.The first step is to build the real part and imaginary part of F(s)as s=jω.The second step is to show ni(F)=ni(P)in(15).The third step is to show nr(F)=nr(P)+〈nα/2〉-n in(16)when nα ?Nodd.Then fourth step is to show(16)when the highest order nα ∈Nodd.

    Step 1For ω≥0,let

    From the bijection transformation x=ωα:R+→R+,let

    Moreover,let

    Here the motivation to introduce the bijection transformation from ωto x in(20)and(21)is to absorb the fractional-order α,such that we have an integer-order polynomial in form of x instead of fractional order polynomials in(18)and(19)respectively.It is also helpful to compare it with the AIDP in(13).

    Step 2We take the Nyquist path as in Fig.1 that encircles the entire right half plane and excludes pure imaginary zeros of F(s)in(12).Applying the Argument Principle along this Nyquist path,we have

    where Γ1is the curve along the imaginary axis from-j∞to+j∞excluding the pure imaginary zeros of F(s)as shown in Fig.1,andis the half of Γ1from j0 to+j∞.Note that F(jω)|ω=0=c0≠0 and F(s)is with real coefficients,i.e.,having conjugate symmetric zeros,and the origin is not a zero of F(s)and F(jω).Meanwhile,we have

    Substituting(25)into(24)yields

    Furthermore,the imaginary zeros of F(s)is F(jω)=0,if and only if(x)=0 for x=ωα>0 as we notice the symmetric property and consider positive ωhere.Thus,the number of the positive real zeros of(x)is ni(F)/2.

    From(20)and(21)of F(s)and the coefficients(14)of P(s),we have ni(F)=ni(P)in(15)based on the statement(i)of Lemma 3,where P(s)is with its α=1.

    Step 3Consider the case nα ∈ R+Nodd,i.e.,deg((x))≥deg((x)).From Lemma 2 with equation(6),we have

    where

    Thus,-π/2 <τ <π/2.Substituting(27)into(26)yields

    On the other hand,from Lemma 3 with P(s)in(10),we substitute its coefficients(14)into equation(11)that yields

    Next,we show the following by the definition of Cauchy index:

    Second,the following is true from the Cauchy index

    Third,we have

    Then(32)-(34)lead to(31).Then substituting(30)and(31)into(29)yields(16)

    Step 4Finally,we shall show(16)for the remaining case nα ∈Nodd,i.e.,.From(7)in Lemma 2,we have

    where

    Substituting(36)and(35)into(26)yields

    Notice that P(s)in(13)and(14)is of degree 2n-1 with the highest degree term cnsin(nπα/2)s2n-1when nα ∈Nodd.According to Lemma 3,we substitute coefficients in(14)into(11)and get

    As the above step 3,equation ni(F)=ni(P)still holds as in(15).Now from the Cauchy index we have

    Now,from(39),(38)and(37),we have(11),i.e.,

    for the case nα ∈Nodd.This completes the proof. □

    Remark 2According to Theorem 1,ni(F)and nr(F)of CFDP F(s)in(12)can be obtained from ni(P)and nr(P)via the classical Routh table test on its AIDP P(s)in(13)with(14).

    Remark 3Notice that the AIDP P(s)from F(s)is different from the IDP D(s)from F(s)in Lemma 1,where D(s)is commonly considered in the literature.

    Remark 4Theorem 1 applies the classical Routh table test on the AIDPs for CFDPs.That is different from paper[1]where the developed Routh-type table test on the CFDPs directly.These two different approaches have their individual advantages and disadvantages respectively.The method presented here is to take the well-known classical Routh table test,that may be easy for peoples who are familiar with the classical Routh table test.

    Remark 5Because the classical Routh test gives analytical(or symbolic)expressions for ni(P)and nr(P)using the coefficients of P(s),it also holds for F(s)according to(15)and(16)in Theorem 1.Such a merit is usually preferred in the analysis and synthesis of a FOS,while those methods of computing the zeros numerically may not have this merit.

    Remark 6Routh test has close relation to other topics such as the zero distribution with respect to sector regions or the unit circle[19].As a result,Theorem 1 may also serve as an intermediate tool for those problems with respect to fractional order systems.

    4 Examples

    Example 1Consider the following CFDP function F(s)with commensurate order α=1/3 and n=4,

    Its AIDP in(13)with(14)is

    The Routh table of the P(s)is as follows as Table 2.

    Table 2 Routh table for P(s)in Example 1.

    Then ni(P)=0 and nr(P)=3 based on the above classical Routh table.By Theorem 1,we have

    Therefore,by Criterion 1 of Lemma 1,the CFDP F(s)is stable.

    and Criterion 2 of Lemma 1.Then the set of zeros of F(s)in the RPS is empty,becauseas s ∈RPS=(-π,π],is not a case here.It verifies that ni(F)=0,and nr(F)=0.

    This example illustrates that Theorem 1 along with the classical Routh table test gives correct zeros distribution of F(s)without calculating its exact zeros.

    For comparison,we run the method in[1],which is only available Routh-type method in the literature.It leads to a Routh-type table as Table 3.

    Table 3 Routh-type table for Example 1[1].

    From[1],it is noticed that the head sign change number Vf=5,the tail sign change number Vl=4,ni(F)=0(no zero row in the table),and

    Thus,we have the same results from[1].Since this example has no singular case,it shows that the proposed method is easier than[1].

    Example 2Consider a CFDP

    with an irrational commensurate order α=π/3 and n=3.The associated AIDP in high precision is

    The Routh table of P(s)is in Table 4.

    Table 4 Routh table of P(s)in Example 2.

    The accurate calculation shows that the first singular case happens at row of s2,thus a small positive(or negative)number ?has to be used to replace the leading element 0.That leads to a table as above.

    From the analysis on the above Routh table,we have ni(P)=0 and nr(P)=3.Thus,from Theorem 1,we have ni(F)=ni(P)=0 and nr(F)=nr(P)+〈nα/2〉-n=3+〈π/2〉-3=2.Indeed,

    For comparison with[1],its Routh-type table is Table 5.

    Table 5 Routh-type table for Example 2[1].

    From[1],it is noticed that the head sign change number Vf=2,the tail sign change number Vl=2,no zero row with d=0,ni(F)=0,and

    The same results are obtained.

    However,it should be emphasized that row 5 has a leading 0,i.e.,a first singular case happens.It shows that the method in[1]treats the singular cases as the easiest way and with the fewest rows in the literature.

    5 Conclusions

    This paper presents a new method to solve zeros distribution of a commensurate fractional degree polynomial by virtue of the classical Routh test on a proposed auxiliary integer degree polynomial.

    This paper discusses the stability test for the CFDPs and their fractional order systems via Routh table,which can guarantee the system behavior stable in view point of both frequency domain and state space if it passes the Routh Table test.It is noticed that Routh table test can be used broadly in science and engineering,including system behaviors,e.g.,[14-16].It will be interesting to further study the system behavior in the state space along the Routh table approach as presented here.

    Furthermore,the rigorous mathematical proof is presented via the Argument principle and Cauchy index.Its significance is to present a way to apply the classical Routh table test to the commensurate fractional degree polynomials and commensurate fractional order systems for their stability analysis and synthesis.The illustrative examples show the effectiveness of the presented method.

    Acknowledgements

    Prof.Sheng-Guo Wang expresses his appreciation to Prof.Yong Wang at the University of Science and Technology of China for his cooperation during 2013-2016 since his Ph.D.student visited UNCC as a co-educated Ph.D.student.

    制服丝袜香蕉在线| 亚洲色图综合在线观看| 中文天堂在线官网| 精品人妻一区二区三区麻豆| 天美传媒精品一区二区| 青草久久国产| 亚洲在久久综合| 男女午夜视频在线观看| 亚洲国产欧美网| 国产成人免费观看mmmm| 欧美日韩综合久久久久久| 欧美在线黄色| 老司机在亚洲福利影院| 9色porny在线观看| 一区二区三区精品91| 免费在线观看完整版高清| 久久人人爽人人片av| 2018国产大陆天天弄谢| av网站免费在线观看视频| 国产又色又爽无遮挡免| 久久人人爽人人片av| 中文字幕最新亚洲高清| 色精品久久人妻99蜜桃| 性色av一级| 青青草视频在线视频观看| 街头女战士在线观看网站| 亚洲精品久久成人aⅴ小说| 亚洲欧美精品综合一区二区三区| av在线播放精品| 日韩av不卡免费在线播放| 国产精品麻豆人妻色哟哟久久| 一二三四中文在线观看免费高清| 又大又黄又爽视频免费| 伦理电影大哥的女人| 精品亚洲成国产av| 亚洲 欧美一区二区三区| 又大又黄又爽视频免费| 黄色一级大片看看| 亚洲精品中文字幕在线视频| 国产精品女同一区二区软件| 亚洲一卡2卡3卡4卡5卡精品中文| 美女脱内裤让男人舔精品视频| 赤兔流量卡办理| 韩国av在线不卡| 亚洲成人手机| 欧美日韩亚洲国产一区二区在线观看 | 王馨瑶露胸无遮挡在线观看| 亚洲成国产人片在线观看| 汤姆久久久久久久影院中文字幕| 国产一区二区三区综合在线观看| 精品人妻一区二区三区麻豆| 在线免费观看不下载黄p国产| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 国产 精品1| 免费观看性生交大片5| 亚洲天堂av无毛| 看十八女毛片水多多多| 国产成人系列免费观看| 人妻人人澡人人爽人人| 国产一区二区在线观看av| 国产女主播在线喷水免费视频网站| 在线精品无人区一区二区三| 精品人妻一区二区三区麻豆| 欧美精品亚洲一区二区| av在线播放精品| 亚洲精品乱久久久久久| 欧美精品人与动牲交sv欧美| 亚洲成人免费av在线播放| av不卡在线播放| 大片电影免费在线观看免费| 欧美xxⅹ黑人| 1024香蕉在线观看| 涩涩av久久男人的天堂| 超碰成人久久| 国产日韩一区二区三区精品不卡| 街头女战士在线观看网站| 午夜福利在线免费观看网站| 在线观看一区二区三区激情| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区久久| 久久久久国产一级毛片高清牌| 夫妻性生交免费视频一级片| 亚洲专区中文字幕在线 | 亚洲一区中文字幕在线| 免费av中文字幕在线| 成人手机av| 美女脱内裤让男人舔精品视频| 男女无遮挡免费网站观看| 性色av一级| 一区二区三区四区激情视频| 婷婷色综合大香蕉| 久久精品人人爽人人爽视色| 亚洲,欧美精品.| 在线观看人妻少妇| 青春草国产在线视频| 丰满少妇做爰视频| 亚洲 欧美一区二区三区| 免费观看性生交大片5| 在现免费观看毛片| 欧美 日韩 精品 国产| 99热全是精品| 久久精品亚洲熟妇少妇任你| 丁香六月欧美| 国产精品女同一区二区软件| 亚洲一级一片aⅴ在线观看| 亚洲熟女精品中文字幕| 国产成人精品久久久久久| 久久女婷五月综合色啪小说| 高清视频免费观看一区二区| 国产探花极品一区二区| 国产日韩欧美亚洲二区| 蜜桃国产av成人99| 人妻人人澡人人爽人人| 精品第一国产精品| 最新在线观看一区二区三区 | 久久精品国产亚洲av涩爱| 日本欧美视频一区| 亚洲av在线观看美女高潮| 狠狠精品人妻久久久久久综合| 欧美 亚洲 国产 日韩一| av国产精品久久久久影院| 国产高清国产精品国产三级| 精品一区在线观看国产| 免费av中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 一级,二级,三级黄色视频| 国产精品av久久久久免费| 啦啦啦 在线观看视频| 亚洲精品一二三| 在线观看一区二区三区激情| 日本91视频免费播放| 国产乱人偷精品视频| 无遮挡黄片免费观看| 国产又爽黄色视频| 久久人人97超碰香蕉20202| 新久久久久国产一级毛片| 国产男女超爽视频在线观看| 欧美黄色片欧美黄色片| 久久久久精品人妻al黑| 亚洲中文av在线| 亚洲av日韩精品久久久久久密 | 少妇 在线观看| 国产精品国产三级国产专区5o| 久久久久国产精品人妻一区二区| 久久精品久久久久久久性| 日韩中文字幕欧美一区二区 | 国产精品熟女久久久久浪| av不卡在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产99久久九九免费精品| 观看美女的网站| 久久人人爽av亚洲精品天堂| 欧美久久黑人一区二区| 免费av中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产av新网站| 欧美精品一区二区免费开放| 亚洲av欧美aⅴ国产| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区91 | 国产成人欧美在线观看 | 国产又爽黄色视频| 精品一区二区三卡| 男女无遮挡免费网站观看| 伊人久久大香线蕉亚洲五| 999久久久国产精品视频| 熟妇人妻不卡中文字幕| 日日啪夜夜爽| 欧美av亚洲av综合av国产av | avwww免费| 女的被弄到高潮叫床怎么办| 狠狠婷婷综合久久久久久88av| 欧美日本中文国产一区发布| 五月开心婷婷网| 美女脱内裤让男人舔精品视频| 国产成人精品无人区| 亚洲av欧美aⅴ国产| 国产精品无大码| 菩萨蛮人人尽说江南好唐韦庄| 久久久国产一区二区| 夫妻午夜视频| 黄色怎么调成土黄色| 精品少妇内射三级| 久久国产亚洲av麻豆专区| netflix在线观看网站| 777久久人妻少妇嫩草av网站| 青春草国产在线视频| 麻豆乱淫一区二区| 成年av动漫网址| 丝袜喷水一区| 80岁老熟妇乱子伦牲交| 国产av精品麻豆| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 久久女婷五月综合色啪小说| 成年人免费黄色播放视频| 高清视频免费观看一区二区| 午夜福利免费观看在线| 黑丝袜美女国产一区| 欧美xxⅹ黑人| 一级,二级,三级黄色视频| 1024视频免费在线观看| 超色免费av| 久久久久精品久久久久真实原创| 成人国语在线视频| 成年女人毛片免费观看观看9 | 老司机亚洲免费影院| av电影中文网址| 好男人视频免费观看在线| 最近手机中文字幕大全| 下体分泌物呈黄色| 男人爽女人下面视频在线观看| 久久久久精品性色| 国产成人欧美| 免费黄网站久久成人精品| 丝袜喷水一区| 国产在线视频一区二区| 成人黄色视频免费在线看| 精品国产乱码久久久久久小说| 免费不卡黄色视频| 亚洲综合色网址| 中文精品一卡2卡3卡4更新| 欧美中文综合在线视频| 自线自在国产av| 欧美精品高潮呻吟av久久| 青春草视频在线免费观看| 久久亚洲国产成人精品v| 99国产精品免费福利视频| 女性生殖器流出的白浆| 欧美日韩一区二区视频在线观看视频在线| 久久人妻熟女aⅴ| 亚洲精品自拍成人| 午夜av观看不卡| 国产精品一国产av| av免费观看日本| 日本一区二区免费在线视频| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 狂野欧美激情性xxxx| 亚洲一级一片aⅴ在线观看| 可以免费在线观看a视频的电影网站 | 久久这里只有精品19| 欧美中文综合在线视频| 久久精品久久精品一区二区三区| 大片免费播放器 马上看| 亚洲国产欧美日韩在线播放| 男女午夜视频在线观看| 深夜精品福利| 亚洲av国产av综合av卡| 国产精品免费大片| 咕卡用的链子| 天天躁夜夜躁狠狠躁躁| 十八禁网站网址无遮挡| 日本一区二区免费在线视频| 精品一区二区三区av网在线观看 | 欧美精品一区二区免费开放| 一本—道久久a久久精品蜜桃钙片| 高清不卡的av网站| 亚洲av综合色区一区| 精品亚洲成a人片在线观看| 精品人妻在线不人妻| 亚洲人成77777在线视频| 亚洲人成电影观看| 大片电影免费在线观看免费| 两个人看的免费小视频| 下体分泌物呈黄色| 亚洲精品国产av蜜桃| 国产午夜精品一二区理论片| 男女无遮挡免费网站观看| 十八禁网站网址无遮挡| 亚洲激情五月婷婷啪啪| 亚洲综合色网址| 丰满少妇做爰视频| 久热爱精品视频在线9| 国产又爽黄色视频| videosex国产| 亚洲精品久久久久久婷婷小说| 可以免费在线观看a视频的电影网站 | 欧美久久黑人一区二区| 亚洲自偷自拍图片 自拍| 丝瓜视频免费看黄片| 1024香蕉在线观看| 成人毛片60女人毛片免费| 国产国语露脸激情在线看| 中文字幕最新亚洲高清| 美女福利国产在线| 最近2019中文字幕mv第一页| 九九爱精品视频在线观看| 久久久久精品人妻al黑| 69精品国产乱码久久久| 爱豆传媒免费全集在线观看| 亚洲精品,欧美精品| 一本色道久久久久久精品综合| 久久人人爽av亚洲精品天堂| 丝袜脚勾引网站| www.自偷自拍.com| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 免费观看av网站的网址| 亚洲av成人精品一二三区| 色播在线永久视频| 亚洲图色成人| 黄色视频不卡| 国产极品粉嫩免费观看在线| 看免费av毛片| 亚洲av综合色区一区| 久久av网站| 精品久久久久久电影网| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲 | 婷婷成人精品国产| 搡老岳熟女国产| 19禁男女啪啪无遮挡网站| 最新的欧美精品一区二区| 一区福利在线观看| 亚洲第一区二区三区不卡| 日本午夜av视频| 成人18禁高潮啪啪吃奶动态图| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片在线| 两个人免费观看高清视频| 一级毛片黄色毛片免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 美女中出高潮动态图| 制服丝袜香蕉在线| 一本—道久久a久久精品蜜桃钙片| av卡一久久| 久久精品国产a三级三级三级| av有码第一页| 99香蕉大伊视频| 综合色丁香网| 婷婷色av中文字幕| 五月开心婷婷网| av网站在线播放免费| 777久久人妻少妇嫩草av网站| 久久国产精品男人的天堂亚洲| 美女脱内裤让男人舔精品视频| 视频在线观看一区二区三区| 亚洲国产欧美在线一区| 一本久久精品| 亚洲专区中文字幕在线 | 欧美另类一区| 水蜜桃什么品种好| 国产成人午夜福利电影在线观看| 男女边摸边吃奶| 国产一区亚洲一区在线观看| 高清欧美精品videossex| 一区福利在线观看| 一级片免费观看大全| 青青草视频在线视频观看| 十八禁高潮呻吟视频| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 欧美av亚洲av综合av国产av | 99热全是精品| 亚洲成人av在线免费| www.精华液| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 精品视频人人做人人爽| 别揉我奶头~嗯~啊~动态视频 | 久久人妻熟女aⅴ| 美女扒开内裤让男人捅视频| 国产精品一区二区精品视频观看| 国产成人一区二区在线| 日本av免费视频播放| 两个人看的免费小视频| 999久久久国产精品视频| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 在现免费观看毛片| 亚洲精品一二三| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 免费少妇av软件| av网站免费在线观看视频| 国产高清国产精品国产三级| 蜜桃国产av成人99| 久久精品人人爽人人爽视色| 久久久久视频综合| 欧美日韩av久久| 国产一卡二卡三卡精品 | 欧美国产精品一级二级三级| 亚洲欧美精品综合一区二区三区| 午夜福利,免费看| 欧美日韩福利视频一区二区| 国产免费一区二区三区四区乱码| 深夜精品福利| 国产精品人妻久久久影院| 亚洲欧美中文字幕日韩二区| 蜜桃在线观看..| 最黄视频免费看| 亚洲欧美清纯卡通| 久久狼人影院| 久久精品亚洲av国产电影网| 国产成人a∨麻豆精品| 国产亚洲精品第一综合不卡| 视频在线观看一区二区三区| 日韩免费高清中文字幕av| 国产不卡av网站在线观看| 哪个播放器可以免费观看大片| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看| av天堂久久9| 三上悠亚av全集在线观看| 精品国产露脸久久av麻豆| 欧美国产精品一级二级三级| 国产日韩欧美在线精品| 一级片免费观看大全| 日韩成人av中文字幕在线观看| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 久久青草综合色| 欧美精品高潮呻吟av久久| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 18在线观看网站| 丁香六月欧美| 国产淫语在线视频| 亚洲天堂av无毛| 99久久综合免费| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 黄色一级大片看看| 成人国产av品久久久| 精品午夜福利在线看| 哪个播放器可以免费观看大片| 99九九在线精品视频| 国产亚洲av片在线观看秒播厂| 国产精品 国内视频| 我的亚洲天堂| 老熟女久久久| 欧美在线一区亚洲| 国产精品女同一区二区软件| 亚洲成人一二三区av| 国产熟女欧美一区二区| 可以免费在线观看a视频的电影网站 | 欧美成人午夜精品| 伦理电影大哥的女人| 日韩av免费高清视频| 免费看av在线观看网站| 亚洲人成77777在线视频| www.精华液| 国产精品久久久久久久久免| 欧美日韩一区二区视频在线观看视频在线| 国产精品三级大全| av线在线观看网站| 国产精品久久久久久人妻精品电影 | 亚洲一码二码三码区别大吗| av天堂久久9| 欧美成人精品欧美一级黄| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| av在线app专区| 亚洲精品日韩在线中文字幕| 91精品国产国语对白视频| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区av在线| a级毛片黄视频| 美女高潮到喷水免费观看| 成年女人毛片免费观看观看9 | 精品国产一区二区三区四区第35| 18在线观看网站| 9191精品国产免费久久| 蜜桃在线观看..| 精品久久蜜臀av无| 国产精品一二三区在线看| 人体艺术视频欧美日本| 久久午夜综合久久蜜桃| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲综合一区二区三区_| 久久久久久久久免费视频了| tube8黄色片| 美女主播在线视频| 777久久人妻少妇嫩草av网站| 亚洲第一区二区三区不卡| 免费观看性生交大片5| 巨乳人妻的诱惑在线观看| 久久精品久久久久久噜噜老黄| 欧美日韩精品网址| 午夜福利免费观看在线| 美女扒开内裤让男人捅视频| 狠狠精品人妻久久久久久综合| 这个男人来自地球电影免费观看 | 国产在线视频一区二区| 日韩av免费高清视频| 男人舔女人的私密视频| 美女大奶头黄色视频| 亚洲综合精品二区| 女性生殖器流出的白浆| 伦理电影免费视频| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 亚洲欧美一区二区三区久久| 亚洲男人天堂网一区| 爱豆传媒免费全集在线观看| 亚洲精品国产区一区二| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀 | 成人国语在线视频| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 无限看片的www在线观看| 国产免费现黄频在线看| 啦啦啦在线免费观看视频4| kizo精华| 久久久久人妻精品一区果冻| tube8黄色片| 亚洲美女视频黄频| 老司机靠b影院| 亚洲精品久久久久久婷婷小说| 色播在线永久视频| 欧美黑人欧美精品刺激| 黑人猛操日本美女一级片| 亚洲第一av免费看| 99久久精品国产亚洲精品| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 日韩免费高清中文字幕av| 国产精品一区二区在线观看99| 久久久久久久精品精品| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 国产av码专区亚洲av| 黄色毛片三级朝国网站| 亚洲男人天堂网一区| 国产亚洲最大av| 一区二区日韩欧美中文字幕| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 一区二区av电影网| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 亚洲欧美一区二区三区久久| 国产精品.久久久| 国产成人av激情在线播放| 国产不卡av网站在线观看| 伦理电影免费视频| av视频免费观看在线观看| 一本—道久久a久久精品蜜桃钙片| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 国产一级毛片在线| 哪个播放器可以免费观看大片| 国产亚洲一区二区精品| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 男女边摸边吃奶| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 亚洲自偷自拍图片 自拍| 天天添夜夜摸| 91精品国产国语对白视频| 黄色视频不卡| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密 | 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 免费高清在线观看日韩| 日韩欧美精品免费久久| 老汉色∧v一级毛片| 国产成人欧美在线观看 | 国产激情久久老熟女| 日韩视频在线欧美| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 精品酒店卫生间| 午夜日韩欧美国产| 欧美日韩综合久久久久久| av电影中文网址| 免费观看人在逋| www日本在线高清视频| 美女大奶头黄色视频| 丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 观看av在线不卡| 99久久人妻综合| 成年女人毛片免费观看观看9 | av天堂久久9| 19禁男女啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 亚洲国产精品一区二区三区在线|