王曉嬌,張仁陟,齊 鵬,焦亞鵬,蔡立群,武 均,2,謝軍紅
Meta分析有機(jī)肥施用對(duì)中國(guó)北方農(nóng)田土壤CO2排放的影響
王曉嬌1,4,張仁陟1,2,3※,齊 鵬1,2,3,焦亞鵬1,蔡立群1,2,3,武 均1,2,謝軍紅2,5
(1. 甘肅農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,蘭州 730070;2. 甘肅農(nóng)業(yè)大學(xué)甘肅省干旱生境作物學(xué)重點(diǎn)實(shí)驗(yàn)室,蘭州 730070;3. 甘肅省節(jié)水農(nóng)業(yè)工程技術(shù)研究中心,蘭州 730070;4. 甘肅農(nóng)業(yè)大學(xué)管理學(xué)院,蘭州 730070;5. 甘肅農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,蘭州 730070)
為了探明中國(guó)北方地區(qū)不同氣候類(lèi)型、施肥措施、有機(jī)肥類(lèi)型和試驗(yàn)?zāi)晗尴?,有機(jī)肥施用(單施有機(jī)肥、有機(jī)無(wú)機(jī)肥配施)對(duì)生育期農(nóng)田土壤CO2排放量的影響,該研究以不施肥、施用無(wú)機(jī)肥分別作為對(duì)照,根據(jù)已發(fā)表的相關(guān)田間試驗(yàn)數(shù)據(jù),采用Meta分析方法,定量研究有機(jī)肥、有機(jī)肥配施無(wú)機(jī)肥對(duì)農(nóng)田土壤CO2排放量的影響。結(jié)果表明:與不施肥、施用無(wú)機(jī)肥相比,有機(jī)肥施用總體上顯著提高了農(nóng)田土壤CO2排放量,分別提高了50.6%和36.3%;有機(jī)肥施用下,農(nóng)田土壤CO2排放量依次減少的順序?yàn)椋簡(jiǎn)问┯袡C(jī)肥、有機(jī)無(wú)機(jī)配施、無(wú)機(jī)肥+有機(jī)肥+緩釋肥;采用有機(jī)肥+無(wú)機(jī)肥+緩釋肥配施,土壤CO2排放量未顯著增加;相比牛糞、豬糞和商品有機(jī)肥,雞糞類(lèi)有機(jī)肥對(duì)土壤CO2排放正效應(yīng)最大;有機(jī)肥施用下,灰漠土農(nóng)田土壤CO2排放量相對(duì)高;農(nóng)田土壤CO2排放量與年均氣溫正相關(guān),與年均降水量負(fù)相關(guān)。從環(huán)境的角度考慮,建議在中國(guó)北方采用無(wú)機(jī)肥+有機(jī)肥+緩釋肥配施技術(shù),不建議雞糞大量施用及在灰漠土農(nóng)田大量施用有機(jī)肥。該研究成果可為有機(jī)肥替代部分化肥在中國(guó)北方地區(qū)的推廣應(yīng)用提供參考。
呼吸;土壤;肥料;北方;Meta
中國(guó)實(shí)施的“生態(tài)文明”、“鄉(xiāng)村振興”、“化肥減量、有機(jī)肥替代”、“溫室氣體減排”等戰(zhàn)略均反映出在農(nóng)業(yè)領(lǐng)域有機(jī)肥替代化肥和溫室氣體減排的重要性。大量研究[1-5]表明,有機(jī)肥替代化肥施用,可改善土壤結(jié)構(gòu)、增加土壤肥力、提高作物產(chǎn)量、提升品質(zhì)、影響土壤呼吸,不同的氣候類(lèi)型、土壤類(lèi)型和施肥措施下土壤呼吸對(duì)有機(jī)肥的響應(yīng)也不同[6-8]。土壤呼吸是土壤釋放CO2的過(guò)程,土壤呼吸強(qiáng)度可用土壤CO2排放量作為評(píng)價(jià)指標(biāo)。因此,從環(huán)境角度考慮,明確不同區(qū)域農(nóng)田施用有機(jī)肥對(duì)土壤CO2排放量的影響對(duì)農(nóng)田溫室氣體減排具有重要意義。
近年來(lái),在中國(guó)北方的典型區(qū)域均設(shè)置了有機(jī)肥施用的農(nóng)業(yè)田間試驗(yàn),也開(kāi)展了一系列研究。較多研究[8-13]表明有機(jī)肥施用比不施肥、無(wú)機(jī)肥施用均提高了土壤呼吸通量,增加了農(nóng)田土壤CO2排放量,部分研究[14]表明農(nóng)田土壤CO2排放量在習(xí)慣施肥、優(yōu)化施肥和有機(jī)肥配合優(yōu)化施肥等處理間差異不顯著。大多模擬、短期田間試驗(yàn)研究也表明有機(jī)肥施用下土壤呼吸通量變化受溫度、水分、施肥措施和有機(jī)肥類(lèi)型等因素影響[15-20]。由于不同研究的氣候、管理措施和土壤屬性等不同,施用有機(jī)肥后土壤CO2排放量對(duì)有機(jī)肥的響應(yīng)可能存在很大的差異,哪些影響因素導(dǎo)致了差異[21-25],解決這些問(wèn)題需要綜合分析有機(jī)肥施用對(duì)農(nóng)田土壤CO2排放量的影響[26-31]。
Meta分析是一種對(duì)同類(lèi)研究結(jié)果進(jìn)行統(tǒng)計(jì)分析的方法[32-34]。本研究運(yùn)用Meta分析方法,以不施肥和無(wú)機(jī)肥施用分別作為有機(jī)肥施用的對(duì)照,通過(guò)收集現(xiàn)有的相關(guān)田間試驗(yàn)數(shù)據(jù),量化不同條件下施用有機(jī)肥之后農(nóng)田土壤CO2排放量的差異特征,明確農(nóng)田土壤CO2排放量差異的主要驅(qū)動(dòng)因子,以期為有機(jī)肥替代部分化肥在中國(guó)北方農(nóng)業(yè)區(qū)的推廣應(yīng)用提供參考依據(jù)。
通過(guò)Web of Science、Springer、中國(guó)知網(wǎng)(CNKI)、萬(wàn)方、維普、Google Scholar 等中英文數(shù)據(jù)庫(kù)分別輸入“有機(jī)肥(manure/organic fertilizer)”或(or)(牛糞:cow manure,豬糞:pig manure,雞糞:chicken manure,羊糞:sheep manure)和(and)“溫室氣體(GHG/CO2/soil respiration/carbon dioxide)”和(and)“中國(guó)北方(north and china)”等關(guān)鍵詞,檢索了截止2018年5月1日前公開(kāi)發(fā)表的中國(guó)北方有機(jī)肥施用與土壤呼吸相關(guān)的文獻(xiàn),并對(duì)檢索到的文獻(xiàn)進(jìn)行篩選。篩選標(biāo)準(zhǔn)如下:1)試驗(yàn)區(qū)域?yàn)橹袊?guó)北方地區(qū),試驗(yàn)起止年份清楚;2)試驗(yàn)方式為大田試驗(yàn),試驗(yàn)時(shí)間跨度至少為1個(gè)生長(zhǎng)季節(jié)(從種植到收獲),且作物全生育期描述清楚;3)試驗(yàn)處理包含有機(jī)肥(單施有機(jī)肥、有機(jī)無(wú)機(jī)配施、無(wú)機(jī)有機(jī)緩釋肥配施)、無(wú)機(jī)肥(單施氮肥、氮磷肥、氮磷鉀配施)、不施肥(CK)等的1個(gè)或多個(gè),且同一研究有機(jī)肥與不施肥或有機(jī)肥與無(wú)機(jī)肥對(duì)照明確;4)研究點(diǎn)的背景條件、研究方法明確。
通過(guò)EndNote剔除試驗(yàn)地點(diǎn)、試驗(yàn)?zāi)攴?、作物?lèi)型和試驗(yàn)數(shù)據(jù)結(jié)果相同的文獻(xiàn)。對(duì)符合標(biāo)準(zhǔn)的文獻(xiàn)提取區(qū)域(region)、試驗(yàn)點(diǎn)位置(experimental location,EL)、年均氣溫(annual average temperature,AAT)、年降水量(annual precipitation,AP)、土壤類(lèi)型(soil types,ST)、施肥措施(fertilization measures,F(xiàn)M)、施肥年限(application time,AT)、施肥方式(application ways,AW)、有機(jī)肥類(lèi)型(organic fertilizer types,OT)和標(biāo)準(zhǔn)差(standard deviation,S)等數(shù)據(jù)。本文收集的數(shù)據(jù)主要源于以下參考文獻(xiàn)(表1)。
表1 Meta分析所用的參考文獻(xiàn)
根據(jù)文獻(xiàn)中有機(jī)肥的施用方法,對(duì)篩選的數(shù)據(jù)進(jìn)行分類(lèi),將試驗(yàn)組分為單施有機(jī)肥、有機(jī)肥+無(wú)機(jī)肥2類(lèi),對(duì)照組分為不施肥和施用無(wú)機(jī)肥,共收集了89組配對(duì)試驗(yàn)數(shù)據(jù),其中,對(duì)照組為不施肥、施用無(wú)機(jī)肥的有效數(shù)據(jù)分別為42和47組。
考慮到本研究試驗(yàn)點(diǎn)數(shù)量的限制及分布在中國(guó)北方,本文根據(jù)種植制度[32,36-37]劃分為3個(gè)區(qū)域:東北、華北和西北地區(qū)(表2);土壤類(lèi)型分為黑土、灰漠土、塿土、潮褐土、黑壚土和鹽化潮土;施肥年限分為4類(lèi)(第1類(lèi):5 a以下;第2類(lèi):>5~10 a;第3類(lèi):>10~20 a;第4類(lèi):>20 a);施肥措施分為單施有機(jī)肥、氮肥+有機(jī)肥+緩釋肥、氮磷鉀+有機(jī)肥、氮磷+有機(jī)肥配施和無(wú)機(jī)肥;施肥方式分為基肥+追肥和一次性施肥;有機(jī)肥類(lèi)型分為雞糞和牛糞、豬糞和商品有機(jī)肥。
表2 中國(guó)北方農(nóng)田區(qū)域劃分及氣候特征
本研究的數(shù)據(jù)均來(lái)自檢索的文獻(xiàn),在進(jìn)行文獻(xiàn)數(shù)據(jù)搜集時(shí),以圖表示的數(shù)據(jù),用WebPlotDigitizer[38]軟件提取。試驗(yàn)結(jié)果以排放速率表示的樣本,計(jì)算出作物生育期內(nèi)土壤CO2排放量,以CO2-C表示的樣本,乘以44/12得出CO2的排放量。若文獻(xiàn)中提供的數(shù)據(jù)為標(biāo)準(zhǔn)誤(S),則利用重復(fù)次數(shù)()來(lái)計(jì)算標(biāo)準(zhǔn)差(),見(jiàn)式(1)。
利用各研究中處理組和對(duì)照組的平均值、標(biāo)準(zhǔn)差和重復(fù)數(shù)計(jì)算反應(yīng)比(response ratio,RR)及研究的總體異質(zhì)性,計(jì)算95%的置信區(qū)間(confidence interval,CI)[39]。
采用隨機(jī)效應(yīng)模型的限制性最大似然法計(jì)算平均效應(yīng)值(effect size,ES)[40-41]。
式中CI為累計(jì)效應(yīng)值的95%置信區(qū)間;em為綜合效應(yīng)值的標(biāo)準(zhǔn)誤。
為更直觀地反映施用有機(jī)肥對(duì)土壤CO2排放效應(yīng),將效應(yīng)量轉(zhuǎn)化為增加率[42]
為篩選異質(zhì)性影響因素,參考文獻(xiàn)[40],通過(guò)建立1個(gè)或多個(gè)解釋變量與結(jié)果變量之間的回歸模型,用軟件R內(nèi)函數(shù)“glmulti”確定修正的小樣本赤池信息量(Akaike’s information criterion corrected for small samples,AICc),查看AICc值最低的模型結(jié)果,確定最優(yōu)模型,計(jì)算最優(yōu)模型中各個(gè)影響因素的權(quán)重,所有最優(yōu)模型子集中每個(gè)因素的權(quán)重加權(quán)之和被確定為每個(gè)因素的相對(duì)重要性,尋求最優(yōu)模型中因素的重要性程度,以因素相對(duì)重要性>0.8表示重要[40,42],篩選導(dǎo)致異質(zhì)性的重要影響因素。
所有數(shù)據(jù)分析均采用R3.4.4編程軟件進(jìn)行數(shù)據(jù)處理[43],使用R作圖。發(fā)表偏倚檢驗(yàn)用失安全系數(shù)法[40]。
總體上看,相比不施肥和無(wú)機(jī)肥,有機(jī)肥施用能顯著提高農(nóng)田土壤CO2排放量(<0.05),分別平均提高了50.6%(95% CI為37.7%~66.5%)和36.3%(95% CI為20.9%~53.7%)。有機(jī)肥與不施肥、有機(jī)肥與無(wú)機(jī)肥異質(zhì)性檢驗(yàn)結(jié)果分別為1 342.9、1 531.7(<0.05),表明異質(zhì)性強(qiáng),需要引入解釋變量。通過(guò)失安全系數(shù)法檢驗(yàn)發(fā)表偏愛(ài)性,有機(jī)肥與不施肥、有機(jī)肥與無(wú)機(jī)肥的潛在效應(yīng)值分別為30 218和23 650(臨界值為215和480),潛在效應(yīng)值大于臨界值表明無(wú)發(fā)表偏愛(ài)。
北方不同區(qū)域有機(jī)肥施用對(duì)農(nóng)田土壤CO2排放量的影響(圖1)表明,東北、西北和華北3個(gè)區(qū)域間農(nóng)田土壤CO2排放量均無(wú)顯著差異。幾種不同類(lèi)型有機(jī)肥施用對(duì)農(nóng)田土壤CO2排放量的影響(圖1)表明,與不施肥相比,牛糞、雞糞、豬糞和商品有機(jī)肥施用下農(nóng)田土壤CO2排放量均有顯著的增加,分別增加了95.4%、498.9%、29.7%、30.9%(<0.05),雞糞和牛糞、豬糞、商品有機(jī)肥差異顯著,其他有機(jī)肥類(lèi)型間差異不顯著;與無(wú)機(jī)肥施用相比,農(nóng)田土壤CO2排放量的規(guī)律同上,均反映出施用雞糞后農(nóng)田土壤CO2排放量高于其他類(lèi)型有機(jī)肥。
圖1 不同分類(lèi)下土壤CO2排放量總體效應(yīng)值
2.2.1 影響因素的重要性分析
將數(shù)據(jù)按年均氣溫、年降水量、土壤類(lèi)型、施肥年限、施肥措施和施肥時(shí)期分組,運(yùn)用Meta回歸分析進(jìn)行多因素分析,尋求最優(yōu)模型中影響因素重要性(圖2)。相對(duì)重要性>0.8的影響因素包括年降水量、年均氣溫、施肥措施和土壤類(lèi)型。
Note: AP: annual precipitation; AAT: annual average temperature; FM: fertilization measures; ST: soil types; AW: application ways; AT: application time.
2.2.2 農(nóng)田土壤CO2排放量影響因素分析
1)不同氣候條件
年均氣溫與效應(yīng)值的關(guān)系(圖3)表明,與不施肥相比(圖3a),施用有機(jī)肥農(nóng)田土壤CO2排放量隨著年均氣溫升高顯著增加(<0.05),年均氣溫能解釋11%的效應(yīng)值變異。與施無(wú)機(jī)肥相比(圖3b),施用有機(jī)肥農(nóng)田土壤CO2排放量隨著年均氣溫升高顯著增加(<0.05),年均氣溫能解釋16%的效應(yīng)值變異??傮w上看,農(nóng)田土壤CO2排放量隨著年均氣溫升高而增加。
年降水量與效應(yīng)值的關(guān)系表明,與不施肥相比(圖3c),施用有機(jī)肥農(nóng)田土壤CO2排放量隨年降水量增加顯著降低(<0.05),年降水量能解釋10%的效應(yīng)值變異,與施用無(wú)機(jī)肥相比(圖3d),施用有機(jī)肥農(nóng)田土壤CO2排放量隨著年降水量增加顯著降低(<0.05),年降水量能解釋12%的效應(yīng)值變異??傮w上看,農(nóng)田土壤CO2排放量隨著年降水量增加而降低。
2)不同土壤類(lèi)型
不同土壤類(lèi)型下有機(jī)肥施用對(duì)農(nóng)田土壤CO2排放量的影響(圖4)表明,有機(jī)肥與不施肥相比(圖4a),黑土、灰漠土、塿土、潮褐土、黑壚土和鹽化潮土農(nóng)田土壤CO2排放量均有顯著的增加,分別增加了39.0%、301.4%、109.5%、23.4%、58.4%、113.8%(<0.05);灰漠土與其他土壤類(lèi)型差異顯著(<0.05),塿土與潮褐土差異顯著(<0.05),其他土壤類(lèi)型間差異不顯著。與施用無(wú)機(jī)肥相比(圖 4b),黑土、灰漠土、塿土、潮褐土、黑壚土和鹽化潮土農(nóng)田土壤CO2排放量均有顯著增加,分別增加了16.1%、259.7%、20.9%、27.1%、32.3%、85.9%(<0.05),灰漠土與其他土壤類(lèi)型差異顯著(<0.05),其他土壤類(lèi)型間差異不顯著。
注:虛線表示95%的置信區(qū)間的上下限值,實(shí)線表示回歸線,下同。
Note: Dotted lines are upper and lower limits of 95% confidence interval and solid lines are regression lines. The same below.
圖3 影響因素與土壤CO2排放量的效應(yīng)值的關(guān)系
Fig.3 Relationship between effect size and influencing factors on soil CO2emission
3)不同施肥措施
有機(jī)肥和無(wú)機(jī)肥配施對(duì)農(nóng)田土壤CO2排放量的影響(圖4)表明,與不施肥相比(圖4c),單施有機(jī)肥、氮肥+有機(jī)肥、氮磷鉀+有機(jī)肥、氮磷+有機(jī)肥配施下,農(nóng)田土壤CO2排放量均有顯著的增加,分別增加了78.6%、15.0%、56.8%、55.3%(<0.05),氮肥+有機(jī)肥+緩釋肥、減量施氮+有機(jī)肥+緩釋肥模式下農(nóng)田土壤CO2排放量未顯著增加,進(jìn)一步兩兩比較,有機(jī)肥與氮肥+有機(jī)肥、氮肥+有機(jī)肥+緩釋肥、減量施氮+有機(jī)肥+緩釋肥間差異顯著;與無(wú)機(jī)肥施用相比(圖4d),有機(jī)肥、氮肥+有機(jī)肥、氮磷鉀+有機(jī)肥、氮磷+有機(jī)肥配施下,農(nóng)田土壤CO2排放量均有顯著的增加,分別增加了66.5%、28.4%、29.6%、28.4%(<0.05),氮肥+有機(jī)肥+緩釋肥措施下農(nóng)田土壤CO2排放量未顯著增加(>0.05),進(jìn)一步兩兩比較,有機(jī)肥與氮肥+有機(jī)肥、氮磷鉀+有機(jī)肥、氮磷 +有機(jī)肥差異顯著。
注:O:有機(jī)肥;N+O:氮肥+有機(jī)肥;N+O+SR:氮肥+有機(jī)肥+緩釋肥;NPK+O:氮磷鉀+有機(jī)肥;NP+O:氮磷+有機(jī)肥:RN+O+SR:減量施氮+有機(jī)肥+緩釋肥
Note: O: organic fertilizer; N+O: nitrogen fertilizer + organic fertilizer; N+O+SR: nitrogen fertilizer + organic fertilizer + slow-release fertilizer; NPK+O: nitrogen, phosphorus and potassium + organic fertilizer; NP+O: nitrogen and phosphorus + organic fertilizer; RN+O+SR: reduced nitrogen + organic fertilizer + slow-release fertilizer.
圖4 土壤CO2排放量的影響因素分析
Fig.4 Analysis of influencing factors on soil CO2emission
本研究通過(guò)整理已發(fā)表的文獻(xiàn)數(shù)據(jù),運(yùn)用Meta分析方法,從區(qū)域尺度分析了我國(guó)北方典型農(nóng)田土壤施用有機(jī)肥后土壤CO2排放量特征及驅(qū)動(dòng)因子。研究發(fā)現(xiàn):與不施肥、無(wú)機(jī)肥施用相比,有機(jī)肥施用顯著增加了農(nóng)田土壤CO2排放量,分別提高了50.6%和36.3%(<0.05)。相關(guān)研究[8,9,21-23,25]也得出相似結(jié)論。本研究通過(guò)亞組分析也發(fā)現(xiàn)在不同區(qū)域、不同有機(jī)肥類(lèi)型和不同土壤類(lèi)型下有機(jī)肥施用均促進(jìn)農(nóng)田土壤CO2排放量,不同施肥措施間存在差異,農(nóng)田土壤CO2排放量與平均氣溫呈正相關(guān),與降水量呈負(fù)相關(guān)。分析原因:1)北方相對(duì)干旱少雨,有機(jī)肥施用顯著增加了土壤碳庫(kù),土壤有機(jī)碳在環(huán)境因子的作用下礦化速率增大,成為土壤CO2排放的主要來(lái)源[44-45];2)有機(jī)肥比無(wú)機(jī)肥進(jìn)一步改善了土壤孔隙度、有機(jī)質(zhì)和養(yǎng)分等土壤理化性質(zhì),促進(jìn)植物生長(zhǎng),根系分泌物增加,為微生物提供了可以利用的底物,使土壤呼吸增加[46-47];3)施用有機(jī)肥改善了土壤有效持水量、通氣性,增加了蚯蚓、彈尾目密度和土壤動(dòng)物多樣性指數(shù),促進(jìn)了土壤動(dòng)物呼吸的增加[48]。研究還發(fā)現(xiàn),施用雞糞后土壤CO2排放顯著高于牛糞、豬糞和商品有機(jī)肥,相關(guān)研究[7,35]也得出相似結(jié)論。究其原因,雞糞的養(yǎng)分含量高于牛糞、豬糞和商品有機(jī)肥,屬熱性肥料,有機(jī)氮含量高,C/N比較低,一般來(lái)講土壤C/N與有機(jī)質(zhì)分解速度呈反比關(guān)系,因?yàn)橥寥牢⑸镌谏顒?dòng)過(guò)程中,既需要碳素做能量,也需要氮素來(lái)構(gòu)建自己的身體,微生物的活性變化有可能促進(jìn)了土壤CO2排放量[49-52]。
3.1.1 氣候類(lèi)型
本研究表明,有機(jī)肥施用后農(nóng)田土壤CO2排放量隨年均氣溫的升高而增加,隨年降水量的增加而降低,較多研究得出相同的結(jié)論[53-55],分析其原因:1)溫度是決定陸地生態(tài)系統(tǒng)碳循環(huán)過(guò)程的關(guān)鍵因素,溫度影響著土壤呼吸過(guò)程的所有環(huán)節(jié),在一定范圍內(nèi)增加溫度可以提高土壤微生物活性,進(jìn)而影響有機(jī)碳的礦化,從而使CO2排放量與氣溫具有極顯著正相關(guān)關(guān)系[53,55];2)降水量影響土壤含水率,土壤CO2排放量與土壤水分含量呈極顯著負(fù)相關(guān)[54],隨著降水的增大,土壤含水率增加,可直接降低CO2在土壤孔隙中的擴(kuò)散速率以及增加CO2在土壤水中的溶解量,導(dǎo)致呼吸速率下降。本研究與Birch效應(yīng)[54]有一定差別,因本研究主要關(guān)注的是年降水量與生育期土壤CO2累計(jì)排放量的關(guān)系,Birch效應(yīng)指干旱條件下單次少量降水激發(fā)了土壤呼吸的效應(yīng),研究側(cè)重點(diǎn)不同。本研究發(fā)現(xiàn),在效應(yīng)值與年均氣溫、年降水量回歸中,回歸方程顯著,但決定系數(shù)不高,對(duì)于一元回歸模型,樣本決定系數(shù)是研究自變量對(duì)因變量的解釋程度。本研究樣本量比較大,線性回歸顯著,但數(shù)據(jù)集中性可能不高,導(dǎo)致誤差項(xiàng)方差大,使決定系數(shù)不高[39]。回歸方程也說(shuō)明了年均氣溫、年降水量影響農(nóng)田土壤CO2排放量,但不是主要驅(qū)動(dòng)因子。
3.1.2 土壤類(lèi)型和施肥措施
研究發(fā)現(xiàn)有機(jī)肥施用下不同土壤類(lèi)型均能顯著提高農(nóng)田土壤CO2排放量,其中灰漠土與其他土壤類(lèi)型差異顯著。灰漠土是在溫帶荒漠氣候條件下形成的,主要分布在新疆、寧夏和甘肅等地區(qū),土壤質(zhì)地為粉砂壤或砂壤,腐殖質(zhì)的積累作用弱,有機(jī)質(zhì)含量低,有機(jī)肥施入后,灰漠土對(duì)有機(jī)物質(zhì)的固持能力較弱,且灰漠土分布區(qū)氣溫相對(duì)高,礦化加劇,從而有機(jī)肥施用會(huì)提高灰漠土土壤CO2排放量[56]。研究也表明,單施有機(jī)肥比有機(jī)無(wú)機(jī)配施促進(jìn)了農(nóng)田土壤CO2排放,緩釋肥+有機(jī)肥+無(wú)機(jī)肥配施模式下農(nóng)田土壤CO2排放量均與不施肥、無(wú)機(jī)肥之間差異不顯著,這與郭俊娒等有關(guān)研究[9,23]相似,原因主要是不同類(lèi)型的肥料組合會(huì)降低有機(jī)肥的施用量,增加肥料利用效率,也可能是長(zhǎng)期氮肥施用可以減弱土壤呼吸作用,促進(jìn)碳在土壤中的貯存,具體機(jī)理可能是氨基形態(tài)的氮作用于可降解的木質(zhì)素形成更穩(wěn)定、難降解的芳香類(lèi)化合物,也有可能直接抑制木質(zhì)素分解酶的形成[57]。
本研究得出有機(jī)肥施用會(huì)增加農(nóng)田土壤CO2排放量的結(jié)論。農(nóng)田土壤CO2排放包括3個(gè)生物學(xué)過(guò)程和1個(gè)非生物學(xué)過(guò)程,因此,下一步研究需明確有機(jī)肥施用后的主導(dǎo)過(guò)程及形成機(jī)制[7];土壤CO2排放量增加能促進(jìn)農(nóng)田生態(tài)系統(tǒng)光合產(chǎn)物積累,增加土壤碳儲(chǔ)量,形成固碳效應(yīng)(A),另一方面也加劇了溫室效應(yīng)(B),已有研究也表明有機(jī)肥有改善土壤結(jié)構(gòu),增加作物產(chǎn)量、優(yōu)化作物品質(zhì)的效果[3-5],因此,要明確施用有機(jī)肥在低碳農(nóng)業(yè)中的綜合效應(yīng)需界定在農(nóng)田生態(tài)系統(tǒng)尺度,弄清A和B的關(guān)系,從基于生命周期評(píng)價(jià)碳排放的綜合凈溫室氣體、兼顧作物產(chǎn)量的溫室氣體排放強(qiáng)度和作物品質(zhì)等3個(gè)方面綜合分析[58-59]。
經(jīng)對(duì)中國(guó)北方地區(qū)施用有機(jī)肥后作物生育期CO2排放量的綜合分析,得出以下結(jié)論:
1)與不施肥和施無(wú)機(jī)肥相比,施用有機(jī)肥能顯著提高生育期農(nóng)田土壤CO2排放量;東北、華北和西北不同區(qū)域間差異不顯著;不同有機(jī)肥類(lèi)型中,施用雞糞有促進(jìn)土壤CO2排放量的作用。從環(huán)境的角度考慮,不建議雞糞單獨(dú)大量施用。
2)有機(jī)肥施用后,農(nóng)田土壤CO2排放量和年均氣溫成正比、和年均降水量成反比;有機(jī)肥+無(wú)機(jī)肥、有機(jī)肥+無(wú)機(jī)肥+緩釋肥配施比單施有機(jī)肥減少了農(nóng)田土壤CO2排放量;農(nóng)田土壤CO2排放量在有機(jī)肥+無(wú)機(jī)肥+緩釋肥配施與不施肥間差異不顯著。建議在中國(guó)北方采用無(wú)機(jī)肥+有機(jī)肥+緩釋肥配施技術(shù)。
3)施用有機(jī)肥會(huì)顯著增加灰漠土農(nóng)田土壤CO2排放量,建議綜合考慮環(huán)境經(jīng)濟(jì)效益,加大對(duì)灰漠土施肥技術(shù)的研究。
[1] 吳瑞娟,王迎春,朱平,等. 長(zhǎng)期施肥對(duì)東北中部春玉米農(nóng)田土壤呼吸的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(1):44-52. Wu Ruijuan, Wang Yingchun, Zhu Ping, et al. Effects of long-term fertilization on soil respiration in spring maize field[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 44-52. (in Chinese with English abstract)
[2] 溫延臣,李燕青,袁亮,等. 長(zhǎng)期不同施肥制度土壤肥力特征綜合評(píng)價(jià)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):91-99. Wen Yanchen, Li Yanqing, Yuan Liang, et al. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in north china[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 91-99. (in Chinese with English abstract)
[3] 張運(yùn)龍. 有機(jī)肥施用對(duì)冬小麥—夏玉米產(chǎn)量和土壤肥力的影響[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2017. Zhang Yunlong. Effects of Organic Manure Application on Yield and Soil Fertility of Winter Wheat and Summer Maize[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[4] 宋震震,李絮花,李娟,等. 有機(jī)肥和化肥長(zhǎng)期施用對(duì)土壤活性有機(jī)氮組分及酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(3):525-533. Song Zhenzhen, Li Xuhua, Li Juan, et al. Effects of long term application of organic manure and chemical fertilizer on soil active organic nitrogen components and enzyme activities[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 525-533. (in Chinese with English abstract)
[5] 陶磊,褚貴新,劉濤,等. 有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響[J]. 生態(tài)學(xué)報(bào),2014,34(21):6137-6146. Tao Lei, Chu Guixin, Liu Tao, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21) : 6137-6146. (in Chinese with English abstract)
[6] 沈仕洲,王風(fēng),薛長(zhǎng)亮,等. 施用有機(jī)肥對(duì)農(nóng)田溫室氣體排放影響研究進(jìn)展[J]. 中國(guó)土壤與肥料,2015,4(6):1-8. Shen Shizhou, Wang Feng, Xue Changliang, et al. Research progress on effects of organic fertilizer on greenhouse gas emissions in farmland[J]. Soil and Fertilizer in China, 2015, 4(6): 1-8. (in Chinese with English abstract)
[7] 張玉銘,胡春勝,張佳寶,等. 農(nóng)田土壤主要溫室氣體(CO2、CH4、N2O)的源/匯強(qiáng)度及其溫室效應(yīng)研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(4):966-975. Zhang Yuming, Hu Chunsheng, Zhang Jiabao, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2018, 19(4): 966-975. (in Chinese with English abstract)
[8] 賀美,王立剛,王迎春,等. 長(zhǎng)期定位施肥下黑土呼吸的變化特征及其影響因素[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):151-161. He Mei, Wang Ligang, Wang Yingchun, et al. Characteristics and influencing factors of black soil respiration under long term fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 151-161. (in Chinese with English abstract)
[9] 李燕青,唐繼偉,車(chē)升國(guó),等. 長(zhǎng)期施用有機(jī)肥與化肥氮對(duì)華北夏玉米N2O和CO2排放的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(21):4381-4389. Li Yanqing, Tang Jiwei, Che Shengguo, et al. Effects of long-term application of organic manure and fertilizer nitrogen on N2O and CO2emissions from summer maize in north china[J]. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. (in Chinese with English abstract)
[10] 孫海妮,岳善超,王仕穩(wěn),等. 有機(jī)肥及補(bǔ)充灌溉對(duì)旱地農(nóng)田溫室氣體排放的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2018,38(5):2055-2065. Sun Haini, Yue Shanchao, Wang Shiwen, et al. Effects of organic fertilizers and supplementary irrigation on greenhouse gas emissions from drylands[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 2055-2065. (in Chinese with English abstract)
[11] Dong Wenjun, Guo Jia, Xu Lijun, et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China[J]. Journal of Environmental Sciences, 2018, 64(2): 289-297.
[12] 白雪原,紅梅,楊彥明,等. 施肥對(duì)河套灌區(qū)土壤CO2和N2O排放的影響[J]. 灌溉排水學(xué)報(bào), 2017,36(7):66-70. Bai Xueyuan, Hong Mei, Yang Yanming, et al. Effects of fertilization on soil CO2and N2O emissions in Hetao Irrigated Area[J]. Journal of Irrigation and Drainage, 2017, 36(7): 66-70. (in Chinese with English abstract)
[13] Hang Xiaoning, Zhang Xin, Song Chunlian, et al. Differences in rice yield and CH4and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, china[J]. Soil and Tillage Research, 2014, 144(7): 205-210.
[14] 劉東雪. 施肥對(duì)冬小麥—夏玉米輪作生態(tài)系統(tǒng)溫室氣體排放的影響[D]. 青島:山東農(nóng)業(yè)大學(xué),2013. Liu Dongxue. Effects of Fertilization on Greenhouse Gas Emissions from Winter Wheat-Summer Maize Rotation Ecosystem[D]. Qingdao: Shandong Agricultural University, 2013. (in Chinese with English abstract)
[15] 薛曉輝. 典型旱作區(qū)施肥對(duì)農(nóng)田氮淋溶以及溫室氣體排放的影響[D]. 楊凌:中國(guó)科學(xué)院研究生院,2010. Xue Xiaohui. Effects of Fertilization on Nitrogen Leaching and Greenhouse Gas Emissions in Typical Rainfed Areas[D]. Yangling: Graduate University of Chinese Academy of Sciences, 2010. (in Chinese with English abstract)
[16] 史培. 長(zhǎng)期施肥對(duì)黃土旱塬小麥產(chǎn)量及土壤CO2和N2O排放的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2011. Shi Pei. Effects of Long-term Fertilization on Wheat Yield and Soil CO2and N2O Emissions in Loess Plateau[D]. Yangling: Northwest A&F University, 2011. (in Chinese with English abstract)
[17] 郭蕓. 長(zhǎng)期施肥下旱地塿土CO2和CH4排放特征的研究[D].楊凌:西北農(nóng)林科技大學(xué),2017. Guo Yun. Emission Characteristics of CO2and CH4from Upland Soil under Long-term Fertilization[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[18] Chen Zengming, Xu Yehong, Fan Jianling, et al. Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in northeast China[J]. Soil Biology and Biochemistry, 2017, 110(6): 103-115.
[19] Chen Haixin, Liu Jingjing, Zhang Afeng, et al. Effects of straw and plastic film mulching on greenhouse gas emissions in loess plateau, china: A field study of consecutive wheat-maize rotation cycles[J]. Science of the Total Environment, 2017, 579(2): 814-824.
[20] Htun Yinmin, Tong Yanan, Gao Pengcheng, et al. Coupled effects of straw and nitrogen management on N2O and CH4emissions of rainfed agriculture in northwest China[J]. Atmospheric Environment, 2017, 157(10): 156-166.
[21] 王玉英,李曉欣,董文旭,等. 華北平原農(nóng)田溫室氣體排放與減排綜述[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2018,26(2):167-174. Wang Yuying, Li Xiaoxin, Dong Wenxu, et al. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the north china plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 167-174. (in Chinese with English abstract)
[22] 雷強(qiáng). 有機(jī)肥化肥配施對(duì)華北高產(chǎn)農(nóng)田土壤溫室氣體排放的影響[D]. 太谷:山西農(nóng)業(yè)大學(xué),2015. Lei Qiang. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Greenhouse Gas Emission from High Yield Farmland in north china[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese with English abstract)
[23] 郭俊娒. 不同施肥模式對(duì)東北春玉米氮素利用與農(nóng)田溫室氣體排放的影響[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2015. Guo Junmu. Effects of Different Fertilization Modes on Nitrogen Use and Greenhouse Gas Emissions from Spring Maize in Northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[24] 李海波,韓曉增. 不同土地利用和施肥方式下黑土碳平衡的研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(1):16-21. Li Haibo, Han Xiaozeng. Carbon balance in black soil under different land use and fertilization methods[J]. Chinese Journal of Eco-Agriculture, 2014, 22(1): 16-21. (in Chinese with English abstract)
[25] 高洪軍. 長(zhǎng)期不同施肥對(duì)東北玉米產(chǎn)量和土壤肥力及溫室氣體排放的影響研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2015. Gao Hongjun. Effects of Long-term Fertilization on Maize Yield, Soil Fertility and Greenhouse Gas Emissions in Northeast China[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[26] Li Qiang, Li Hongbing, Zhang Li, et al. Mulching improves yield and water-use efficiency of potato cropping in china: a meta-analysis[J]. Field Crops Research, 2018, 221(5): 50-60.
[27] Feng Jinfei, Chen Changqing, Zhang Yi, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in china: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 164(1): 220-228.
[28] 任鳳玲,張旭博,孫楠,等. 施用有機(jī)肥對(duì)中國(guó)農(nóng)田土壤微生物量影響的整合分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(1):119-128. Ren Fengling, Zhang Xubo, Sun Nan, et al. Integrated analysis of effects of organic manure application on soil microbial biomass in china[J]. Scientia Agricultura Sinica, 2018, 51(1): 119-128. (in Chinese with English abstract)
[29] Borenstein Michael, Higgins Julian P T, Hedges Larry V, et al. Basics of meta-analysis: I2is not an absolute measure of heterogeneity[J]. Research Synthesis Methods, 2017, 8(1): 5-18.
[30] 朱利群,王春杰,楊曼君,等. 施肥對(duì)長(zhǎng)江中下游稻田溫室氣體排放的影響—基于Meta分析[J]. 資源科學(xué),2017,39(1):105-115. Zhu Liqun, Wang Chunjie, Yang Manjun, et al. Effects of fertilization on greenhouse gas emissions from paddy fields in the middle and lower reaches of Yangtze river based on meta-analysis[J]. Resources Science, 2017, 39(1): 105-115. (in Chinese with English abstract)
[31] 銀敏華,李援農(nóng),申勝龍,等. 中國(guó)可降解膜覆蓋對(duì)玉米產(chǎn)量效應(yīng)的Meta分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):1-9. Yin Minhua, Li Yuannong, Shen Shenglong, et al. Meta analysis of the effect of degradable film mulching on maize yield in china[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 1-9. (in Chinese with English abstract)
[32] 鄭侃,何進(jìn),李洪文,等. 中國(guó)北方地區(qū)深松對(duì)小麥玉米產(chǎn)量影響的Meta分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):7-15. Zheng Kan, He Jin, Li Hongwen, et al. Effects of subsoiling on wheat and maize yield in northern china in meta analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 7-15. (in Chinese with English abstract)
[33] 張冉,趙鑫,濮超,等. 中國(guó)農(nóng)田秸稈還田土壤N2O排放及其影響因素的Meta分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):1-6. Zhang Ran, Zhao Xin, Pu Chao, et al. Soil N2O emission and its influencing factors in straw returning field in china in meta analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 1-6. (in Chinese with English abstract)
[34] Michael Borenstein, Larry V Hedges, Julian P T Higgins, et al. Introduction to Meta-Analysis[M]. Chichester: John Wiley, 2009: 20.
[35] 張鵬鵬. 秸稈管理和施肥措施對(duì)綠洲農(nóng)田土壤碳庫(kù)及碳循環(huán)影響的研究[D]. 石河子:石河子大學(xué),2017. Zhang Pengpeng. Effect of Straw Management and Fertilization on Soil Carbon Storage and Carbon Cycle in Oasis Farmland[D]. Shihezi: Shihezi University, 2017. (in Chinese with English abstract)
[36] 田康,趙永存,刑喆,等. 中國(guó)保護(hù)性耕作農(nóng)田土壤有機(jī)碳變化速率研究—基于長(zhǎng)期試驗(yàn)點(diǎn)的Meta分析[J]. 土壤學(xué)報(bào),2013,50(3):433-440. Tian Kang, Zhao Yongcun, Xing Zhe, et al. A meta-analysis of long-term experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of china[J]. Acta Pedologica Sinica, 2013, 50(3): 433-440. (in Chinese with English abstract)
[37] Meng Qingfeng, Hou Peng, Wu Liang, et al. Understanding production potentials and yield gaps in intensive maize production in china[J]. Field Crops Research, 2013, 143(3): 91-97.
[38] Burda Brittany U, O'Connor Elizabeth A, Webber Elizabeth M, et al. Estimating data from figures with a web-based program: Considerations for a systematic review[J]. Research Synthesis Methods, 2017, 8(3): 258-262.
[39] Gordon A Fox, Simoneta Negrete-Yankelevich, Vinicio J Sosa. Ecological Statistics: Contemporary Theory and Application[M]. Oxford: Oxford University Press, 2015: 40.
[40] Nicole L Kinlock, Lisa Prowant, Emily M Herstoff, et al. Explaining global variation in the latitudinal diversity gradient: meta-analysis confirms known patterns and uncovers new ones[J]. Global Ecology and Biogeography, 2017, 4(1): 125-128.
[41] Borenstein Michael, Hedges Larry V, Julian P T Higgins, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis[J]. Research Synthesis Methods, 2010, 1(2): 97-111.
[42] Zhang Haiyang, Lv Xiaotao, Hartmann Henrik, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales[J]. Global Ecology and Biogeography, 2018, 27(4): 1-7.
[43] Wolfgang Viechtbauer. Conducting meta-analyses in R with the metafor package[J]. Journal of Statistical Software, 2010, 36: 1-48.
[44] 張瑞,張貴龍,姬艷艷,等. 不同施肥措施對(duì)土壤活性有機(jī)碳的影響[J]. 環(huán)境科學(xué),2013,34(1):277-282. Zhang Rui, Zhang Guilong, Ji Yanyan, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1): 277-282. (in Chinese with English abstract)
[45] 王利輝. 不同來(lái)源有機(jī)肥及其配合施用對(duì)土壤性質(zhì)的影響[D].長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2007. Wang Lihui. Effects of Organic Fertilizers from Different Sources and Their Combined Application on Soil Properties[D]. Changchun: Jilin Agricultural University, 2007. (in Chinese with English abstract)
[46] 胡誠(chéng),曹志平,羅艷蕊,等. 長(zhǎng)期施用生物有機(jī)肥對(duì)土壤肥力及微生物生物量碳的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2007,15(3):48-51. Hu Cheng, Cao Zhiping, Luo Yanrui, et al. Effects of long-term application of bio-organic fertilizers on soil fertility and microbial biomass carbon[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese with English abstract)
[47] 臧逸飛. 長(zhǎng)期不同輪作施肥土壤微生物學(xué)特性研究及生物肥力評(píng)價(jià)[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Zang Yifei. Soil Microbiological Characteristics and Biological Fertility Evaluation under Different Long-term Rotation Fertilization[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[48] 朱新玉,董志新,況福虹,等. 長(zhǎng)期施肥對(duì)紫色土農(nóng)田土壤動(dòng)物群落的影響[J]. 生態(tài)學(xué)報(bào), 2013,33(2) : 464-474. Zhu Xinyu, Dong Zhixin, Kuang Fuhong, et al. Effects of fertilization regimes on soil faunal communities in cropland of purple soil, China[J]. Acta Ecologica Sinica, 2013, 33(2): 464-474. (in Chinese with English abstract)
[49] 王亞飛. 不同畜禽糞便堆肥過(guò)程中可培養(yǎng)微生物數(shù)量及腐殖質(zhì)含量和酶活性的變化[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2016. Wang Yafei. Changes of Culturable Microorganisms, Humus Content and Enzyme Activities in Composting of Four Kinds of Livestock Dung[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese with English abstract)
[50] 梁斌,周建斌,楊學(xué)云,等. 長(zhǎng)期施肥對(duì)土壤微生物量碳、氮及礦質(zhì)氮含量動(dòng)態(tài)變化的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(2):321-326. Liang Bin, Zhou Jianbin, Yang Xueyun, et al. Changes of microbial biomass carbon and nitrogen, and mineral nitrogen after a long-term different fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 321-326. (in Chinese with English abstract)
[51] 王建林,鐘志明,王忠紅,等. 青藏高原高寒草原生態(tài)系統(tǒng)土壤碳氮比的分布特征[J]. 生態(tài)學(xué)報(bào),2014,34(22):6678-6691. Wang Jianlin, Zhong Zhiming, Wang Zhonghong, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22): 6678-6691. (in Chinese with English abstract)
[52] 趙兵. 有機(jī)肥生產(chǎn)使用手冊(cè)[M]. 北京:金盾出版社,2014:23-50.
[53] 閻佩云. 黃土旱塬旱作玉米農(nóng)田不同栽培模式溫室氣體排放特征及影響因素[D]. 楊凌:西北農(nóng)林科技大學(xué),2013. Yan Peiyun. Characteristics and Influencing Factors of Greenhouse Gas Emissions from Different Cultivation Models of Maize Farmland in Dryland of Loess Plateau[D]. Yangling: Northwest A&F University, 2013. (in Chinese with English abstract)
[54] 朱新萍,賈宏濤,周建勤,等. 降雨對(duì)干旱半干旱區(qū)濕地和農(nóng)田土壤CO2短期釋放的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2017,34(1): 54-58. Zhu Xinping, Jia Hongtao, Zhou Jianqin, et al. Effects of rainfall on short-term release of CO2from wetland and farmland soils in arid and semi-arid areas[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 54-58. (in Chinese with English abstract)
[55] 張俊麗. 耕作和施氮措施下旱作夏玉米田土壤呼吸與土壤碳平衡研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2014. Zhang Junli. Soil Respiration and Soil Carbon Balance in Rainfed Summer Maize Field under Tillage and Nitrogen Application[D]. Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)
[56] 徐詠文,段萍,羅志華. 淺析中國(guó)土壤分類(lèi)的發(fā)生與現(xiàn)狀[J].安徽農(nóng)業(yè)科學(xué),2005,33(10):225-226. Xu Yongwen, Duan Ping, Luo Zhihua. Analysis on the occurrence and current situation of soil classification in china[J]. Journal of Anhui Agricultural Sciences, 2005, 33(10): 225-226. (in Chinese with English abstract)
[57] Burton A J, Pregitzer K S, Crawford J N, et al. Simulated chronic NO3-deposition reduces soil respiration in northern hardwood forests[J]. Global Ecology and Biology, 2004, 10(7): 1080-1091.
[58] 熊正琴,張曉旭. 氮肥高效施用在低碳農(nóng)業(yè)中的關(guān)鍵作用[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2017,23(6):1433-1440. Xiong Zhengqin, Zhang Xiaoxu. Key role of efficient nitrogen application in low carbon agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1433-1440. (in Chinese with English abstract)
[59] Liu Shuwei, Ji Cheng, Wang Cong, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21(1): 1108-1118.
Meta-analysis on farmland soil CO2emission in Northern China affected by organic fertilizer
Wang Xiaojiao1,4, Zhang Renzhi1,2,3※, Qi Peng1,2,3, Jiao Yapeng1, Cai Liqun1,2,3, Wu Jun1,2, Xie Junhong2,5
(1.,,730070,; 2.,,730070,; 3.,730070,; 4.,,730070,; 5.,,730070,)
This paper was aimed to investigate the effects of organic fertilizer application (single application of organic fertilizer and organic-inorganic fertilizer combination) on the CO2emission in farmland soil during crop growth period, under different climate types, fertilization measures, organic fertilizer types and experiment years in Northern China. Non-fertilizer and inorganic fertilizer application were used as control treatments. Based on the published data of relevant experiment and the Meta-analysis method, the quantitative effects on application of organic fertilizer and organic-inorganic fertilizer combination on CO2emission in farmland soil were studied. A total of 534 measurements were obtained including 89 pairs of data from 21 literatures. The experiments lasted from 1980 to 2017. The effects were determined by effect size by Meta-analysis method. The important factors affecting CO2emission were selected by finding out those with important values higher than 0.8. The results showed that the organic fertilizer application significantly generally increased the CO2emission in farmland soil than the non-fertilizer and inorganic fertilizer application, with an increment of 50.6% and 36.3%, respectively. No publication bias was found because the fail-safe number was far higher than the critical values by the fail-safe method. There was not significantly different among regions (>0.05). Under the application of organic fertilizer, the CO2emission of farmland soil decreased successively in the following order: single application of organic fertilizer, organic-inorganic fertilizer combination, and combined application of inorganic fertilizer, organic fertilizer and slow-release fertilizer. Soil CO2emission did not significantly increase under the combined application of organic fertilizer, inorganic fertilizer and slow-release fertilizer. Compared with non-fertilizer, cow manure, pig manure and commercial organic manure, chicken manure had the greatest positive effects on soil CO2emission. Under the application of organic fertilizer, the CO2emission of farmland soil in gray desert was relatively high. The CO2emission of farmland soil was positively correlated with the annual average temperature and negatively correlated with the annual average precipitation. The annual average temperature and annual average precipitation could explain about 11%-16% and 10%-12% change in effect size of CO2emission, respectively. From the perspective of environment, it was suggested to apply the combined application of inorganic fertilizer, organic fertilizer and slow-release fertilizer in Northern China. Meanwhile, the chicken manure should not be applied in large quantities and organic fertilizer should not be used in grey desert farmland. The results of this study can provide valuable information for the popularization and application of organic fertilizer replacing partial chemical fertilizer in Northern China.
respiration; soils; fertilizers; North; Meta
10.11975/j.issn.1002-6819.2019.10.013
S146;S158;S19
A
1002-6819(2019)-10-0099-09
2018-08-07
2019-02-10
甘肅農(nóng)業(yè)大學(xué)學(xué)科建設(shè)基金(GAU-XKJS-2018—205);青年研究生導(dǎo)師扶持基金(GAU-QNDS-201704);甘肅農(nóng)業(yè)大學(xué)盛彤笙基金(GSAU-STS-1706)
王曉嬌,講師,博士生,主要從事土地利用變化與土壤碳循環(huán)。Email:42321964@qq.com
張仁陟,博士,教授,主要從事土壤學(xué)研究。Email:zhangrz@gsau.edu.cn
王曉嬌,張仁陟,齊 鵬,焦亞鵬,蔡立群,武 均,謝軍紅.Meta分析有機(jī)肥施用對(duì)中國(guó)北方農(nóng)田土壤CO2排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):99-107. doi:10.11975/j.issn.1002-6819.2019.10.013 http://www.tcsae.org
Wang Xiaojiao, Zhang Renzhi, Qi Peng, Jiao Yapeng, Cai Liqun, Wu Jun, Xie Junhong. Meta-analysis on farmland soil CO2emission in Northern China affected by organic fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 99-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.013 http://www.tcsae.org