• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Involvement of insulin receptor substrates in cognitive impairment and Alzheimer's disease

    2019-07-17 02:13:02DaisukeTanokashiraWataruFukuokayaAkikoTaguchi

    Daisuke Tanokashira, Wataru Fukuokaya, Akiko Taguchi,

    1 Department of Integrative Aging Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan

    2 Division of Neurology, Endocrinology, and Metabolism, Faculty of Medicine University of Miyazaki, Miyazaki, Japan

    Funding: This work was supported by a MEXTGrant-in-Aid for Scientific Research on Innovative Areas (brain environment) (JP24111536;to AT), JSPS KAKENHI (JP24650201, JP26282026, JP17K19951, JP17H02188; to AT), and grants from the Mitsubishi Foundation (to AT)and NOVARTIS Foundation Japan for the Promotion of Science (to AT).

    Abstract Type 2 diabetes-associated with impaired insulin/insulin-like growth factor-1 (IGF1) signaling (IIS)-is a risk factor for cognitive impairment and dementia including Alzheimer's disease (AD). The insulin receptor substrate (IRS) proteins are major components of IIS, which transmit upstream signals via the insulin receptor and/or IGF1 receptor to multiple intracellular signaling pathways, including AKT/protein kinase B and extracellular-signal-regulated kinase cascades. Of the four IRS proteins in mammals, IRS1 and IRS2 play key roles in regulating growth and survival, metabolism, and aging. Meanwhile, the roles of IRS1 and IRS2 in the central nervous system with respect to cognitive abilities remain to be clarified. In contrast to IRS2 in peripheral tissues, inactivation of neural IRS2 exerts beneficial effects, resulting in the reduction of amyloid β accumulation and premature mortality in AD mouse models. On the other hand, the increased phosphorylation of IRS1 at several serine sites is observed in the brains from patients with AD and animal models of AD or cognitive impairment induced by type 2 diabetes. However, these serine sites are also activated in a mouse model of type 2 diabetes, in which the diabetes drug metformin improves memory impairment. Because IRS1 and IRS2 signaling pathways are regulated through complex mechanisms including positive and negative feedback loops, whether the elevated phosphorylation of IRS1 at specific serine sites found in AD brains is a primary response to cognitive dysfunction remains unknown. Here, we examine the associations between IRS1/IRS2-mediated signaling in the central nervous system and cognitive decline.

    Key Words: type 2 diabetes; insulin/insulin-like growth factor-1; insulin receptor substrate; Alzheimer's disease;aging; serine phosphorylation; metformin; neuroprotective effects; high-fat-diet

    Insulin Receptor Substrates-Mediated Signaling Pathways

    The binding of insulin and insulin-like growth factor-1(IGF1) to the insulin receptor (IR), IGF1 receptor (IGF1R),or the hybrid between these receptors (IR/IGF1R) promotes tyrosine kinase activities of these receptors, subsequently inducing tyrosine phosphorylation of cellular substrates including IRS1-4 (Schlessinger, 2000; Taguchi and White,2008). Studies in genetically engineered mice have shown that the biological effects of insulin/IGF1 signaling (IIS) on glucose or lipid metabolism are mediated via insulin receptor substrate (IRS)1 and IRS2 (White, 2003) whereas the tyrosine kinase activation of IR/IGF1R stimulates the phosphorylation of other scaffold proteins such as SH2B, GABs,DOCKs, and CEACAM1. The IRS proteins are composed of an NH2-terminal pleckstrin homology and phosphotyrosine-binding domains, followed by a tail of tyrosine and serine/threonine (Ser/Thr) phosphorylation sites (Yenush et al., 1996). The morphological change of tyrosine-phosphorylated IRS proteins by IR/IGF1R increases the flexibility of binding to Src homology 2 domain proteins including phosphatidylinositol-3 kinase and Src homology 2 domain-containing protein tyrosine phosphatase-2 (Hanke and Mann,2009). Phosphatidylinositol 3,4,5-trisphosphate, the downstream mediator of phosphatidylinositol-3 kinase, recruits the Ser/Thr kinase phosphoinositide-dependent kinase 1 to the plasma membrane, where AKT and atypical protein kinase C isoforms (aPKCs ι/λ and ζ) are activated (Franke et al., 1997; Pearce et al., 2010). AKT activation also requires the mammalian target of rapamycin complex 2-dependent phosphorylation at Ser473 (Sarbassov et al., 2005; Hancer et al., 2014). The biological effects of IIS are regulated through alteration in IRS protein functions by Ser/Thr phosphorylation (Hancer et al., 2014). Studies of knockout mice of IRS1 and/or IRS2 in insulin-target tissues-liver, muscles, pancreas, and brain-have revealed tissue-specific roles of IRS1 and IRS2 (Morino et al., 2008; Copps et al., 2010); however,the molecular mechanisms underlying the functions of IRS1 and/or IRS2 in memory abilities still remain unclear.

    Neural Insulin Receptor Substrate 2:Beneficial Effects of Insulin Receptor Substrate 2 Inactivation in Mouse Models of Alzheimer's Disease

    Systemic heterozygous inactivation of IGF1R (IGF1R+/-) or neuronal deletion of IGF1R (nIGF1R-/-) improves survival in the Tg2576 mouse model of AD that harbors the Swedish mutation in the amyloid precursor protein while reducing behavioral impairment and amyloid β accumulation (Cohen et al., 2009; Freude et al., 2009). Similarly, deletion of one copy of neuronal IGF1R partly rescues premature mortality without decreasing amyloid β deposition in Tg2576 mice(Stohr et al., 2013). By contrast, neuron-specific ablation of IR fails to rescue premature death of Tg2576 mice while it reduces amyloid β accumulation (Freude et al., 2009; Stohr et al., 2013) (Table 1). Reduced IRS2 signaling throughout the body or in the brain prolongs life span (Taguchi et al.,2007); moreover, systemic reduction of IRS2 (IRS2-/-) improves cognitive function and reduces amyloid β deposition and premature mortality in Tg2576 mice with normal blood glucose levels (Freude et al., 2009; Killick et al., 2009). It is noteworthy that the expression and the activity of downstream signaling components of the IGF1R-IRS2 pathway such as AKT and glycogen synthase kinase 3β are unchanged when neuronal IGF1R deletion rescues the neurological phenotype in Tg2576 mice (Freude et al., 2009; Stohr et al., 2013). Thus, animal studies have demonstrated that a reduction in intracellular signaling mediated by IGF1R-IRS2 signaling but not the IR cascade in the central nervous system (CNS) exerts neuroprotective effects in Alzheimer's disease (AD) animal models.

    Neural Insulin Receptor Substrate 1: Altered Serine Phosphorylation of Neural Insulin Receptor Substrate 1in Cognitive Decline

    Preclinical studies

    The increased phosphorylati on of IRS1 at human(h)Ser312/mouse(m)Ser307, a positive regulatory site essential for normal insulin signaling (Copps et al., 2010), and hSer636/mSer632, a negative regulatory site on the tyrosine phosphorylation of IRS1 (Hancer et al., 2014), is observed in the hippocampus and the temporal cortex of cynomolgus monkeys when injected amyloid β oligomers (Bomfim et al.,2012). Similarly, APP/PS1 (a chimeric mouse/human amyloid precursor protein and a mutant human presenilin 1)transgenic (Tg) mice, a mouse model of AD, have elevated phosphorylation of IRS1 at hSer312/mSer307 and hSer636/mSer632 residues (Bomfim et al., 2012) or hSer636/mSer632 alone (Lourenco et al., 2013) in the hippocampus. In addition, 3xTg-AD (APPSwe, tauP301L, and a PSEN1M146L knock-in/PSEN1-KI) mice, which is another AD mouse model, display increased phosphorylation of hSer312/mSer307 (Barone et al., 2016) or hSer616/mSer612 (Ma et al., 2009), suggesting that the sites may have a similar function to hSer636/mSer632 on IRS1 in the hippocampus. On the other hand, high-fat-diet (40% energy from fat)-induced type 2 diabetes mice that exhibit cognitive impairment also display elevated phosphorylation of IRS1 at the hSer312/mSer307 and hSer341/mSer336 sites in the hippocampus(Liang et al., 2015; Kothari et al., 2017). However, highfat-diet (60% energy from fat)-induced cognitive deficit in mice is accompanied by the activated phosphorylation of IRS1 at hSer1101/mSer1097 known as a potential target of mammallian Target Of Rapamycin signaling on IRS1 in the hippocampus (Liang et al., 2015; Kothari et al., 2017). Additionally, histological analysis of human tau-overexpressing Tg mice, a mouse model producing robust tau pathology similar to human AD and tauopathies, has shown that phosphorylated IRS1 on hSer616/mSer612 is co-localized in tangle-bearing neurons in these mice (Yarchoan et al.,2014). Together, serine phosphorylation of neural IRS1 may be involved in cognitive decline, whereas the various serine phosphorylation statuses of IRS1 appear to be dependent upon conditions, such as age of exposure, types of disease model, or severity of disease.

    Clinical studies

    Analyses of postmortem AD brain tissue demonstrated increased phosphorylation levels of IRS1 at hSer312/mSer307 and hSer616/mSer612, the sites also phosphorylated in the mouse models for AD described above, whereas the protein levels of total IRS1 and IRS2 are diminished (Moloney et al., 2010). In the AD patient brain, the protein level of IGF1R is robustly increased, whereas the IR protein levels are comparable between control and AD patients. Similarly,another study reported that the phosphorylation levels of hSer312/mSer307, hSer616/mSer612, hSer636/mSer632,and hSer639/mSer635 on IRS1 are significantly elevated in the postmortem AD brain compared with non-AD controls regardless of the presence or absence of diabetes (Talbot et al., 2012). Furthermore, a recent study of postmortem brains of patients with cognitive decline including AD, tauopathy,a-synucleinopathy, and TAR DNA-binding protein 43 kDa proteinopathy has shown that the phosphorylation levels of IRS1 at hSer312/mSer307 and hSer616/mSer612 are prominently elevated in both the AD and the tauopathy groups(Yarchoan et al., 2014). Consistent with preclinical study using human tau-overexpressing Tg mice, pIRS1hSer616/mSer612 is co-expressed with the disease-causing lesion proteins in both groups (Yarchoan et al., 2014). Studies of postmortem brains of AD or tauopathy demonstrate the correlation between cognitive decline and serine phosphorylation of neural IRS1. However, it remains unknown whether the phosphorylation of specific serine residues of neural IRS1 is the cause or an effect of the disease.

    Table 1 The phenotypes of double mutants by crossing AD model mice with mice lacking IRS2, IGF1R, or IR

    Hippocampal Insulin Receptor Substrate 1:Repurposing Metformin for Memory Deficit and Insulin Receptor Substrate 1 in the Hippocampus

    Metformin, a biguanide antidiabetic medication, is the firstline therapy for patients with type 2 diabetes (Bailey and Turner, 1996). Metformin lowers blood glucose levels by decreasing basal hepatic glucose output and increasing glucose uptake by skeletal muscle through activation of the AMP-activated protein kinase (AMPK), an effector of metformin(Kahn et al., 2005; Buse et al., 2016).

    Accumulating clinical evidence shows that metformin treatment decreases cognitive impairment and the risk of dementia in patients with type 2 diabetes compared with non-treated patients with type 2 diabetes, suggesting a beneficial effect of metformin against cognitive deficit (Hsu et al.,2011; Imfeld et al., 2012; Ng et al., 2014; Buse et al., 2016).

    However, the mechanism underlying the beneficial effect of metformin on cognitive function remains to be elucidated.Preclinical studies also reported that metformin treatment improves cognitive deficits in animal models of cognitive impairment (Mousavi et al., 2015; Zhou et al., 2016). Additionally, intraperitoneal (i.p.) administration of metformin for 1 or 14 days increases the phosphorylation level of AMPK in the hippocampus while enhancing hippocampal neurogenesis and spatial memory formation in adult wildtype mice (Wang et al., 2012). Consistent with previous studies describing that metformin stimulates aPKC ζ/λ activity in cell culture (Wang et al., 2012), chronic metformin administration in drinking water increases the phosphorylation levels of both AMPK and aPKC ζ/λ in the hippocampus of middle-aged high-fat-diet (60% energy from fat)-type 2 diabetic mice when it improves hippocampal neurogenesis and spatial memory in these mice without lowering blood glucose levels (Tanokashira et al., 2018). At this time,chronic oral metformin treatment also increases the phosphorylation of hSer312/mSer307 and Ser616/mSer612 on IRS1 in the hippocampus of middle-aged high-fat-diet (60%energy from fat)-type2 diabetic mice and further promotes the phosphorylation of IRS1 at hSer1101/mSer1097 (Tanokashira et al., 2018) (Figure 1). These results suggest that metformin-stimulated serine phosphorylation of IRS1 in the hippocampus is involved in the mechanism underlying the beneficial effect of metformin on cognitive function via interactions with AMPK/aPKC ζ signaling.

    Conclusions

    Figure 1 AD or cognitive impairment-related serine phosphorylation sites of IRS1 in the brain are activated by metformin.Human(h)Ser341/mouse(m)Ser336 (gray), type 2 diabetes-induced cognitive dysfunction-responsive serine site; hSer636/mSer632 and hSer639/mSer635(yellow), AD-responsive serine sites; hSer 312/mSer307 (green),AD or type 2 diabetes-induced cognitive dysfunction-responsive and metformin-responsive serine site; hSer616/mSer612 (pink), AD and metformin-responsive serine site; hSer1101/mSer1097 (orange),metformin-responsive serine site.PH: Pleckstrin homology domain;PTB: phosphotyrosine-binding domain; PI3K: region containing multiple phosphoinositide 3-kinase binding motifs; Grb2:Grb-2 binding site; SH2 domain containing protein tyrosine phosphatase (SHP-2): SHP-2 binding site; AD: Alzheimer's disease; IRS:insulin receptor substrate.

    Deficiency of IRS2 or IGF1R in the neurons and reduced IGF1R (partial deletion) in Tg2576 mice improve AD-like phenotypes; however reduced IRS2 also leads the mice to recover motor performance and extend their life span in the mouse model of Huntington's disease (Sadagurski et al.,2011). These findings indicate that IGF1R-IRS2 mediated IIS in the brain negatively regulates higher brain functions.Although IGF1R appears to be a primary upstream factor of IRS2 in the CNS, the function of IGF1R-IRS2-mediated IIS in cognitive abilities and the mechanism underlying the neuroprotective effect of reduced IGF1R-IRS2 signaling remain unknown. Given that IGF-1 is synthesized in the brain (Daftary and Gore, 2005; Wrigley et al., 2017) and can immediately promote the activation of intracellular signaling through tyrosine kinase activities of IGF1R and/or the IGF1R/IR hybrid in the CNS, it is unclear whether insulin in the CNS is dominantly involved in pathogenesis of neurodegenerative disease such as AD, because it is believed that a majority of insulin in the brain is secreted by pancreatic β-cells. Furthermore, ligands for receptor tyrosine kinase in the brain such as brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 (Kruttgen et al., 2003;Lawn et al., 2015) affect IRS2-mediated intracellular signaling (Miranda et al., 2001; Russo et al., 2007; Lao-Peregrin et al., 2017). Thus, studies over the past two decades suggest that insulin-independent pathways might dominantly activate intracellular signaling mediated by IRS2 in the CNS,whereas intranasal insulin rescues memory deficits (Mao et al., 2016; Guo et al., 2017).

    The multiple Ser/Thr sites on IRS1 positively and negatively modulate intracellular signaling in a context-dependent manner through feedback loops. Although Ser phosphorylation residues on IRS1 were suggested as markers of a detrimental consequence on cognitive function, some of these sites on IRS1 are phosphorylated and linked to beneficial effects of metformin treatment that improves cognitive dysfunction. There are discrepancies between the increased phosphorylation of these Ser sites on IRS1 and their outcomes; however the activation of these Ser sites on IRS1 in the CNS may play an important role in cognitive function through regulating IIS similarly as in the peripheral tissues including the liver and muscles (Morino et al., 2008; Copps et al., 2010; Hancer et al., 2014). Understanding the links between Ser phosphorylation of IRS1 in the brain and cognitive functions remains challenging because little has been reported on the function of IRS1 in the CNS. Although IRS1 and IRS2 share overlapping downstream signaling, the functions and the regulatory mechanisms through the interaction between IRS1- and IRS2-mediated pathways in the CNS are largely unknown.

    Further studies are needed to clarify the role of IRS1 and IRS2 and the integrated signaling networks via IRS1/2 in the brain, in particular for their roles in modulating memory functions. Elucidating these pathways might provide a new therapeutic opportunity to prevent cognitive impairment and dementia including AD.

    Author contributions:Creation of conceptual structure and definition of intellectual content: AT; table and figure design and preparation: DT and WF; table and figure modification: AT; manuscript editing and reviewing: DT. All authors approved the final submitted version.

    Conflicts of interest:None declared.

    Financial support:This work was supported by a MEXTGrant-in-Aid for Scientific Research on Innovative Areas (brain environment)(JP24111536; to AT), JSPS KAKENHI (JP24650201, JP26282026,JP17K19951, JP17H02188; to AT), and grants from the Mitsubishi Foundation (to AT) and NOVARTIS Foundation Japan for the Promotion of Science (to AT).

    Copyright license agreement:The Copyright License Agreement has been signed by all authors before publication.

    Plagiarism check: Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix,tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:George D. Vavougios, Athens Naval Hospital,Greece.

    Additional file:Open peer review report 1.

    国产亚洲av高清不卡| 国产精品免费视频内射| 精品亚洲成国产av| 国产一区二区激情短视频 | 亚洲欧美成人综合另类久久久| 精品一区在线观看国产| 欧美精品啪啪一区二区三区 | videos熟女内射| 九草在线视频观看| 日本色播在线视频| 在线观看国产h片| 手机成人av网站| 亚洲av成人不卡在线观看播放网 | 久久99精品国语久久久| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 中文字幕人妻丝袜制服| 18禁黄网站禁片午夜丰满| 18禁黄网站禁片午夜丰满| av福利片在线| 亚洲一区二区三区欧美精品| 女性生殖器流出的白浆| 国产精品九九99| 久久鲁丝午夜福利片| 亚洲成av片中文字幕在线观看| 久久中文字幕一级| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频| 99久久人妻综合| 欧美激情极品国产一区二区三区| 人人妻人人澡人人看| 日本av手机在线免费观看| 秋霞在线观看毛片| 免费在线观看完整版高清| 精品福利永久在线观看| 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久精品aⅴ一区二区三区四区| 久久中文字幕一级| 爱豆传媒免费全集在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产视频一区二区在线看| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 一级毛片 在线播放| 亚洲av片天天在线观看| av天堂在线播放| 女人久久www免费人成看片| 日本午夜av视频| 人人澡人人妻人| 日韩一区二区三区影片| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| 一级片'在线观看视频| av电影中文网址| 老汉色∧v一级毛片| 人妻一区二区av| 国产精品国产三级专区第一集| 亚洲av男天堂| 国产精品熟女久久久久浪| 日本91视频免费播放| 波野结衣二区三区在线| 精品欧美一区二区三区在线| 国产精品一区二区精品视频观看| 亚洲国产精品成人久久小说| 欧美精品高潮呻吟av久久| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx| 一本综合久久免费| 日本91视频免费播放| 欧美激情高清一区二区三区| 多毛熟女@视频| 老司机在亚洲福利影院| 欧美激情 高清一区二区三区| 麻豆av在线久日| 欧美另类一区| 老司机亚洲免费影院| 在线观看一区二区三区激情| 一级片免费观看大全| 国产激情久久老熟女| 欧美性长视频在线观看| 赤兔流量卡办理| 久久天躁狠狠躁夜夜2o2o | 80岁老熟妇乱子伦牲交| 亚洲精品久久成人aⅴ小说| 亚洲国产精品国产精品| 18禁观看日本| 免费少妇av软件| 亚洲国产精品999| 国产欧美日韩精品亚洲av| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| 亚洲欧美激情在线| 美女高潮到喷水免费观看| 女警被强在线播放| 高清欧美精品videossex| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av欧美aⅴ国产| 国产精品三级大全| 99热全是精品| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 老司机深夜福利视频在线观看 | 性色av乱码一区二区三区2| 久久久久国产一级毛片高清牌| 老司机亚洲免费影院| 久久精品aⅴ一区二区三区四区| 久久精品成人免费网站| 亚洲,一卡二卡三卡| 成年av动漫网址| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx| 欧美日韩av久久| 久久天堂一区二区三区四区| 午夜老司机福利片| 婷婷色综合www| 国产淫语在线视频| 成年人黄色毛片网站| 国产1区2区3区精品| 精品亚洲成a人片在线观看| 狠狠婷婷综合久久久久久88av| 成年女人毛片免费观看观看9 | 深夜精品福利| 老汉色∧v一级毛片| 国产在线观看jvid| 国产在线视频一区二区| 欧美xxⅹ黑人| 桃花免费在线播放| 日日夜夜操网爽| 午夜福利视频精品| 亚洲欧美激情在线| 每晚都被弄得嗷嗷叫到高潮| 天天躁夜夜躁狠狠躁躁| 欧美日韩黄片免| 亚洲熟女毛片儿| 老熟女久久久| av欧美777| 免费高清在线观看日韩| 午夜av观看不卡| 丰满迷人的少妇在线观看| 999精品在线视频| 亚洲成色77777| 久久久久视频综合| 在线观看www视频免费| 黄色视频不卡| 99热网站在线观看| 久久人人爽人人片av| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 精品福利观看| 美女高潮到喷水免费观看| 亚洲精品乱久久久久久| 久久久精品区二区三区| 性色av乱码一区二区三区2| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站 | 欧美大码av| 黄色 视频免费看| 人人妻人人澡人人爽人人夜夜| 精品欧美一区二区三区在线| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 美女扒开内裤让男人捅视频| 国产无遮挡羞羞视频在线观看| av有码第一页| 久久久久精品国产欧美久久久 | av天堂在线播放| 欧美在线一区亚洲| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| 一级,二级,三级黄色视频| 色视频在线一区二区三区| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 真人做人爱边吃奶动态| tube8黄色片| 亚洲一区二区三区欧美精品| 婷婷色综合www| 蜜桃在线观看..| av福利片在线| 少妇 在线观看| 看十八女毛片水多多多| 国产高清videossex| 久久久久久人人人人人| 香蕉丝袜av| 男女高潮啪啪啪动态图| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 国产精品一区二区免费欧美 | 国产免费现黄频在线看| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 亚洲伊人久久精品综合| 老司机影院成人| 宅男免费午夜| 亚洲精品乱久久久久久| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 香蕉国产在线看| av电影中文网址| 黄片小视频在线播放| 亚洲欧洲国产日韩| 国产日韩欧美视频二区| 久久人妻福利社区极品人妻图片 | 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区蜜桃| 18在线观看网站| 中文字幕高清在线视频| 欧美激情 高清一区二区三区| 免费在线观看黄色视频的| 欧美精品啪啪一区二区三区 | 热99久久久久精品小说推荐| 嫩草影视91久久| 欧美 日韩 精品 国产| 少妇被粗大的猛进出69影院| 51午夜福利影视在线观看| 最黄视频免费看| 久久热在线av| 九色亚洲精品在线播放| 国产又爽黄色视频| 叶爱在线成人免费视频播放| 久久精品久久久久久噜噜老黄| 我的亚洲天堂| 国产亚洲一区二区精品| 成人午夜精彩视频在线观看| 久久人妻熟女aⅴ| 可以免费在线观看a视频的电影网站| 一级毛片我不卡| 日本五十路高清| 欧美亚洲 丝袜 人妻 在线| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av涩爱| av网站在线播放免费| 丝袜在线中文字幕| 久久天躁狠狠躁夜夜2o2o | 女性生殖器流出的白浆| 色视频在线一区二区三区| 欧美97在线视频| 又大又黄又爽视频免费| 久久久精品区二区三区| 1024视频免费在线观看| 一级毛片我不卡| 一二三四社区在线视频社区8| 久久久久视频综合| 十八禁高潮呻吟视频| 国产色视频综合| 欧美 亚洲 国产 日韩一| 国产精品二区激情视频| 亚洲欧洲精品一区二区精品久久久| 久久精品国产a三级三级三级| 视频在线观看一区二区三区| 在现免费观看毛片| 久久国产精品大桥未久av| 久久综合国产亚洲精品| 午夜福利乱码中文字幕| xxx大片免费视频| 另类精品久久| 伊人亚洲综合成人网| 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 在线av久久热| 日韩制服丝袜自拍偷拍| 免费观看a级毛片全部| 9热在线视频观看99| 免费高清在线观看日韩| 日本av手机在线免费观看| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 亚洲情色 制服丝袜| 日韩视频在线欧美| 女人精品久久久久毛片| 精品人妻1区二区| 亚洲美女黄色视频免费看| 五月天丁香电影| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 另类亚洲欧美激情| 一本—道久久a久久精品蜜桃钙片| 美女视频免费永久观看网站| 国产成人影院久久av| 欧美性长视频在线观看| 中文字幕人妻丝袜制服| 一本综合久久免费| 国产有黄有色有爽视频| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩精品亚洲av| 国产视频首页在线观看| 人妻 亚洲 视频| 成年女人毛片免费观看观看9 | 久久性视频一级片| 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av | 久久免费观看电影| 亚洲一区中文字幕在线| 国产伦人伦偷精品视频| 99久久99久久久精品蜜桃| 精品少妇黑人巨大在线播放| 中国国产av一级| 在线观看免费视频网站a站| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 国产爽快片一区二区三区| 嫁个100分男人电影在线观看 | 欧美精品一区二区免费开放| 亚洲成人免费电影在线观看 | 三上悠亚av全集在线观看| 婷婷色麻豆天堂久久| 日本欧美国产在线视频| 欧美激情高清一区二区三区| 又黄又粗又硬又大视频| 欧美日韩综合久久久久久| 久久青草综合色| 免费看不卡的av| 亚洲综合色网址| 波多野结衣av一区二区av| 亚洲欧美成人综合另类久久久| 免费在线观看影片大全网站 | 国产精品久久久久久精品电影小说| 国产男女超爽视频在线观看| 大片免费播放器 马上看| 国产在线免费精品| 午夜福利视频精品| 性高湖久久久久久久久免费观看| 日日夜夜操网爽| www.999成人在线观看| 国产视频首页在线观看| 18禁国产床啪视频网站| 国产高清国产精品国产三级| 免费看不卡的av| 一级毛片电影观看| 午夜免费观看性视频| 精品久久蜜臀av无| tube8黄色片| 精品久久久久久电影网| av线在线观看网站| 国产一区二区在线观看av| 婷婷色麻豆天堂久久| av不卡在线播放| 国产免费现黄频在线看| 99久久综合免费| 黄色一级大片看看| 午夜日韩欧美国产| 丝袜美腿诱惑在线| 国产精品熟女久久久久浪| 黄频高清免费视频| 欧美性长视频在线观看| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 欧美精品人与动牲交sv欧美| 97人妻天天添夜夜摸| 狠狠婷婷综合久久久久久88av| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 久久青草综合色| 高清视频免费观看一区二区| 亚洲欧美日韩高清在线视频 | 国产精品香港三级国产av潘金莲 | 久久av网站| 国产亚洲午夜精品一区二区久久| 国产又色又爽无遮挡免| 国产精品一区二区在线不卡| 在线观看人妻少妇| 国产精品成人在线| 亚洲国产欧美网| 国产日韩欧美在线精品| 电影成人av| 久久人人爽av亚洲精品天堂| 丝瓜视频免费看黄片| 国产成人精品无人区| 欧美大码av| 乱人伦中国视频| 国产成人精品久久久久久| 黄色怎么调成土黄色| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 国产av国产精品国产| 国产淫语在线视频| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 自拍欧美九色日韩亚洲蝌蚪91| 国产一级毛片在线| 免费观看人在逋| 高清av免费在线| 欧美97在线视频| 国产男女内射视频| a级片在线免费高清观看视频| 亚洲国产精品一区三区| 亚洲,欧美,日韩| 91老司机精品| 视频区欧美日本亚洲| 99九九在线精品视频| 一级毛片黄色毛片免费观看视频| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| a 毛片基地| 美女大奶头黄色视频| 男人爽女人下面视频在线观看| 最近最新中文字幕大全免费视频 | 久久久亚洲精品成人影院| 侵犯人妻中文字幕一二三四区| 亚洲人成电影观看| 老汉色∧v一级毛片| 日本一区二区免费在线视频| av在线app专区| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| 亚洲国产中文字幕在线视频| 人妻 亚洲 视频| 国产精品一区二区在线不卡| www.av在线官网国产| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 国产精品av久久久久免费| 婷婷色综合www| 国产免费福利视频在线观看| 97人妻天天添夜夜摸| 最新的欧美精品一区二区| 欧美日韩黄片免| bbb黄色大片| 91成人精品电影| 一级片'在线观看视频| 赤兔流量卡办理| 国产视频首页在线观看| 黄色视频不卡| 欧美日韩视频高清一区二区三区二| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 成年美女黄网站色视频大全免费| 欧美日韩av久久| 国产成人影院久久av| 丝袜在线中文字幕| 女人精品久久久久毛片| 久久久精品免费免费高清| svipshipincom国产片| 国产成人一区二区在线| 亚洲国产欧美网| 日本a在线网址| 老司机在亚洲福利影院| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 观看av在线不卡| www.自偷自拍.com| 大片电影免费在线观看免费| 欧美黑人精品巨大| 人人澡人人妻人| 国产免费现黄频在线看| 在线 av 中文字幕| 夫妻性生交免费视频一级片| 久久热在线av| 青春草视频在线免费观看| 亚洲国产精品999| 操美女的视频在线观看| 国产亚洲一区二区精品| 色网站视频免费| 女人精品久久久久毛片| 亚洲精品国产区一区二| 纵有疾风起免费观看全集完整版| 真人做人爱边吃奶动态| 国产精品麻豆人妻色哟哟久久| 又大又黄又爽视频免费| 99热全是精品| 欧美精品一区二区大全| 国产一区二区 视频在线| 亚洲av在线观看美女高潮| 一区在线观看完整版| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 成人国产av品久久久| www.av在线官网国产| 欧美大码av| 大香蕉久久网| 老司机深夜福利视频在线观看 | 伦理电影免费视频| www.999成人在线观看| 99久久综合免费| 99国产精品一区二区蜜桃av | 国产国语露脸激情在线看| 亚洲成人免费av在线播放| 日韩中文字幕视频在线看片| 久久av网站| 午夜福利视频精品| av网站免费在线观看视频| 亚洲精品在线美女| 十分钟在线观看高清视频www| 亚洲国产看品久久| 国产日韩一区二区三区精品不卡| 亚洲成色77777| 五月天丁香电影| 日本av免费视频播放| 亚洲伊人色综图| 多毛熟女@视频| 91精品三级在线观看| av电影中文网址| 日韩一本色道免费dvd| 国产一级毛片在线| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 久久精品久久久久久久性| 久久久精品国产亚洲av高清涩受| 久久精品aⅴ一区二区三区四区| 午夜免费鲁丝| 你懂的网址亚洲精品在线观看| 一级a爱视频在线免费观看| 欧美人与性动交α欧美精品济南到| 涩涩av久久男人的天堂| 最黄视频免费看| 一个人免费看片子| 中国国产av一级| 大陆偷拍与自拍| 下体分泌物呈黄色| 亚洲熟女精品中文字幕| 日本欧美视频一区| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 久久久久国产精品人妻一区二区| 婷婷色综合大香蕉| 国产免费又黄又爽又色| 久久精品久久精品一区二区三区| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 久久这里只有精品19| 在线观看免费视频网站a站| 日本av手机在线免费观看| 精品免费久久久久久久清纯 | 麻豆国产av国片精品| 亚洲 国产 在线| 美女扒开内裤让男人捅视频| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 嫁个100分男人电影在线观看 | 日本猛色少妇xxxxx猛交久久| 黄色视频不卡| 亚洲一区中文字幕在线| 日本一区二区免费在线视频| 80岁老熟妇乱子伦牲交| 色播在线永久视频| 久久精品国产亚洲av高清一级| 在线观看www视频免费| 观看av在线不卡| tube8黄色片| 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 男女下面插进去视频免费观看| 欧美 亚洲 国产 日韩一| 丝袜喷水一区| 看免费成人av毛片| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一二三| 色视频在线一区二区三区| 国产一区二区三区综合在线观看| 日本av手机在线免费观看| 黄色视频不卡| 一级毛片我不卡| 中文字幕人妻丝袜制服| 亚洲欧美中文字幕日韩二区| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 亚洲av成人精品一二三区| 亚洲精品一区蜜桃| av又黄又爽大尺度在线免费看| 天天影视国产精品| 成人三级做爰电影| 久久天堂一区二区三区四区| 久久综合国产亚洲精品| 成人免费观看视频高清| 老司机深夜福利视频在线观看 | 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 黄频高清免费视频| 97人妻天天添夜夜摸| 亚洲欧美成人综合另类久久久| 免费看不卡的av| 又黄又粗又硬又大视频| 亚洲天堂av无毛| 日韩电影二区| 亚洲国产欧美网| 亚洲人成电影观看| 国产xxxxx性猛交| 脱女人内裤的视频| 亚洲黑人精品在线| 日本五十路高清| 50天的宝宝边吃奶边哭怎么回事| 交换朋友夫妻互换小说| 伊人久久大香线蕉亚洲五| 在线观看国产h片| 天堂中文最新版在线下载| 超碰97精品在线观看| 成人国产av品久久久| 晚上一个人看的免费电影| xxx大片免费视频| 日韩熟女老妇一区二区性免费视频| 欧美成人午夜精品| 一本色道久久久久久精品综合| 啦啦啦 在线观看视频| 亚洲精品成人av观看孕妇| 可以免费在线观看a视频的电影网站| 国产在线视频一区二区| 久热爱精品视频在线9| 爱豆传媒免费全集在线观看| 看免费成人av毛片| 欧美成人午夜精品|