• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor

    2019-07-02 03:07:56FengYuVincentTiingTiongLePangRusenZhouXiaoxiangWangEricWaclawikKostyaKenOstrikovHongxiaWang
    Chinese Chemical Letters 2019年5期

    Feng Yu,Vincent Tiing Tiong,Le Pang,Rusen Zhou,Xiaoxiang Wang,Eric R.Waclawik,Kostya (Ken) Ostrikov,Hongxia Wang*

    School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane,Queensland QLD 4001, Australia

    Keywords:

    Energy storage

    Supercapacitors

    Flower-like nanocomposite

    Cu5Sn2S7/ZnS

    Metal sulfide

    ABSTRACT

    Ternary nanocomposites of CuxZnySnzS(x+y+z) are considered as an emerging potential candidate as electrode materials for energy storage devices due to the considerable interlayer spaces and tunnels in its crystal structures with excellent conducting ability.Recently, this nanocomposite used as anode material for Li-ion battery has been reported, but there is limited research on its application in supercapacitors which is considered a complementary energy storage device to battery.In this work,flower-like Cu5Sn2S7/ZnS and pristine Cu5Sn2S7 nanocomposite were prepared via a facile hydrothermal method.The electrochemical tests showed that the Cu5Sn2S7/ZnS nanocomposite exhibited better performance than pristine Cu5Zn2S7, suggesting that the existence of ZnS could significantly enhance the electrochemical performance of Cu5Sn2S7, with the good capacitance of 200 F/g at the current density of 1 A/g.Furthermore 170 F/g was obtained at the large current density of 10 A/g.Supercapacitors demonstrated energy density of 11.08 Wh/kg with power density 461 W/kg or 9.67 Wh/kg at power density of 4615 W/kg.

    An increasing demand for energy storage devices drives the development of research on low-cost, environmentally friendly and high-performance electrochemical energy storage materials.Supercapacitors, featured by high power density, safety and long cycle lifetime,have been investigated extensively to meet the need in many practical applications including electronics, vehicles and grids [1,2].Depending on the charge storage mechanism, supercapacitors can be classified into two types, namely, the electrical double layer capacitor(EDLC)and the pseudo-capacitor.In contrast to EDLCs, pseudo-capacitor material including conducting polymers like polypyrrole (PPy) [3–5] and polyaniline (PANI) [6–9],various transition metal oxides such as MnO2[10–13], RuO2[14,15], as well as battery-type materials like NiO [16,17], Nb2O5[18], Co2O3[19,20] and CuO [21,22], ZnO [23,24], SnO [25,26],possess outstanding capacity of high energy storage.In general,poor electrical conductively property and low specific surface area are the shortcomings for most transitional metal based electrode materials for capacitive applications[27–29].More recently,metal sulfides have attracted much attention owing to their potential applications in catalysis[30],optics,solar energy[31],sensing,and batteries [32,33].They are also suitable candidates for supercapacitors (SCs) due to their higher electrochemical activity and conductivity than corresponding metal oxides[34–37].A variety of metal sulfides such as CuS [38,39], ZnS [40,41], SnS [42,43] and MoS [44] have been studied as potential electrochemical energy storage materials.In addition, mixed metal sulfides, especially ternary nickel cobalt sulfides,exhibiting great potential to improve the electrochemical performance of supercapacitor owing to their richer redox activity compared with corresponding single metal sulfides [27].Most notably, copper, zinc, tin sulfides have demonstrated much higher conductivity and electrochemical activity than the corresponding copper, zinc, tin oxides due to their smaller band gaps [34], respectively.Simultaneously, some studies reported that CuxSnyS(x+y)as the electrode materials exhibited the mediocre performance because of the poor electrical conductivity compared with other metal sulfides[45].However,by adding zinc into copper tin sulfide(CuxSnyS(x+y)/ZnS),the electrical conductivity was significantly enhanced with improved electrochemical performance.Recently, CuxZnySnzS(x+y+z)(CZTS), as a promising sulfide for next generation photovoltaic devices, hasbeen widely studied for its advantage of earth-abundant,nontoxic and low-cost sources [46].It is also suitable for large-scale production, which will alleviate energy storage.

    In this work, we synthesized flower-like Cu5Sn2S7/ZnS nanocomposite as electrode materials for supercapacitors.The electrochemical performance of the nanocomposite was compared with pristine Cu5Sn2S7.The result showed that the ZnS improved electrochemical performance of Cu5Sn2S7significantly.A high specific capacitance of Cu5Sn2S7/ZnS up to 200 F/g was obtained at current density of 1 A/g.It is worth mentioning that even at high current density of 10 A/g,the specific capacitance of Cu5Sn2S7/ZnS still remained at 170 F/g.The outstanding cycling stability,and rate capability and stable capacitance retention,making it a promising electrode material for high performance supercapacitors.

    All the chemicals used in the work were provided by Sigma Aldrich and used as received unless otherwise stated.Ethylene alcohol, copper(II) chloride dehydrate (CuCl22H2O), zinc(II)chloride (ZnCl2), tin(IV) chloride tetrahydrate (SnCl44H2O) and sodium chloride (NaCl) were all of analytical grade.Thiourea(CH4N2S) and Polyvinylpyrrolidone (PVP) were the products of Alfa.All water used was obtained from a Milli-Q purification water system with a resistivity of 18.2 M V cm.

    In a typical experimental procedure,2 mmol copper(II)chloride dihydrate, 1 mmol zinc(II) chloride, 1 mmol tin(IV) chloride tetrahydrate, 5 mmol thiourea and 0.64 g PVP were dissolved in 40 mL ethylene glycol under magnetic stirring.Then the mixture was loaded into a Teflon-lined stainless steel autoclave of 50 mL capacity.The sealed autoclave was maintained at 230 C for 24 h.After this, it was allowed to cool to room temperature.The precipitate was centrifuged and washed with deionized water and ethanol several times to remove by-products.The final product was vacuum-dried at 60 C before characterization.

    Cu5Sn2S7/ZnS nanocomposite was used as the precursor,which was treated with 0.2 mol/L NaCl aqueous solution with soaking time of 10 min under ultrasonication [47].The precipitate was centrifuged and washed with deionized water and ethanol several times to remove by-products.The final product was vacuum-dried at 60 C before characterization.

    The morphology of the samples was probed by field emission scanning electron microscopy (FESEM, JSM-7001F, JEOL)equipped with energy dispersive X-ray spectroscopy (EDS) using an accelerating voltage of 20 kV.The crystal structure of the samples was examined by X-ray diffraction system (XRD,PAnaytical MPD Cu power XRD) equipped with Cu Ka radiation.The diffraction data were recorded in the range of 2u angle from 10 to 80 .The surface elemental compositions of the materials were measured using X-ray photoelectron spectroscopy (XPS,Kratos AXIS Supra photoelectron spectrometer)with an Al X-ray as excitation source.

    The electrochemical measurements,such as the cyclic voltammetry (CV), galvanstatic charge-discharge (GCD), and electrochemical impedance spectroscopy(EIS)were carried out with the synthesized materials using an electrochemical workstation with a three electrode system in 6 mol/L KOH electrolyte at room temperature.A platinum electrode was used as the counter electrode, a saturated calomel electrode (SCE) as reference electrode, and Cu5Sn2S7/ZnS or Cu5Sn2S7as working electrode.The working electrode was fabricated by pressing the mixture of the Cu5Sn2S7/ZnS (Cu5Sn2S7) nanocomposite, acetylene black(conductive agent) and poly(terafluoroethylene) (PTFE) binder with a weight ratio of 8:1:1 in ethanol on to a nickel foam substrate.The mass loads of the active electrode material was 5 mg.The CV curves were collected in a potential window from 0 to 0.5 V at different scan rates ranging from 1 mV/s to 50 mV/s.The GCD tests were conducted at different current densities in a potential range from 0 V to 0.5 V.The EIS measurements were recorded at an open-circuit potential with frequency range from 105Hz to 10 2 Hz under a signal amplitude of 5 mV.The electrochemical test with the three-electrode system was performed without particular removal of oxygen in the solution.The specific capacitance was calculated from GCD curves using Eq.(1):

    where I(mA)is the applied working current,D t(s)represents the discharge time,D V(V)is the voltage range,and m(mg)is the total mass of active materials in both electrodes.

    The electrochemical measurements of the assembled asymmetric supercapacitor device, which used the Cu5Sn2S7/ZnS or Cu5Sn2S7as the positive electrode, porous carbon as the negative electrode in a two-electrode system with 6 mol/L KOH as electrolyte were also performed.The energy density and power density were calculations were based on positive and negative electrodes and did not include the mass of the electrolyte.

    To study the crystallographic structure of the flower-like Cu5Sn2S7/ZnS, we further measured the XRD of the materials.Fig.1a shows the resultant XRD diffraction patterns of Cu5Sn2S7/ZnS composite and Cu5Sn2S7material.The XRD diffraction peaks of the Cu5Sn2S7mainly located at 2u=28.6 ,47.5 ,56.5 corresponding to (111), (220) and (311) planes, which can be indexed to the corresponding PDF standard card of Cu5Sn2S7(JCPDS 40-0924).It indicated that the sample were constituted only Cu5Sn2S7phase[48].As can be seen,three more diffraction peaks of Cu5Sn2S7/ZnSappear than that of the pristine material.The diffraction peaks located at 33.3 ,56.5 and 66.7 corresponding to(0010),(110)and(118) planes of ZnS (JCPDS No.12-0688).

    Fig.1.(a) X-ray diffraction pattern and (b) Raman spectra of the as-obtained Cu5Sn2S7/ZnS and pristine Cu5Sn2S7.

    Fig.2.SEM images of the Cu5Sn2S7/ZnS nanocomposite with different magnifications.

    The Raman spectra of the flower-like Cu5Sn2S7/ZnS composite and pristine Cu5Sn2S7are shown in Fig.1b.The peaks of pristine Cu5Sn2S7are found at 332 cm 1 and 296 cm1, corresponding to the literature[48]which detailed the Raman peaks of Cu5Sn2S7.For Cu5Sn2S7/ZnS composite,two more Raman spectrum peaks appear than that of the pristine material.The Raman spectrum peaks (at 278 and 351 cm1) than that for the pristine materials(Cu5Sn2S7)were recognized, indicating the existence of ZnS [49].No other characteristic peaks corresponding to Cu2ZnSnS4(CZTS)(288,336 and 372 cm1)observed,which confirmed no existence of CZTS in the sample.

    The morphological features of the synthesized Cu5Sn2S7/ZnS were firstly observed by using SEM,as shown in Fig.2 both the lowmagnification and high-magnification SEM images show that the sample is composed of flower-like nanoparticles with good uniformity.The enlarged SEM image, shown in Fig.2d, reveals that the flower-like structure is constructed with dozens of 2D nanosheets with size approximately 100 nm.These nanosheets were connected to each other through the center to form 3D hierarchical structure.This unique structure provides an abundant porous surface sites for the contact between the electrode and the electrolyte, which is of great significance for facilitating electrochemical reactions.Compared with Cu5Sn2S7/ZnS,the morphology of pristine Cu5Sn2S7was investigated by SEM as well (Fig S1 in Supporting information).Clearly after removing ZnS, the flowerlike morphology was completely destroyed when treated by NaCl solution.

    Further investigation of elemental composition and valence state of the Cu5Sn2S7/ZnS were carried out by XPS.The full survey spectrum shown in Fig.S2(Supporting information)demonstrates that the Cu5Sn2S7/ZnS is composed of Cu, Zn, Sn, S, C and O.It is observed in Fig.3a that the Cu binding energy peaks located at 932.3 eV (2p3/2) and 952.5 eV (2p1/2).The typical Zn 2p peaks appears at 1022.1 eV (2p3/2) and 1045.1 eV (2p1/2), with a peak splitting of 23.0 eV indicating Zn(II)configuration(Fig.3b).The Sn 3d5/2and 3d3/2peaks are located at 486.9 and 495.4 eV,with a peak splitting of 8.5 eV, indicating Sn (IV) configuration (Fig.3c).The S 2p core-level spectrum in Fig.3d shows two peaks located at 162.3 eV (2p3/2) and 163.3 eV (2p1/2) with the peak separation of 1 eV, which are consistent with the 160–164 eV range of S in the sulfide phases.These results are in consistent with previous reports [49].

    The electrochemical performance of the Cu5Sn2S7/ZnS nanocomposite was measured by cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) testing.The CV of Cu5Sn2S7/ZnS electrode at a series of scan rate (1–100 mV/s) can be seen in Fig.4a.All the curves are featured with a pair of welldefined redox peaks,indicating the battery-type energy storage of the material features.Furthermore, the pair of remarkable reversible redox peaks at different scan rates, indicates that the electrochemical capacitance mainly came from Faradic redox reaction rather than the electric double layer capacitors.The anodic peak is consistent with the conversion of Cu+to Cu2+and Sn2+to Sn4+, and cathodic peak is its reversible process.The corresponding Faradic reaction is described by the following equations:

    When the potential scan rate increases, the peak current becomes larger,whereas the oxidation and reduction peaks of the CV curve does not change obviously.This shows excellent kinetics for electrochemical reaction of material.

    Galvanostatic charging-discharging plots of the Cu5Sn2S7/ZnS nanocomposite are shown in the Fig.4b.The present of a platform at 0.25 V indicates the unique battery-type energy storage characteristics,and it is consistent with the redox peaks observed in Fig.4a.The specific capacitance calculated by Eq.(1) at the different charging-discharging current density(1–10 A/g)is shown in Fig.4c.The GCD curves are approximately symmetric,suggesting the good electrochemical capacitive characteristic of the Cu5Sn2S7/ZnS.The Cu5Sn2S7/ZnS delivered capacitance of 200.2,189.1,188.3,184.6,180.5,178.0,175.8,175.3,172,170.1 F/g at the current densities of 1,2,3,4,5,6,7,8,9 and 10 A/g,respectively.The CVs and GCDs curves of Cu5Sn2S7are shown in Fig.S3(Supporting information).The specific capacitance of the pristine Cu5Sn2S7are 111.1,108,105,103.2,100.5, 99.0 97.5, 96.0, 94.5 and 93 F/g at the current density of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 A/g,respectively.At each current densities, the specific capacitance of Cu5Sn2S7/ZnS nanocomposite is higher than that of pristineCu5Sn2S7electrode.The results suggest that the ZnS could play a key role in enhancing the electrochemical performance of the material due to the synergistic effect between Cu5Sn2S7and ZnS.In general,the specific capacitance of each material decreases with an increasing current density.This phenomenon can be attributed to the presence of the inner active sites,which could not sustain the redox transitions completely under a higher current density.Impressively, about 84.9% of the capacitance was retained for Cu5Sn2S7/ZnS nanocomposite at current densities from 1 A/g to 10 A/g.This result suggests that the charge could be effectively transferred from one to the other species inside the nanocomposite Cu5Sn2S7/ZnS.Thus, the decoration of Cu5Sn2S7with ZnS could enhance the electrochemical performance of the pristine Cu5Sn2S7electrode materials for practical applications.

    Fig.3.XPS spectra of Cu5Sn2S7/ZnS composite: Cu 2p region (a); Zn 2p region (b); Sn 3d region (c) and S 2p region (d).

    Fig.4.(a)Cyclic voltammograms(CV)of Cu5Sn2S7/ZnS electrode at different scan rates;(b)Galvanostatic charging-discharging of Cu5Sn2S7/ZnS electrode at different current densities; (c) specific capacitance of Cu5Sn2S7/ZnS and Cu5Sn2S7 electrode at different current densities and (d) Nyquist plots of Cu5Sn2S7/ZnS and Cu5Sn2S7 electrode.

    The electrochemical properties of the material such as internal resistance, electrons transfer resistance and capacity of supercapacitors were analyzed by EIS.The Nyquist plots of the Cu5Sn2S7/ZnS and Cu5Sn2S7are shown in Fig.4d,the equivalent circuit of the Cu5Sn2S7/ZnS and Cu5Sn2S7electrode is inset in Fig.4d.The Xintercept of the Nyquist plots corresponds to the equivalent series resistance (Rs) and the high frequency region presenting a semicircle arc is a result of the charge transfer resistance (Rct).Obviously,although the Cu5Sn2S7/ZnS has the same Rs(0.5 V)with Cu5Sn2S7.The Rctfor the Cu5Sn2S7/ZnS(1.7 V)is lower than that of Cu5Sn2S7(2.2 V).The semicircle with a diameter corresponds to Rctat the high frequency region is caused by Faradic reactions at interfaces of electrode and electrolyte [50].In addition, from the vertical diffusion lines we can see that the Cu5Sn2S7/ZnS shows a steeper slope than the Cu5Sn2S7suggesting a better reaction rate.These results indicate more efficient interfacial charge transfer of the Cu5Sn2S7/ZnS than that of Cu5Sn2S7,consistent with the higher electrochemical performance of the former.

    To further investigate the electrochemical properties of the Cu5Sn2S7/ZnS and Cu5Sn2S7nanocomposite in practical applications, the asymmetric supercapacitors composed of PC/KOH/Cu5Sn2S7/ZnS and PC/KOH/Cu5Sn2S7was assembled using PC(porous carbon) as the negative electrode and Cu5Sn2S7/ZnS or Cu5Sn2S7as the positive electrode in a 2 mol/L KOH aqueous electrolyte solution.Before the fabrication of the asymmetric supercapacitors, optimization of the electrode mass loadings was carried out to achieve balanced energy storage capacity.As shown in Eq.(4),the charge stored by each electrode usually depends on the specific capacitance(Csp),the potential range(u)and the mass of active materials (m) [51]:

    In order to obtain Q+= Q, the mass balancing is expressed as Eq.(5):

    where Q is the capacity and subscripts represent positive and negative electrode.

    The performance of the asymmetric supercapacitor of PC/KOH/Cu5Sn2S7/ZnS is shown in Fig.5.Fig.5a shows the asymmetric supercapacitor has stable voltage windows up to 1.3 V.Similar to the CVs of the three electrode cell,the CV curve of the asymmetric supercapacitor of PC/KOH/Cu5Sn2S7/ZnS exhibits psedo-capacitive behavior with a pair of redox peaks at different scan rates,indicating the fast charge transport and stable electrochemical capacitive characteristics of the supercapacitor.Fig.5b shows thegalvanoststic charge-discharge measurements of the asymmetric supercapacitor.It is observed with an approximately symmetrical slope shape in GCD curve, suggesting the good reversibility and good rate capability of the supercapacitor.The Ragone plot in Fig.5c shows the energy density of PC/KOH/Cu5Sn2S7/ZnS supercapacitor reaches 11.2 Wh/kg at power density of 923.1 W/kg,and even at high power density of 4516.4 W/kg the energy density still remains at 9.68 Wh/kg.Fig.5d shows the long-term cycle stability of the supercapacitor of PC/KOH/Cu5Sn2S7/ZnS, which was tested by GCD measurement repeating 3000 cycles at current density of 10 A/g.It is noticed that the retention rate of specific capacitance showed outstanding stability, after 3000 cycles,the device shows the retention rate of 70.6% compare with the initial value.

    Fig.5.(a) Cyclic voltammograms (CV) of PC/KOH/Cu5Sn2S7/ZnS supercapacitor at different scan rates; (b) Galvanostatic charging-discharging of PC/KOH/Cu5Sn2S7/ZnS supercapacitor at different current densities;(c)Ragone plotof PC/KOH/Cu5Sn2S7/ZnS supercapacitor; (d)Cycling behavior of PC/KOH/Cu5Sn2S7/ZnS supercapacitor at current density 10 A/g.

    In summary, a flower-like Cu5Sn2S7/ZnS nanocomposite was synthesized by the one-step hydrothermal method.The electrochemical performance of the Cu5Sn2S7/ZnS was compared with the pristine Cu5Sn2S7.Due to the synergistic effect between Cu5Sn2S7and ZnS, the resultant Cu5Sn2S7/ZnS nanocomposite showed the enhanced electrochemical performance compared with pristine ZnS.Cu5Sn2S7/ZnS nanocomposite delivered the specific capacitance of 200 F/g at current density of 1 A/g and maintained 170 F/g at current density of 10 A/g in 6 mol/L KOH solution.An asymmetric supercapacitor was assemble based on PC/KOH/Cu5Sn2S7/ZnS and delivered a desirable energy density of 11.08 Wh/kg with power density of 461 W/kg.At the same time,70.6%of initial capacitance still remained after 3000 charge-discharge full process at current density of 10 A/g.This work offers a simple way to synthesise flower-like Cu5Sn2S7/ZnS nanocomposite, used in supercapacitor with a superior electrochemical performance.

    Acknowledgments

    F.Yu thanks the support via Postgraduate Research Award of Queensland University of Technology (QUTPRA).The date were obtained at the Central Analytical Research Facility (CARF)operated by the institute for Future Environments, QUT.Access to CARF is supported by generous funding from the Science and Engineering Faculty (QUT).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2019.01.004.

    五月玫瑰六月丁香| 午夜激情福利司机影院| 熟女电影av网| 一区二区三区四区激情视频 | 久久热精品热| 好男人在线观看高清免费视频| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 免费看光身美女| 18+在线观看网站| 亚洲男人的天堂狠狠| 男插女下体视频免费在线播放| 国产精品人妻久久久影院| 老熟妇仑乱视频hdxx| 天堂影院成人在线观看| 久久人人爽人人爽人人片va| 国产精品电影一区二区三区| 狂野欧美激情性xxxx在线观看| 91在线观看av| 免费看美女性在线毛片视频| 伊人久久精品亚洲午夜| 色播亚洲综合网| 一级黄色大片毛片| 成人二区视频| 亚洲人与动物交配视频| 免费看美女性在线毛片视频| 草草在线视频免费看| 国产午夜福利久久久久久| 亚洲精华国产精华液的使用体验 | 成年女人毛片免费观看观看9| 午夜a级毛片| av在线老鸭窝| 国产精品日韩av在线免费观看| 中国美白少妇内射xxxbb| 69av精品久久久久久| 婷婷精品国产亚洲av| 亚洲欧美日韩高清专用| 人人妻,人人澡人人爽秒播| 中出人妻视频一区二区| 草草在线视频免费看| 成人综合一区亚洲| 舔av片在线| 黄色配什么色好看| 久久久久九九精品影院| 日韩人妻高清精品专区| 亚洲精品456在线播放app | 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 婷婷丁香在线五月| 亚洲av.av天堂| 国产av麻豆久久久久久久| 日韩强制内射视频| 99久久九九国产精品国产免费| 久久国内精品自在自线图片| 日韩精品青青久久久久久| 美女高潮的动态| 搡老岳熟女国产| 午夜久久久久精精品| 国产一区二区亚洲精品在线观看| 内射极品少妇av片p| 国产成人a区在线观看| 国产精品国产三级国产av玫瑰| 国产伦精品一区二区三区四那| 69人妻影院| 亚洲第一区二区三区不卡| 麻豆精品久久久久久蜜桃| 成人国产麻豆网| 欧美最黄视频在线播放免费| 一级毛片久久久久久久久女| 国产高清不卡午夜福利| 乱系列少妇在线播放| 国产 一区精品| 又黄又爽又刺激的免费视频.| 九九热线精品视视频播放| 欧美人与善性xxx| 国产成人影院久久av| 欧美+亚洲+日韩+国产| 欧美成人免费av一区二区三区| 99热只有精品国产| 国产午夜精品论理片| 亚洲精品久久国产高清桃花| 国产三级中文精品| 在线播放国产精品三级| 日韩强制内射视频| 久久香蕉精品热| 成人鲁丝片一二三区免费| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av免费高清在线观看| 午夜福利18| 成人美女网站在线观看视频| 亚洲av一区综合| 国产一级毛片七仙女欲春2| 国产精品伦人一区二区| 亚洲内射少妇av| 婷婷精品国产亚洲av| 国产日本99.免费观看| 99热网站在线观看| 熟妇人妻久久中文字幕3abv| 久久国内精品自在自线图片| 国产一区二区在线观看日韩| 日日摸夜夜添夜夜添小说| 最近最新免费中文字幕在线| 99国产极品粉嫩在线观看| 久久久久久久亚洲中文字幕| 69人妻影院| 日日啪夜夜撸| 欧美一级a爱片免费观看看| 人妻制服诱惑在线中文字幕| 国产高清视频在线播放一区| avwww免费| 国产一区二区激情短视频| 一级黄色大片毛片| 国产v大片淫在线免费观看| 国产精品三级大全| 欧美日韩综合久久久久久 | 色尼玛亚洲综合影院| 国内毛片毛片毛片毛片毛片| 久久久久久九九精品二区国产| 直男gayav资源| 最近中文字幕高清免费大全6 | 少妇裸体淫交视频免费看高清| 亚洲一区二区三区色噜噜| 亚洲美女搞黄在线观看 | 69av精品久久久久久| 日本欧美国产在线视频| 女人十人毛片免费观看3o分钟| 亚洲狠狠婷婷综合久久图片| 色综合亚洲欧美另类图片| 婷婷色综合大香蕉| 国产白丝娇喘喷水9色精品| 中文字幕免费在线视频6| 少妇丰满av| 国产免费男女视频| 欧美色欧美亚洲另类二区| 麻豆国产97在线/欧美| 久久精品91蜜桃| 真实男女啪啪啪动态图| 嫁个100分男人电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人av一区二区三区在线看| 悠悠久久av| 身体一侧抽搐| 国产熟女欧美一区二区| .国产精品久久| av福利片在线观看| 国产精品一区二区三区四区免费观看 | 18禁黄网站禁片免费观看直播| 成人永久免费在线观看视频| 两人在一起打扑克的视频| 亚洲最大成人av| 婷婷精品国产亚洲av在线| 午夜视频国产福利| 亚洲人与动物交配视频| 欧美一区二区国产精品久久精品| 久久热精品热| 18+在线观看网站| 亚洲成a人片在线一区二区| 狂野欧美激情性xxxx在线观看| 日日啪夜夜撸| 成人永久免费在线观看视频| 麻豆av噜噜一区二区三区| 超碰av人人做人人爽久久| 免费看a级黄色片| 久久久久久久久久成人| 亚洲欧美精品综合久久99| 岛国在线免费视频观看| 在线观看一区二区三区| 黄色配什么色好看| 直男gayav资源| 桃红色精品国产亚洲av| 精品乱码久久久久久99久播| 精品一区二区三区视频在线观看免费| 亚洲在线观看片| 久久久国产成人免费| 成人特级av手机在线观看| 日韩精品青青久久久久久| 搡老熟女国产l中国老女人| 国产单亲对白刺激| 色播亚洲综合网| 免费电影在线观看免费观看| 成人特级黄色片久久久久久久| 真实男女啪啪啪动态图| 精品一区二区三区视频在线| 亚洲av日韩精品久久久久久密| 亚洲精品一区av在线观看| 不卡视频在线观看欧美| 极品教师在线视频| 久久午夜福利片| 免费不卡的大黄色大毛片视频在线观看 | 一个人看视频在线观看www免费| 91精品国产九色| 中国美女看黄片| 国产亚洲91精品色在线| 精品人妻偷拍中文字幕| 免费av观看视频| 男人狂女人下面高潮的视频| 欧美zozozo另类| 久久精品夜夜夜夜夜久久蜜豆| 日本成人三级电影网站| 亚洲av成人精品一区久久| 亚洲人与动物交配视频| 亚洲av第一区精品v没综合| 色综合亚洲欧美另类图片| 我的老师免费观看完整版| 中国美白少妇内射xxxbb| 欧美另类亚洲清纯唯美| 国产亚洲精品久久久com| 有码 亚洲区| 亚洲乱码一区二区免费版| 老熟妇乱子伦视频在线观看| 国产亚洲欧美98| 欧美成人性av电影在线观看| 成人国产麻豆网| 麻豆久久精品国产亚洲av| 91在线观看av| 精品久久久久久成人av| 久久午夜亚洲精品久久| 黄色视频,在线免费观看| 午夜a级毛片| 我的老师免费观看完整版| 欧美+日韩+精品| 尤物成人国产欧美一区二区三区| 国产精品一区www在线观看 | 亚洲在线观看片| 性欧美人与动物交配| 日韩高清综合在线| 极品教师在线免费播放| 国产免费av片在线观看野外av| ponron亚洲| 国语自产精品视频在线第100页| 午夜精品一区二区三区免费看| 免费在线观看成人毛片| 欧美成人a在线观看| 色综合站精品国产| 久久亚洲精品不卡| 午夜福利高清视频| 又黄又爽又免费观看的视频| 久久久久久久亚洲中文字幕| 美女高潮的动态| 亚洲四区av| 久久6这里有精品| 哪里可以看免费的av片| 精品人妻视频免费看| 我的老师免费观看完整版| 欧美日韩瑟瑟在线播放| av专区在线播放| 亚洲久久久久久中文字幕| 一进一出抽搐动态| 国产精品久久久久久av不卡| 精品久久国产蜜桃| 99久久精品热视频| 亚洲精品一区av在线观看| 动漫黄色视频在线观看| 免费看光身美女| 成人欧美大片| 尤物成人国产欧美一区二区三区| av黄色大香蕉| 亚洲av五月六月丁香网| 1000部很黄的大片| 亚洲精品成人久久久久久| 亚洲18禁久久av| 最近中文字幕高清免费大全6 | 51国产日韩欧美| 男插女下体视频免费在线播放| av视频在线观看入口| 综合色av麻豆| 九色成人免费人妻av| 久久中文看片网| 久久这里只有精品中国| 日本与韩国留学比较| 人妻夜夜爽99麻豆av| 欧美日韩综合久久久久久 | 国产一级毛片七仙女欲春2| 精品福利观看| www日本黄色视频网| 99在线人妻在线中文字幕| 欧美成人性av电影在线观看| 国产淫片久久久久久久久| 91精品国产九色| 日日摸夜夜添夜夜添小说| 亚洲av二区三区四区| 国产免费一级a男人的天堂| 日本-黄色视频高清免费观看| 变态另类成人亚洲欧美熟女| 成人国产综合亚洲| 日韩国内少妇激情av| 欧美高清成人免费视频www| 黄色欧美视频在线观看| 国产色爽女视频免费观看| 欧美国产日韩亚洲一区| 亚洲欧美精品综合久久99| 成人鲁丝片一二三区免费| 少妇人妻精品综合一区二区 | 国产麻豆成人av免费视频| 真人一进一出gif抽搐免费| 国产成人影院久久av| 欧美成人a在线观看| 狠狠狠狠99中文字幕| 制服丝袜大香蕉在线| 99九九线精品视频在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 嫁个100分男人电影在线观看| 亚洲精华国产精华精| 亚洲黑人精品在线| 女人十人毛片免费观看3o分钟| 一个人免费在线观看电影| 18禁在线播放成人免费| 综合色av麻豆| 露出奶头的视频| 91久久精品国产一区二区三区| 亚洲国产欧美人成| 九色成人免费人妻av| 亚洲熟妇熟女久久| 少妇的逼好多水| 麻豆国产97在线/欧美| 国产一区二区激情短视频| 成年女人永久免费观看视频| 色哟哟·www| 亚洲av日韩精品久久久久久密| 国产一区二区亚洲精品在线观看| 国产黄a三级三级三级人| 国产国拍精品亚洲av在线观看| 亚州av有码| 波多野结衣高清作品| 国产成人福利小说| 久久久久久久午夜电影| 日韩强制内射视频| 一级毛片久久久久久久久女| 我要搜黄色片| 69人妻影院| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久亚洲av鲁大| 男人舔奶头视频| 日本与韩国留学比较| 美女大奶头视频| 国产一区二区在线观看日韩| 国产高清激情床上av| 亚洲av.av天堂| 欧美精品国产亚洲| 久久精品综合一区二区三区| 舔av片在线| 岛国在线免费视频观看| 中亚洲国语对白在线视频| 一本久久中文字幕| 午夜精品久久久久久毛片777| 欧美xxxx性猛交bbbb| 啦啦啦啦在线视频资源| 欧美极品一区二区三区四区| 国产av一区在线观看免费| 国产在线精品亚洲第一网站| 国产精品电影一区二区三区| 色综合婷婷激情| 日本熟妇午夜| 变态另类成人亚洲欧美熟女| 动漫黄色视频在线观看| 国产乱人视频| 美女免费视频网站| 热99在线观看视频| 亚洲18禁久久av| 噜噜噜噜噜久久久久久91| а√天堂www在线а√下载| 一区二区三区免费毛片| 亚洲四区av| 在线看三级毛片| 亚洲美女搞黄在线观看 | 久久久久性生活片| 亚洲avbb在线观看| 久久久久久久亚洲中文字幕| 少妇的逼水好多| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久久久毛片| 国内少妇人妻偷人精品xxx网站| 午夜福利18| 91麻豆精品激情在线观看国产| 男女边吃奶边做爰视频| 搡老妇女老女人老熟妇| 日本一二三区视频观看| 国内精品久久久久久久电影| 色av中文字幕| 精品国内亚洲2022精品成人| 国产午夜精品论理片| 麻豆成人av在线观看| 国产乱人视频| 午夜a级毛片| 国产黄a三级三级三级人| 最近中文字幕高清免费大全6 | 在线看三级毛片| 级片在线观看| av在线亚洲专区| 又紧又爽又黄一区二区| 又粗又爽又猛毛片免费看| 日本 av在线| 久久精品综合一区二区三区| 啪啪无遮挡十八禁网站| 能在线免费观看的黄片| 国产精品久久电影中文字幕| 国产精品野战在线观看| 国产白丝娇喘喷水9色精品| 国产爱豆传媒在线观看| 日韩精品有码人妻一区| 国产黄a三级三级三级人| 日韩av在线大香蕉| 蜜桃亚洲精品一区二区三区| 成人美女网站在线观看视频| 特级一级黄色大片| 身体一侧抽搐| 国产主播在线观看一区二区| a级毛片免费高清观看在线播放| 嫩草影院入口| 麻豆精品久久久久久蜜桃| 国产又黄又爽又无遮挡在线| 成人永久免费在线观看视频| 动漫黄色视频在线观看| 91av网一区二区| 亚洲国产欧美人成| 久久久久国内视频| 免费看av在线观看网站| 免费人成在线观看视频色| 91av网一区二区| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 国产免费一级a男人的天堂| 亚洲最大成人av| 在线播放国产精品三级| 不卡视频在线观看欧美| 国产精品久久久久久亚洲av鲁大| 美女高潮喷水抽搐中文字幕| 毛片一级片免费看久久久久 | 久久人妻av系列| 黄色一级大片看看| 午夜福利18| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 亚洲人成网站在线播| 国产伦在线观看视频一区| 22中文网久久字幕| 国产精品免费一区二区三区在线| 日日干狠狠操夜夜爽| 国产日本99.免费观看| h日本视频在线播放| 有码 亚洲区| 国产v大片淫在线免费观看| 在线观看免费视频日本深夜| 精品久久久久久久久av| 国产单亲对白刺激| 精品不卡国产一区二区三区| 色哟哟·www| 免费看日本二区| 日本黄色视频三级网站网址| 美女黄网站色视频| 最近最新免费中文字幕在线| 女的被弄到高潮叫床怎么办 | 亚洲av免费在线观看| 国产成人影院久久av| 日本在线视频免费播放| 国产白丝娇喘喷水9色精品| 精华霜和精华液先用哪个| 观看美女的网站| 一级av片app| 两性午夜刺激爽爽歪歪视频在线观看| 国产男靠女视频免费网站| 成人特级av手机在线观看| 能在线免费观看的黄片| 99热精品在线国产| 免费在线观看影片大全网站| 久久中文看片网| 美女cb高潮喷水在线观看| 欧洲精品卡2卡3卡4卡5卡区| 人妻夜夜爽99麻豆av| 亚洲人成伊人成综合网2020| 久久久国产成人精品二区| 在线播放无遮挡| 91午夜精品亚洲一区二区三区 | 亚洲av免费高清在线观看| 亚洲在线自拍视频| 午夜福利在线观看免费完整高清在 | 午夜福利欧美成人| 成人午夜高清在线视频| 精品日产1卡2卡| 91狼人影院| 亚洲精品日韩av片在线观看| 校园人妻丝袜中文字幕| 中出人妻视频一区二区| 国产精品国产高清国产av| 久久精品久久久久久噜噜老黄 | 日韩精品有码人妻一区| 日本 欧美在线| 观看免费一级毛片| 日本黄大片高清| 亚洲国产欧美人成| 在线看三级毛片| 亚洲性久久影院| 美女高潮的动态| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品成人久久久久久| 亚洲黑人精品在线| 99久久成人亚洲精品观看| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| 欧美色视频一区免费| 波多野结衣巨乳人妻| 午夜影院日韩av| 欧美激情在线99| 国产综合懂色| 亚洲中文字幕一区二区三区有码在线看| 哪里可以看免费的av片| 在线免费观看不下载黄p国产 | 久久久久久伊人网av| 国内精品宾馆在线| 麻豆一二三区av精品| 村上凉子中文字幕在线| 少妇猛男粗大的猛烈进出视频 | 日韩av在线大香蕉| 观看免费一级毛片| 男女啪啪激烈高潮av片| 99九九线精品视频在线观看视频| 欧美成人免费av一区二区三区| 免费av不卡在线播放| 波多野结衣高清作品| 国内精品久久久久久久电影| 亚洲最大成人中文| 国产91精品成人一区二区三区| 国产淫片久久久久久久久| 国产成人一区二区在线| 国产蜜桃级精品一区二区三区| 精品欧美国产一区二区三| 中文字幕高清在线视频| 成人三级黄色视频| 一本久久中文字幕| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 国内精品宾馆在线| 国产伦一二天堂av在线观看| 国产免费av片在线观看野外av| 亚洲欧美日韩高清专用| 亚洲性久久影院| 一进一出好大好爽视频| 人妻少妇偷人精品九色| 少妇熟女aⅴ在线视频| 美女高潮喷水抽搐中文字幕| 欧美色欧美亚洲另类二区| .国产精品久久| 色综合站精品国产| 精品久久久久久成人av| 国产高清视频在线播放一区| 精品免费久久久久久久清纯| 国产高清三级在线| 久久人人精品亚洲av| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 少妇被粗大猛烈的视频| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 亚洲熟妇中文字幕五十中出| 啦啦啦啦在线视频资源| 999久久久精品免费观看国产| 日韩欧美精品v在线| 男女视频在线观看网站免费| 人妻丰满熟妇av一区二区三区| 日本色播在线视频| av女优亚洲男人天堂| 婷婷亚洲欧美| 丰满乱子伦码专区| 精品人妻一区二区三区麻豆 | 婷婷丁香在线五月| 日韩欧美 国产精品| 女人十人毛片免费观看3o分钟| 成人欧美大片| 国产精品久久久久久精品电影| 久久精品国产亚洲网站| 成年女人看的毛片在线观看| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| avwww免费| 久久99热6这里只有精品| 999久久久精品免费观看国产| 日日干狠狠操夜夜爽| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 极品教师在线视频| 久久精品人妻少妇| 美女cb高潮喷水在线观看| 黄色一级大片看看| 嫩草影院精品99| 国产成人a区在线观看| 成人国产麻豆网| 女人被狂操c到高潮| 久久热精品热| 毛片女人毛片| 少妇高潮的动态图| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看| 两个人视频免费观看高清| 亚洲av五月六月丁香网| www.www免费av| 亚洲一区二区三区色噜噜| 一本一本综合久久| 老熟妇仑乱视频hdxx| bbb黄色大片| 男人舔奶头视频| 日本撒尿小便嘘嘘汇集6| 自拍偷自拍亚洲精品老妇| 免费看av在线观看网站| 久久精品国产自在天天线| 欧洲精品卡2卡3卡4卡5卡区| 成人三级黄色视频| 久久99热6这里只有精品| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 亚洲av二区三区四区| 丝袜美腿在线中文| 中国美白少妇内射xxxbb| 欧美日韩中文字幕国产精品一区二区三区| 男女那种视频在线观看| 久久婷婷人人爽人人干人人爱|