• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A composite disturbance observer and H∞control scheme for f lexible spacecraft with measurement delay and input delay

    2019-07-01 07:43:08JianzhongQIAOXiaofengLIJianweiXU
    CHINESE JOURNAL OF AERONAUTICS 2019年6期

    Jianzhong QIAO , Xiaofeng LI , Jianwei XU

    a School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China

    b Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100083, China

    c Shenzhen Han's Robot Co., Ltd., Shenzhen 518102, China

    KEYWORDS Disturbance observer (DO);Flexible spacecraft;H∞control;Input delay;Measurement delay

    Abstract In this paper, the attitude control algorithm of f lexible spacecraft with unknown measurement delay and input delay based on disturbance observer is designed. The inf luence of measurement delay and input delay on the attitude control system and disturbance observer is analyzed. The disturbance estimation error equation is transformed into a differential system with a pure delay.Then,the observer gain is chosen based on the 3/2 stability theorem to ensure the stability and disturbance attenuation performance of the pure delay system.Next,the controller gain is designed based on the Linear Matrix Inequality (LMI) approach to guarantee the stability of the composite system and achieve H∞performance with two additive delays. The simulation results show that the proposed method can improve the anti-disturbance ability of the attitude control system.

    1. Introduction

    With the rapid development of space technology, the requirement of precise attitude control on spacecraft is higher and higher. However, large-scale and low-damping f lexible appendages, such as solar arrays and antenna ref lectors, bring great challenges to the attitude control system. Meanwhile, the spacecraft is affected by multiple sources of disturbances coming from internal system and external environment. Sliding-Mode Control (SMC) has favorable ability of disturbance attenuation, which makes it widely studied in the f ield of spacecraft attitude control.1-3But the chattering phenomenon limits the application of SMC to the engineering.Robust H∞control can attenuate the effect of disturbance under a prescribed level. On-orbit attitude control experiments using Engineering Test Satellite VI (ETS-VI) and VIII(ETS-VIII) launched by Japan Aerospace Exploration Agency were carried out, in which several types of H∞dynamic output feedback controllers were designed and their effectiveness is demonstrated.4,5Input shaping technique and its extensions have been widely applied to the vibration reduction of f lexible spacecraft.6,7Besides, robust optimal control methods are proposed to take uncertainties and disturbances into account.8,9

    However,the above mentioned control methods either rely on the model precision of the dynamical system or regard disturbances as a norm bounded one leading to the insuff icient exploitation of available disturbance information. Especially when various disturbances do not have equivalent effect,different disturbances should be classif ied to achieve better anti-disturbance performance. The effect of the main disturbance should be rejected by disturbance rejection methodology, while the effect of other disturbances should be attenuated by disturbance attenuation methodology such as H∞control.10Disturbance Observer Based Control(DOBC) is an effective and potential disturbance rejection methodology which has attracted considerable attention and its extensions have been successfully applied to robots, hard disks and missiles.11-20

    Except for the disturbances, time delay is also a crucial issue involving real-time high-precision control problem of spacecraft.21-30There are two main sources of delays in the attitude control system of f lexible spacecraft:(A)the measurement delay,known as sensor-to-controller delay;(B)the input delay, known as controller-to-actuator delay. In Ref.26, state delay is considered and supposed to be constant and known.A known constant delay in state together with nonlinear perturbation and external disturbance is studied in Ref.27Chen M and Chen WH designed a delay-independent algorithm for the system with a time-varying state delay in Ref.28In Ref.29,a composite DOBC and H∞control scheme is applied to solving the problem of spacecraft attitude control with time-varying input delay.

    Nevertheless, to the best of the authors' knowledge, few results about the inf luence of measurement delay and input delay considering the disturbances are available in the literature. Inspired by our previous work,15the purpose of this paper is to investigate the problem of the unknown constant measurement and input delay in f lexible spacecraft under the effect of the disturbances.

    The main contributions of this paper are summarized as follows:(A) the f lexible spacecraft attitude control model subject to disturbances and measurement and input delays is established. (B) As the disturbance estimation error equation is a differential system with a pure delay, the observer gain is designed based on the existing 3/2 stability theorem to make sure the pure delay system's stability and disturbance attenuation performance. (C) The composite controller is designed to guarantee the overall composite system's stability and achieve the prescribed H∞performance with two additive delays.

    2. Problem formulation

    Based on the model in Ref.15,we consider the following singleaxis f lexible spacecraft attitude control system with measurement delay and input delay:

    where θ is the attitude angle;J is the moment of inertia of f lexible spacecraft; F is the rigid-elastic coupling vector; wd1is the merged disturbance torque including the space environmental torques and unmodelled uncertainties; η is the f lexible modal coordinate; Cdis the modal damping matrix diag(i=1,2,···,N) where ξiis the modal damping ratio; Λ is the matrix of stiffness diag(i=1,2,···,N) where ωiis the modal frequency; u is the control input of spacecraft.

    Remark 1. It should be noted that, in this paper, the rotation of f lexible spacecraft attitude control system is considered.The moment of inertia of main rotating axis is bigger than that of the other two axes. On the other hand, the vibration effect of f lexible appendage is most signif icant to the main rotating axis among the three axes because f lexible appendage is located at both sides around the main rotating axis. As compared to the vibration effect caused by the f lexible appendage when spacecraft is rotating around the main axis,the effect of coupled issue can be neglected. Therefore, the vibration problem of main rotation axis is mainly handled by the proposed method. The other two axes are dealt by traditional control methods, which is beyond the scope of this paper.

    Suppose r is an unknown constant measurement delay,and thus the measurement output is [θ(t-r) ˙θ(t-r)]T. h is an unknown constant control input delay and the control input torque is supposed to be u(t-h). r and h are assumed to satisfy 0 ≤r ≤τr<∞and 0 ≤h ≤τh<∞, respectively.

    From Eq. (1), we can obtain

    Then we have the state-space form as follows:

    where y(t) is the measurement output,

    Remark 2. The combination of unmeasurable modal variables, wd0(t)=F(Cd+Λη(t)), is considered as a coupling inf luence of the vibration from the f lexible appendages.We can use a DO to estimate and compensate wd0(t) and design a conventional state feedback controller to guarantee the system's stability.

    3. Composite controller

    The structure of composite controller is shown in Fig. 1. As there exists input delay h, the composite controller is designed as u(t)=-+Ky(t), while the delayed controller can be obtained as u(t-h)=-(t-h)+Ky(t-h), whereis the estimation of wd0, and K=[KPKD] is the conventional PD controller gain, where KPis proportional controller gain and KDis differential controller gain.

    The DO is formulated as

    where p(t)is the auxiliary variable as the state of the observer,and L is the gain of the observer. As the presence of input delay h, we can only use ^w0at the time of t-h to estimate wd0at t. So the estimation error of DO is def ined as e(t)=wd0(t)- ^w0(t-h). Then we have

    From Eq. (2) and Eq. (4), we have

    where d=r+h, and d satisf ies 0 ≤d ≤τ <∞, τ=τr+τh.

    The reference control output is def ined as

    Remark 3. If the composite controller is designed as u(t)=-(t)+Kx(t-2r-h), the term LBKx(t-r-h)-LBKx(t-2r-2h) will be counteracted, which makes the design of the controller much simpler. But the premise is that delay h and r must be known.

    Remark 4. As it takes some time to measure the current state x,the control signal will contain measurement delay r.But the input delay is different. The DO receives the control signal as soon as it is calculated,while it takes some time before the control torque receives. Consequently, the control input signal delivered to the actuator includes input delay h while that delivered to the DO does not.

    Fig. 1 Block diagram of composite attitude controller.

    Remark 5. From Fig.1,it can be seen that,different from traditional control scheme which usually adopts a single control technique,the composite controller implies the idea of Composite Hierarchical Anti-Disturbance Control (CHADC) strategy.13The composite controller consists of two parts: in the inner loop,DO is designed to estimate the effect of disturbance which is compensated in the feed-forward control channel;in the outer loop,the H∞attitude controller is designed to stabilize the overall system and attenuate the estimation error of disturbance.Therefore,the composite controller can effectively control the spacecraft attitude and attenuate disturbances.

    4. Design of observer gain and controller gain

    4.1. Design of observer gain

    Eq.(5b)is a pure delay equation of e(t).To make the design of controller gain K simpler,f irstly we design the observer gain to guarantee Eq. (5b)'s stability.

    By writing wd(t)=LBKx(t-d)-LBKx(t-2d)+ ˙wd0(t)-LB wd1(t-d), we count wd(t) as an external disturbance. First of all, we consider Eq. (5b)'s stability in the absence of wd(t).

    Consider the following one-dimensional system:

    where a(t)≥0 and g(t)≤t are both continuous functions in t ∈[0,∞).

    Lemma 1.31,32For system Eq. (6), assume thatand that supt≥0and then the zero solution of Eq.(6)is uniformly asymptotically stable.The symbol ‘‘sup” denotes supremum.

    Lemma 1 is the 3/2 stability theorem. Based on Lemma 1,Theorem 1 can be obtained.

    Theorem 1. For delay system ˙e(t)=-LB e(t-d),its suff icient condition for the zero solution to be uniformly asymptotically stable iswhere τ is upper bound of d.

    When wd(t)≠0, we have the following Theorem 2.Theorem 2. Assume that limt→∞wd(t)=wdsand that observer gain L satisf iesand then disturbance estimation error e(t) converges at stable value es=(LB)-1wds.

    Proof. As es=(LB)-1wds, we have

    Since limt→∞wd(t)=wds, and observer gain L satisf iesbased on Theorem 1, Eq. (7) is uniformly asymptotically stable, that is, limt→∞e(t)=es. The proof is completed.

    Based on Theorem 2,as LB is a one-dimensional scalar,the bigger LB is, the smaller esis, i.e. the better disturbance attenuation ability is.

    Remark 6. From Eq.(7),we can see that the stable value of estimation error esis related to wds, that is, esincreases with wds.Therefore,this DO works on condition that wd0is slowly timevarying and that wd1and x(t-d)-x(t-2d)are small enough.

    Remark 7. The coeff icient matrix LBK in Eq. (5b) contains unknown L and K, so it is hard to design L and K simultaneously with one linear matrix equation like Ref.15. Consequently, we choose L f irst, and then design K, which simplif ies the problem. This design method is also suitable for Ref.15without time delay.

    4.2. Design of controller gain

    The next step is to design the controller gain K.Following the work of Refs.33,34, Theorem 3 is obtained.

    Theorem 3. To composite system Eq.(5),for given parameters γ1>0,γ2>0,γ3>0, if there exist matrices P1>0,P2>0,Q1≥Q2>0,Q3>0,M1≥M2>0,M3>0,Ni(i=1,2,...,6), K satisfying

    where

    and L is chosen based on Theorem 2, then the composite system Eq. (5) is robustly asymptotically stable and satisf ies

    Proof. See Appendix A.

    Theorem 4. To composite system Eq.(5),for given parameters γ1>0,γ2>0,γ3>0, if there exist matricesR1satisfying

    where

    then the composite system Eq. (5) with controller gain

    Proof. Pre-multiplying and post-multiplying diagsimultaneously to the left and right side of inequation (8), and then def ining

    where

    Noting that M1>0, we have≥0, which are equivalent to -ˉP1ˉM-11ˉP1≤ ˉM1-2ˉP1.Similarly, we haveˉM3-2ˉP2, respectively. Then inequation (9) is obtained. The proof is completed.

    As can be seen from the stability analysis and Eq. (5), by comparing to Refs.33-37, the proposed composite controller reduces the conservativeness.

    5. Simulations

    In this section, effectiveness of the proposed composite controller will be demonstrated by the numerical simulation.Since vibration energy is concentrated in low-frequency modes in a f lexible structure,in the simulation,the f irst two bending modes are taken into account.We select the upper bound of time delay τ=30 ms.Based on the analysis of different delays in Ref.38,we set max r=2τ/3 and max h=τ/3. Parameters of the f lexible spacecraft model and exogenous disturbances are chosen to be the same as Ref.39:the moment of inertia of the spacecraft J=35.72 kg·m2; the f irst two modal frequency and damping ratio are ω1=3.17 rad/s, ω2=7.38 rad/s, ξ1=0.0001,ξ2=0.00015, respectively; the rigid-elastic coupling vector F=[1.27814 0.91756]; initial attitude angle θ(0)=0.08 rad;initial attitude angular velocity ˙θ(0)=0.001 rad/s;the f lexible spacecraft is designed to move in a circular orbit with the altitude of 500 km and the orbit rate n=0.0011 rad/s where the disturbance torques acted on the satellite are supposed as

    The observer gain is set as L=[0 900].

    With the given parameters, we have B=[0 0.0301]T.Based on Theorem 2,and hence the delay equation is uniformly asymptotically stable.

    In the design of the PD controller, we set γ1=2,γ2=γ3=8,C11=[2 0],and others are 0.Based on Theorem 4,with the Linear Matrix Inequality(LMI)toolbox in MATLAB it can be solved that the controller gain is K= [-3.6673 -12.3985].

    Fig. 2 shows the actual value, estimated value and estimation error of the disturbance wd0caused by the f lexible appendages. Fig. 3 is obtained by partially amplifying Fig. 2. From both f igures, we can see that the main disturbance can be estimated and rejected accurately by the proposed DO. Through comparisons between the composite H∞+DOBC scheme and the only H∞scheme in Figs. 4-6, the advantage of introducing DOBC is obvious. By using the proposed method, the system states converge to a smaller region as compared to the traditional method,which can be seen from Fig.5.Besides,the vibration of states under traditional method is severer than that under proposed method. Therefore, the proposed composite method shows better overall performance of the attitude and attitude angular velocity, which conf irms that the disturbance inf luence is attenuated by the developed DOBC.

    Fig. 2 Time response of vibration and vibration observed.

    Fig. 3 Partial amplif ication of time response of vibration and vibration observed.

    Fig. 4 Attitude angle of f lexible spacecraft.

    Fig. 5 Partial amplif ication of attitude angle.

    Fig. 6 Time response of attitude angular velocity.

    6. Conclusions

    On the basis of Ref.15,this paper concerns the impact of measurement and control input delays on the composite H∞and DOBC attitude control system of the f lexible spacecraft.Firstly, as the disturbance estimation error equation is a pure-delay differential system, based on 3/2 stability theorem in Refs.31,32, the observer gain L is chosen to make sure the pure delay system's stability and disturbance attenuation performance. Secondly, based on the algorithm proposed by Refs.33,34,the controller gain K is designed with LMI toolbox to guarantee the composite system's stability and H∞performance with two additive delays. Finally, simulation results illustrate that with the proposed scheme the main disturbance is estimated accurately and the stability of the system is improved. Certainly, there are some limitations of the proposed scheme, for example, state delay is not taken into account during the process of modeling, which may cause great impacts on the system; computational delays in controller and DO are assumed to be the same.These will be studied in the future research. It should be noted that, in practice,uncertainties are contained because of the inf inite order vibration. The uncertainties will degrade the performance of attitude control system. Further study will be given in the next research work.

    Notation:throughout this paper,for a vector s(t),its Euclidean norm is def ined byA real symmetric matrix P >0(≥0)denotes P being a positive def inite(positive semi-def inite)matrix.The identity and zero matrix are denoted by I and 0, respectively. Matrices, if not explicitly stated, are supposed to have compatible dimensions. The symmetric terms in a symmetric matrix are denoted by symbol *. For a square matrix M, we denote sym(M):=M+MT.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos. 61627810, 61320106010,61633003, 61661136007 and 61603021), the Program for Changjiang Scholars and Innovative Research Team, China(No.IRT_16R03),and Innovative Research Team of National Natural Science Foundation of China (No. 61421063).

    Appendix A: Proof of Theorem 3

    Consider the following Lyapunov function:

    Since P1>0,P2>0,Q1≥Q2>0,Q3>0,M1≥M2>0,M3>0, by differentiating V(t) with respect to time, it can be shown that

    By Newton-Leibniz formula, we have

    First, we prove the system's stability in the absence of ˙wd0(t), wd1(t) and wd1(t-d). Then we obtain

    where

    We can see that if Φ <0, Φ1≤0, Φ2≤0, Φ3≤0, then we have ˙V(t)<0, which means that system Eq. (5) is asymptotically stable.

    If there exist matrices P1>0, P2>0, Q1≥Q2>0, Q3>0, M1≥M2>0, M3>0, Ni(i=1,2,...,6)satisfying inequation (8) which by Schur complement implies

    then there must exist matrices P1>0, P2>0, Q1≥Q2>0, Q3>0, M1≥M2>0, M3>0, Ni(i=1,2,..., 6)and matrices

    satisfying Φ <0, and

    The above three inequations are equivalent to Φ1≤0,Φ2≤0,Φ3≤0,respectively, which result in ˙V(t)<0, namely system Eq. (5) is asymptotically stable.

    The next step is to prove the robustness of the system. The following auxiliary function is considered:

    which satisf ies the zero initial condition.

    Similar to the proof of the stability,from inequation(8)we

    女性生殖器流出的白浆| 人妻丰满熟妇av一区二区三区| 欧美日韩瑟瑟在线播放| 波多野结衣av一区二区av| 亚洲精品国产精品久久久不卡| 大型av网站在线播放| 99久久国产精品久久久| 一级毛片精品| 日本五十路高清| 一二三四社区在线视频社区8| 国产成人精品久久二区二区91| 99久久精品国产亚洲精品| 可以在线观看毛片的网站| 动漫黄色视频在线观看| 久久天堂一区二区三区四区| 午夜福利视频1000在线观看 | 精品电影一区二区在线| 亚洲激情在线av| 久久久久久久久久久久大奶| 熟女少妇亚洲综合色aaa.| 国产伦一二天堂av在线观看| 在线视频色国产色| 香蕉丝袜av| 女警被强在线播放| 亚洲在线自拍视频| 身体一侧抽搐| 欧美激情极品国产一区二区三区| 午夜老司机福利片| 色播在线永久视频| 日韩精品青青久久久久久| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 一级毛片女人18水好多| 一区二区三区激情视频| 黄色视频不卡| 亚洲人成伊人成综合网2020| 搞女人的毛片| 啦啦啦观看免费观看视频高清 | 嫁个100分男人电影在线观看| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看 | 一区在线观看完整版| 两个人看的免费小视频| 美女国产高潮福利片在线看| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 一进一出抽搐动态| 欧美色欧美亚洲另类二区 | 级片在线观看| 欧美性长视频在线观看| 亚洲 国产 在线| 午夜a级毛片| 国产一区二区三区在线臀色熟女| 中国美女看黄片| 欧美一级毛片孕妇| 午夜日韩欧美国产| 少妇粗大呻吟视频| 国产精品二区激情视频| 日本 欧美在线| 亚洲第一欧美日韩一区二区三区| 黄色丝袜av网址大全| 精品国产国语对白av| 精品国产亚洲在线| 日韩 欧美 亚洲 中文字幕| 国产精品爽爽va在线观看网站 | 91麻豆精品激情在线观看国产| 久久久久久大精品| 国产av又大| 正在播放国产对白刺激| 熟妇人妻久久中文字幕3abv| 韩国精品一区二区三区| 天堂动漫精品| 高清毛片免费观看视频网站| 亚洲国产精品久久男人天堂| 岛国在线观看网站| av中文乱码字幕在线| 亚洲精品粉嫩美女一区| 青草久久国产| 成人18禁在线播放| 老司机深夜福利视频在线观看| www日本在线高清视频| 波多野结衣高清无吗| 深夜精品福利| 欧美成人一区二区免费高清观看 | 中文亚洲av片在线观看爽| 亚洲第一av免费看| 制服丝袜大香蕉在线| 精品国产一区二区久久| 淫妇啪啪啪对白视频| 又黄又粗又硬又大视频| 激情视频va一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲片人在线观看| 免费高清视频大片| 少妇裸体淫交视频免费看高清 | 乱人伦中国视频| 亚洲视频免费观看视频| 午夜亚洲福利在线播放| 国产av又大| 午夜久久久久精精品| 中文字幕久久专区| 国产精品野战在线观看| 韩国av一区二区三区四区| 不卡av一区二区三区| 在线观看66精品国产| 动漫黄色视频在线观看| 日韩免费av在线播放| 人人妻人人澡欧美一区二区 | 国产激情久久老熟女| 国产成人精品久久二区二区免费| 黄网站色视频无遮挡免费观看| 国产免费av片在线观看野外av| av在线天堂中文字幕| 国产欧美日韩一区二区精品| 色尼玛亚洲综合影院| 麻豆成人av在线观看| 日韩欧美三级三区| 国产成人av教育| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 很黄的视频免费| 熟妇人妻久久中文字幕3abv| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美午夜高清在线| 热99re8久久精品国产| 成人永久免费在线观看视频| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 手机成人av网站| 亚洲成人国产一区在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 国产单亲对白刺激| 999久久久精品免费观看国产| 美女高潮到喷水免费观看| 夜夜夜夜夜久久久久| 欧美激情久久久久久爽电影 | 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 中国美女看黄片| 99精品在免费线老司机午夜| 99re在线观看精品视频| 国产熟女午夜一区二区三区| 少妇熟女aⅴ在线视频| 男女做爰动态图高潮gif福利片 | 夜夜看夜夜爽夜夜摸| 久久香蕉国产精品| 欧美中文综合在线视频| 91字幕亚洲| 国产高清有码在线观看视频 | 伊人久久大香线蕉亚洲五| 91成年电影在线观看| 精品欧美一区二区三区在线| 亚洲欧美激情在线| 久久久久久久午夜电影| 成人亚洲精品av一区二区| 成人特级黄色片久久久久久久| 色综合站精品国产| 国产av一区在线观看免费| 久久国产精品影院| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 精品国产超薄肉色丝袜足j| 啦啦啦 在线观看视频| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 亚洲九九香蕉| 久久伊人香网站| 老汉色∧v一级毛片| 99国产综合亚洲精品| 国产成人啪精品午夜网站| 久久婷婷成人综合色麻豆| 中文字幕另类日韩欧美亚洲嫩草| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 精品高清国产在线一区| 欧美黑人精品巨大| 免费在线观看亚洲国产| 久久久久久免费高清国产稀缺| 亚洲无线在线观看| 久久人妻av系列| 久久久久亚洲av毛片大全| 免费搜索国产男女视频| 精品国产国语对白av| 男女做爰动态图高潮gif福利片 | 欧美亚洲日本最大视频资源| 夜夜爽天天搞| 精品久久久精品久久久| 中文字幕人妻丝袜一区二区| 操美女的视频在线观看| 激情视频va一区二区三区| 国内毛片毛片毛片毛片毛片| 淫妇啪啪啪对白视频| 亚洲美女黄片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情久久久久久爽电影 | 国产成+人综合+亚洲专区| 男女做爰动态图高潮gif福利片 | 好男人电影高清在线观看| 满18在线观看网站| 啦啦啦韩国在线观看视频| 国产在线观看jvid| 午夜福利视频1000在线观看 | 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 国产精华一区二区三区| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 国产又爽黄色视频| 一区在线观看完整版| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 天堂影院成人在线观看| av在线播放免费不卡| av福利片在线| 欧美成人午夜精品| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| 久久精品国产清高在天天线| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三区在线| 久久性视频一级片| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 人人澡人人妻人| 亚洲国产精品999在线| 精品欧美国产一区二区三| 亚洲午夜理论影院| 国产在线观看jvid| 欧美激情极品国产一区二区三区| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 欧美+亚洲+日韩+国产| 国内毛片毛片毛片毛片毛片| www.熟女人妻精品国产| 日本免费一区二区三区高清不卡 | 啦啦啦观看免费观看视频高清 | 极品人妻少妇av视频| 最近最新中文字幕大全电影3 | svipshipincom国产片| 欧美国产精品va在线观看不卡| 国产精品久久久人人做人人爽| 午夜福利视频1000在线观看 | 中文字幕人妻丝袜一区二区| 国产麻豆成人av免费视频| 午夜日韩欧美国产| 国产一区在线观看成人免费| 精品免费久久久久久久清纯| 老司机福利观看| 国语自产精品视频在线第100页| 国产高清激情床上av| 大型av网站在线播放| 国产精品 欧美亚洲| 亚洲欧美日韩另类电影网站| 99热只有精品国产| 欧美日韩福利视频一区二区| 国产亚洲精品综合一区在线观看 | 欧美最黄视频在线播放免费| 亚洲 国产 在线| 久久中文字幕人妻熟女| 亚洲欧美精品综合久久99| 手机成人av网站| 亚洲av美国av| 很黄的视频免费| www日本在线高清视频| 女性生殖器流出的白浆| 欧美久久黑人一区二区| 国产私拍福利视频在线观看| 美女扒开内裤让男人捅视频| 免费少妇av软件| 男人操女人黄网站| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 午夜激情av网站| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 国产97色在线日韩免费| 精品人妻1区二区| 久久香蕉激情| 99久久久亚洲精品蜜臀av| 久久久久久久精品吃奶| 日韩国内少妇激情av| 亚洲av电影在线进入| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 此物有八面人人有两片| 人人妻人人澡人人看| 不卡一级毛片| 成年人黄色毛片网站| 一级黄色大片毛片| 一级片免费观看大全| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 色综合婷婷激情| 亚洲专区国产一区二区| 久久中文字幕一级| 亚洲专区字幕在线| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 啦啦啦 在线观看视频| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 国产xxxxx性猛交| 夜夜夜夜夜久久久久| 此物有八面人人有两片| 极品人妻少妇av视频| 男人舔女人的私密视频| 可以在线观看的亚洲视频| 妹子高潮喷水视频| 日韩高清综合在线| 中文亚洲av片在线观看爽| 国产精品久久视频播放| 一边摸一边做爽爽视频免费| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 免费女性裸体啪啪无遮挡网站| 韩国av一区二区三区四区| 色综合站精品国产| 精品国产国语对白av| 女性生殖器流出的白浆| 亚洲国产欧美网| videosex国产| 国产激情欧美一区二区| 日韩三级视频一区二区三区| 99国产精品99久久久久| 亚洲狠狠婷婷综合久久图片| 午夜福利影视在线免费观看| 黄频高清免费视频| 欧美日韩瑟瑟在线播放| av网站免费在线观看视频| 久久久久国产精品人妻aⅴ院| 黄频高清免费视频| 美女国产高潮福利片在线看| 国产精品 国内视频| 亚洲国产精品合色在线| 电影成人av| 精品福利观看| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 在线观看免费日韩欧美大片| 身体一侧抽搐| bbb黄色大片| 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 国产成人av教育| 97碰自拍视频| 在线av久久热| 巨乳人妻的诱惑在线观看| 精品欧美一区二区三区在线| 欧美黑人精品巨大| av天堂久久9| 久久中文看片网| 欧美久久黑人一区二区| 久久久水蜜桃国产精品网| 日日夜夜操网爽| 国产一区二区激情短视频| 日日爽夜夜爽网站| 亚洲性夜色夜夜综合| 亚洲一区二区三区不卡视频| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点 | 一区二区三区激情视频| 麻豆国产av国片精品| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 日韩精品青青久久久久久| 精品一区二区三区四区五区乱码| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9| 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 久久婷婷人人爽人人干人人爱 | 亚洲无线在线观看| 成人永久免费在线观看视频| 69av精品久久久久久| 97人妻天天添夜夜摸| 1024视频免费在线观看| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 老熟妇仑乱视频hdxx| 国产欧美日韩综合在线一区二区| 中文字幕久久专区| 深夜精品福利| 一区二区三区国产精品乱码| 少妇裸体淫交视频免费看高清 | 欧美中文日本在线观看视频| 日韩 欧美 亚洲 中文字幕| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 久久 成人 亚洲| 露出奶头的视频| 在线观看舔阴道视频| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | svipshipincom国产片| 午夜免费观看网址| 亚洲 欧美一区二区三区| 成人亚洲精品一区在线观看| 日韩国内少妇激情av| 国产精品久久久久久人妻精品电影| 亚洲av五月六月丁香网| 国产色视频综合| 国产欧美日韩一区二区三区在线| 在线av久久热| 黄色女人牲交| 免费在线观看日本一区| 国产精品自产拍在线观看55亚洲| 久久精品亚洲熟妇少妇任你| 1024视频免费在线观看| 成人av一区二区三区在线看| 国产97色在线日韩免费| 一区二区日韩欧美中文字幕| 精品国产乱子伦一区二区三区| 国产精品九九99| 久久精品国产综合久久久| 免费女性裸体啪啪无遮挡网站| 免费无遮挡裸体视频| 一个人观看的视频www高清免费观看 | 一区福利在线观看| 人人澡人人妻人| 视频区欧美日本亚洲| 亚洲专区字幕在线| 1024视频免费在线观看| 欧美一区二区精品小视频在线| 日本vs欧美在线观看视频| 成人三级黄色视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩视频一区二区在线观看| 亚洲国产精品合色在线| 午夜福利视频1000在线观看 | 午夜福利成人在线免费观看| 免费在线观看完整版高清| 日日摸夜夜添夜夜添小说| 免费看美女性在线毛片视频| 黄色成人免费大全| 99香蕉大伊视频| 亚洲美女黄片视频| 黄色丝袜av网址大全| 99在线人妻在线中文字幕| 精品卡一卡二卡四卡免费| av视频在线观看入口| 亚洲三区欧美一区| 国产麻豆69| 亚洲国产看品久久| 亚洲在线自拍视频| 99国产综合亚洲精品| 午夜激情av网站| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 免费久久久久久久精品成人欧美视频| 国产精品二区激情视频| 一本综合久久免费| 日韩大码丰满熟妇| 最近最新中文字幕大全电影3 | 丝袜美腿诱惑在线| 国产乱人伦免费视频| tocl精华| 天天躁狠狠躁夜夜躁狠狠躁| 久久影院123| videosex国产| 免费无遮挡裸体视频| 国产av又大| 亚洲精品一区av在线观看| 性欧美人与动物交配| 黄色女人牲交| 一级毛片高清免费大全| 免费人成视频x8x8入口观看| 12—13女人毛片做爰片一| 亚洲成a人片在线一区二区| 婷婷六月久久综合丁香| 欧美最黄视频在线播放免费| 久久精品国产亚洲av高清一级| 女同久久另类99精品国产91| 国产成人一区二区三区免费视频网站| 亚洲片人在线观看| 日日爽夜夜爽网站| 大型av网站在线播放| 妹子高潮喷水视频| 女人被狂操c到高潮| 久久天堂一区二区三区四区| 精品卡一卡二卡四卡免费| 老鸭窝网址在线观看| 麻豆久久精品国产亚洲av| 无人区码免费观看不卡| 在线观看一区二区三区| 成人欧美大片| 两个人视频免费观看高清| 久久精品91蜜桃| 夜夜夜夜夜久久久久| 亚洲激情在线av| 在线国产一区二区在线| 一级片免费观看大全| 纯流量卡能插随身wifi吗| 婷婷丁香在线五月| 亚洲久久久国产精品| 中文字幕精品免费在线观看视频| 91国产中文字幕| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 免费高清在线观看日韩| av免费在线观看网站| 女警被强在线播放| 一区二区日韩欧美中文字幕| 国产精品野战在线观看| 一级片免费观看大全| 大型黄色视频在线免费观看| 亚洲精品国产一区二区精华液| 亚洲熟妇熟女久久| 老熟妇乱子伦视频在线观看| 国产熟女午夜一区二区三区| 久久狼人影院| 日日摸夜夜添夜夜添小说| 免费搜索国产男女视频| 自线自在国产av| 亚洲第一电影网av| 大陆偷拍与自拍| 一级黄色大片毛片| 两人在一起打扑克的视频| 国产精品免费一区二区三区在线| 久久精品国产综合久久久| 国产成人影院久久av| av中文乱码字幕在线| 91大片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文字幕一区二区三区有码在线看 | 国产成人欧美| 中出人妻视频一区二区| 亚洲熟妇中文字幕五十中出| 色老头精品视频在线观看| 久99久视频精品免费| 国产主播在线观看一区二区| 亚洲国产欧美网| 亚洲人成电影观看| 欧美av亚洲av综合av国产av| 一级毛片女人18水好多| 夜夜爽天天搞| 午夜免费成人在线视频| 久久久久久久久免费视频了| 性色av乱码一区二区三区2| 欧美亚洲日本最大视频资源| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 麻豆成人av在线观看| 久久久久久亚洲精品国产蜜桃av| 中文字幕人妻丝袜一区二区| 色老头精品视频在线观看| bbb黄色大片| 亚洲激情在线av| 熟妇人妻久久中文字幕3abv| 午夜精品久久久久久毛片777| 国产高清激情床上av| 久久精品国产综合久久久| 国产精华一区二区三区| 国产一区在线观看成人免费| 一级毛片高清免费大全| 午夜免费激情av| 美女免费视频网站| 国产1区2区3区精品| 丝袜人妻中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦韩国在线观看视频| 亚洲精华国产精华精| 欧美日本亚洲视频在线播放| 日韩欧美国产在线观看| 精品免费久久久久久久清纯| 午夜精品国产一区二区电影| 亚洲欧洲精品一区二区精品久久久| 亚洲性夜色夜夜综合| 亚洲一区二区三区色噜噜| www国产在线视频色| 免费少妇av软件| 日本在线视频免费播放| 日韩欧美免费精品| 老汉色∧v一级毛片| 久久伊人香网站| 欧美日韩亚洲综合一区二区三区_| 亚洲电影在线观看av| 国产区一区二久久| 变态另类丝袜制服| 精品不卡国产一区二区三区| 亚洲成国产人片在线观看| 女生性感内裤真人,穿戴方法视频| 在线观看66精品国产| 少妇的丰满在线观看| 久久久久久国产a免费观看| 国产精品亚洲一级av第二区| 成年女人毛片免费观看观看9| 琪琪午夜伦伦电影理论片6080| 亚洲中文字幕日韩| 欧美一级毛片孕妇| 91成年电影在线观看| 亚洲精品国产区一区二| 成人18禁在线播放| 一夜夜www| 亚洲全国av大片|