• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    斯里蘭卡穹頂區(qū)的形成和演變機(jī)制分析

    2019-05-30 01:10:52王衛(wèi)強(qiáng)

    王衛(wèi)強(qiáng)

    摘要 通過(guò)SODA再分析資料和AVISO觀測(cè)資料研究了斯里蘭卡穹頂區(qū)(SLD)的遷移和消散機(jī)制.斯里蘭卡穹頂區(qū)是孟加拉灣西南部的一個(gè)氣旋渦旋,主要出現(xiàn)在西南季風(fēng)(5—9月)期間,與西南季風(fēng)海流侵入孟加拉灣同時(shí)存在.正風(fēng)應(yīng)力旋度引起的Ekman抽吸是形成SLD的主要原因.回歸分析結(jié)果表明SLD區(qū)域的風(fēng)應(yīng)力旋度與Ekman抽吸存在較強(qiáng)的正相關(guān)(r2=0.93,p>0.5).此外,結(jié)果表明SLD在發(fā)展過(guò)程中的移動(dòng)主要受正風(fēng)應(yīng)力旋度移動(dòng)的影響,SLD的消減與該正風(fēng)應(yīng)力旋度減弱和西傳的暖Rossby波有關(guān),而冷Rossby波的傳播有益于SLD的發(fā)展.在SLD消減時(shí)期,孟加拉灣渦旋(BBD)獨(dú)立發(fā)展并進(jìn)一步與SLD融合,回歸分析發(fā)現(xiàn)BBD區(qū)域的Ekman抽吸與當(dāng)?shù)仫L(fēng)應(yīng)力旋度的關(guān)系密切(r2=0.76,p>0.5),這表明了BBD在形成階段由局地的風(fēng)應(yīng)力主導(dǎo).9月之后,風(fēng)應(yīng)力旋度減弱,BBD和SLD開(kāi)始了合并過(guò)程.動(dòng)力方面,EKE分析顯示SLD衰退的同時(shí),BBD的EKE大幅增加;熱力方面,10—11月時(shí),由Ekman抽吸引起的SLD和BBD次表層冷水匯合,清晰地表明了二者之間的熱動(dòng)力學(xué)聯(lián)系.

    關(guān)鍵詞 斯里蘭卡穹頂區(qū);風(fēng)應(yīng)力旋度;Ekman抽吸;Rossby波;孟加拉灣渦旋

    中圖分類(lèi)號(hào) P444

    文獻(xiàn)標(biāo)志碼 A

    0 引言

    斯里蘭卡穹頂區(qū)(SLD)是孟加拉灣西南部的一個(gè)氣旋渦旋,主要出現(xiàn)在西南季風(fēng)(5—9月)期間,和西南季風(fēng)海流侵入孟加拉灣同時(shí)存在.前人研究通過(guò)分析氣候態(tài)海表溫度發(fā)現(xiàn),SLD位于斯里蘭卡東部,在5月生成,9月開(kāi)始衰減,盛期出現(xiàn)在7月.對(duì)SLD形成與衰退的機(jī)制研究表明,在西南季風(fēng)期間斯里蘭卡東部存在一個(gè)正的風(fēng)應(yīng)力旋度,從而引起局地的Ekman抽吸形成SLD;之后風(fēng)應(yīng)力旋度減弱,雖然正的風(fēng)應(yīng)力旋度一直持續(xù)到12月,但是西傳的暖Rossby波會(huì)引起穹頂區(qū)的下沉從而導(dǎo)致SLD的衰退.另外,在SLD衰減過(guò)程中,在斯里蘭卡東北部形成一個(gè)新的氣旋式渦旋,即孟加拉灣渦旋(BBD).有觀點(diǎn)認(rèn)為BBD是SLD氣旋式渦旋信號(hào)傳播導(dǎo)致,而其他的觀點(diǎn)認(rèn)為BBD是獨(dú)立發(fā)展形成的,并與SLD相互影響.本研究試圖通過(guò)分析簡(jiǎn)單海洋數(shù)據(jù)同化再分析2.0.2版本的20年月平均氣候態(tài)數(shù)據(jù),來(lái)描述SLD的遷移和消散機(jī)制.

    本文研究發(fā)現(xiàn),在西南季風(fēng)期間,斯里蘭卡東側(cè)存在較復(fù)雜的風(fēng)應(yīng)力旋度分布,首先是位于斯里蘭卡東側(cè)的正的風(fēng)應(yīng)力旋度(SLDPWC),與SLDPWC相關(guān)的Ekman抽吸機(jī)制對(duì)SLD的形成給出了合理的解釋,回歸分析也表明了SLDPWC和SLD的上升流之間存在著很強(qiáng)的正相關(guān)關(guān)系(r2=0.93,p >0.5).該氣旋式環(huán)流與正風(fēng)應(yīng)力旋度一起在5月形成,6—8月逐漸增強(qiáng)并向東北方向傳播,清楚表明了SLD在形成過(guò)程中和正風(fēng)應(yīng)力旋度的一致性.關(guān)于SLD的衰退機(jī)制,由Hovmoller 分析顯示,東邊界反射的暖Rossby波在8月到達(dá)斯里蘭卡東海岸,使得SLD減弱;另外,局地正風(fēng)應(yīng)力旋度的減弱也是SLD消減的因素之一.

    其次,除了SLDPWC之外,SLDPWC北部還有另外2個(gè)風(fēng)應(yīng)力渦旋(正文圖2).正的風(fēng)應(yīng)力渦旋位于印度東海岸(東印度正風(fēng)應(yīng)力旋渦,EIPWC),在EIPWC和SLDPWC之間存在一個(gè)負(fù)的風(fēng)應(yīng)力旋度(負(fù)風(fēng)應(yīng)力旋度,NWC).本文研究發(fā)現(xiàn),SLD的衰退與BBD的發(fā)展與這3個(gè)風(fēng)應(yīng)力旋度的變化密切相關(guān).首先,在EIPWC作用下BBD開(kāi)始發(fā)展,回歸分析也表明EIPWC和BBD的上升流之間存在著很強(qiáng)的正相關(guān)關(guān)系(r2=0.76,p >0.5) (正文圖9).隨著NWC的減弱,正的風(fēng)應(yīng)力旋度逐漸統(tǒng)治了孟加拉灣西南部,這也是最終SLD和BBD合并的關(guān)鍵因子,進(jìn)一步的EKE分析也證實(shí)了兩者之間的這種動(dòng)力學(xué)聯(lián)系.除此之外,次表層與SLD和BBD相關(guān)的冷中心之間的合并過(guò)程,也清晰地表明了二者之間的熱動(dòng)力學(xué)聯(lián)系.

    Mechanisms of the Sri Lanka Dome and its evolutionary aspects

    K.B.S.S.J EKANAYAKA1 WANG Weiqiang1

    1 State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,

    Chinese Academy of Sciences,Guangzhou 510301

    AbstractThis study focuses on the formation,migration and dissipation mechanisms of the Sri Lanka Dome (SLD) and its combination with Bay of Bengal Dome (BBD) using Simple Ocean Data Assimilation reanalysis data and AVISO data.The SLD is a cyclonic eddy in the southwest Bay of Bengal,which occurs during May through September coinciding with the intrusion of southwest monsoon current into the Bay of Bengal.The results show that,Ekman pumping due to positive wind stress curl east off Sri Lanka is the governing mechanism of the SLD formation and migration during developing stage.Besides,a positive impact of cold Rossby waves propagation contribute to the SLD developing as well.Further,weakening positive wind stress curl and the eastern boundary reflected warm Rossby wave effect are important factors for dissipation of SLD.During the decaying stage of SLD,the BBD evolves independently because of the Ekman Pumping driven by local positive wind curl.The regression analysis proves that the local wind stress curl has a strong positive relationship with upwelling within the BBD.After September,weak positive wind stress curl dominates in the southwest BOB,the BBD starts to merge with the SLD.There are two kinds of links between SLD and BBD.The first is a dynamic interaction revealed by eddy kinetic energy analysis and the second is a thermodynamic interaction described by combination of subsurface cold cores of the SLD and the BBD.

    Key wordsSri Lanka Dome;wind stress curl;Ekman Pumping;Rossby;Bay of Bengal Dome

    0 Introduction

    Due to the transition pattern of the Inter-Tropical Convergence Zone (ITCZ) over the Bay of Bengal (BoB) region,there are two annually reversing monsoon currents,which can be observed as Northeast Monsoon Current (NMC) and Southwest Monsoon Current (SMC),driven by Northeast Monsoon (NEM) winds (December to April) and Southwest Monsoon (SWM) winds (May to September) respectively (Vos et al.[1]).The Sri Lanka Dome (SLD) circulation occurs during the SWM period coinciding with the intrusion of SMC eastward flow into BoB,which is one of the most important mesoscale cyclonic circulation in the Bay of Bengal.

    After passing the Sri Lankan island,part of the SMC curves around its southeastern boundary and intrude into the BoB,while the rest of SMC flow continues eastward.A part of this aforementioned BoB intrusion flows along a cyclonic path near the east coast of Sri Lanka and contributes to the SLD formation (Vinayachandran and Yamagata[2];Vinayachandran et al.[3];Schott and McCreary[4]).As a result,the western flank southward coastal current of the SLD flows against the prevailing local winds along off eastern coast of Sri Lanka (Shetye et al.[5]).The southernand eastern flanks of the SLD are closed by eastward SMC flow andBoB intrusion of SMC respectively (Vinayachandran and Yamagata[2]).

    From the climatological sea surface temperature analysis,Vinayachandran and Yamagata[2] mentioned that,the SLD starts from May and decays in September.Further,they noticed the well-developed stage of the SLD is occurring in east of Sri Lanka during July.McCreary et al.[6],Vinayachandran and Yamagata[2] and Burns et al.[7] demonstrated a positive wind stress curl occurs in the east of Sri Lanka and generates an Ekman upwelling in this region during SWM.Furthermore,Vos et al.[1] ran an idealized model to examine the hypothesis that,the SLD is formed through the interaction between the SMC and the topography (Island Wake effect).They concluded that the island wake effect is a supportive mechanism for the SLD formation.

    Although wind stress curl near the east coast of Sri Lanka remains positive until December,the arrival of warm Rossby waves propagating from the east,results in decay of the SLD due to the downwelling effect (Vinayachandran and Yamagata[2];Burns et al.[7]).Vinayachandran and Yamagata[2] reported that,these warm Rossby waves originate from the eastern boundary of BoB during April-June and reach the east coast of Sri Lanka during September.In addition to the negative impact of warm Rossby waves,Burns et al.[7] mentioned the northern BoB low salinity water invasion is also a factor for the SLD dissipation.During the decay stage of SLD,another cyclonic eddy was observed,which located northeastward to Sri Lanka named as Bay of Bengal Dome (BBD).McCreary et al.[6] showed that,the SLD cyclonic ocean circulation gradually migrates to northward during the ending of SWM and becomes the BBD.As opposed to the above evidence,Vinayachandran and Yamagata[2] showed that,the BBD independently evolves during September and devoid of further dynamic interaction with SLD.

    All aforementioned studies have well addressed the formation of the SLD,but their focus deprived of explanation about the migration of the SLD throughout the whole evolution.The current study focuses on the formation and migration of the SLD and its relevant mechanisms.Furthermore,the decay stage of the SLD seems bit controversial owing to the several demonstrations given by previous studies.The present study will attempt to explain the decay stage of the SLD and its related interaction with BBD.

    1 Data and ethodology

    The Simple Ocean Data Assimilation reanalysis version 2.0.2. is used in this study.This ocean model is based on Parallel Ocean Program physics with an average 0.25°×0.4°×40-level resolution.Observations include virtually all available ocean station data,moored temperature,hydrographic profile data and salinity time series,surface temperature and salinity observations of various types,and nighttime infrared satellite SST data.The processed data are in a monthly-composites form and they were mapped onto a uniform 0.5°×0.5°×40-level grid (Carton and Giese[8]). wind stress (N/m2),sea surface height (m),ocean temperature (including SST) (°C),salinity,horizontal ocean velocities (cm·s-1) and vertical velocity(cm·s-1) were used for the analysis.Monthly data were used for climatological and time series data analysis.All done by using NCAR Command Language (NCL) 6.3.0.

    The wind stress curl (×τ) was calculated using τy and τx component of the wind stress data according to the following equation (Kraus and Businger[9]):

    Where x and y are the longitude and latitude respectively.

    To understand the dynamic link between SLD and adjacent mesoscale eddies,the Sea Surface Height Anomaly (SSHA) and Eddy Kinetic Energy (EKE) are plotted from the Archiving Validation and Interpretation of Satellite Oceanographic (AVISO) SSHA and Geostrophic Current data.These homogeneous,inter-calibrated and highly accurate long time series AVISO data processed from various altimetric missions (Topex/Poseidon,ERS-1/2,Jason-1,Envisat and OSTM/Jason-2)(IPRC[10]).The EKE is calculated by using AVISO geostrophic current data according to the following equation:

    Where Ug and Vg are the geostrophic velocities(Jia et al.,[11]).

    Fig.1 Monthly ocean current at 35 m (vectors) from SODA overlaid on SSHA (shaded) from AVISO March to

    November.The black box (7°-9°N,83°-86°E) in June is selected to represent the region during the SLD peak

    2 Results

    As a cyclonic eddy,SLD can be distinguished with the negative SSHA due to its divergent upwelling formation.In this study,the occurrence of the cyclonic ocean circulation is studied with climatological ocean current data at 35 m overlaid with the SSHA data.The SSHA data show positive values east of Sri Lanka until May due to the anticyclonic ocean circulation (Fig.1).In May,there is a small negative circular SSHA patch and corresponding cyclonic ocean circulation,which appears first with -2 to -4 cm SSHA near the southeastern coast of Sri Lanka.From June to August,negative SSHA patch develop and become stronger more than -10 cm.In particular,it gradually move northeastward and results in the decay of SLD.During September, the SLD is vanished.Instead,a widened negative SSHA core can be seen between 10°N and 13°N resulting in the formation of BBD near the northeast coast of Sri Lanka.

    2.1 Developing stage of the Sri Lanka Dome

    Previous studies described the Ekman pumping as the major factor for the formation of SLD (McCreary et al.[6];Vinayachandran and Yamagata[2];Burns et al.[7]).They showed occurrence of positive wind stress curl generating the SLD.Although,the impact of this positive wind stress curl on the SLD migration is yet to be analyzed.

    Fig.2 Monthly wind stress curl (unit:10-8 N·m-3) from May to October (SODA).Three parallelly

    northwestward wind stress curls in June are marked by EIPWC (east Indian positive wind stress curl),NWC

    (negative wind curl) and SLDPWC (Sri Lanka Dome related positive wind stress curl)

    First,in resemblance with previous studies,F(xiàn)igure 2 also captured the strong positive wind stress curl,which can be observed during the boreal summer in the east part of Sri Lanka,with the evolution of the SLD.The patch of positive wind curl develops from the southern coast of Sri Lanka during May with a distinctive northeastward projection.From May to August,this strong positive wind stress curl gradually strengthens and further extends its projection northeastward till August (hereafter this Sri Lanka Dome related positive wind stress curl will be mentioned as SLDPWC).In the same manner,the SLD migrates northeastward via expanding its periphery from the monthly ocean current and SSHA in Figure 1.

    Further,to understand the relationship between local wind stress curl and SLD,a detailed analysis of wind stress curl is carried out over the region of 7°-9°N and 83°-86°E,which is indicated as SLD region in Jun in Figure 1.The results illustrate that,the well-developed wind stress curl over the SLD region develops from May,strengthens till August,and decay after August (Fig.3).At the same time,vertical velocity at 35 m over the SLD region shows similar variations with the wind stress curl,indicating that positive wind curl induced Ekman upwelling in the SLD region is dominant.Correspondingly,the patch of positive wind stress curl gradually retract to the southern coast of Sri Lanka at the end of SWM in October (Fig.2).Afterward,the SLD cyclonic ocean circulation deflects northwestward and merge with BBD (Fig.1).

    In addition to the SLDPWC,there are two other wind stress curls located northward to the SLDPWC,which run parallelly northeastward during boreal summer (Fig.2).The positive wind stress curl located near east coast of India (hereafter mentioned as east Indian positive wind stress curl,EIPWC).The other is a negative one,which can be seen between the SLDPWC and EIPWC (hereafter mentioned as NWC).This NWC results in the northeast coastal current of Sri Lanka flowing northward and separating from the southward western flank flow of the SLD (Fig.1).After August,this northward flow gradually decays with the weakening of this NWC.

    2.2 Dissipation of the Sri Lanka Dome

    Although the positive wind stress curl is still remaining in east of Sri Lanka in September,SLD starts to decay (Vinayachandran and Yamagata[2];Burns et al.[7]),in which the warm Rossby wave is a major factor contributing to the dissipation of the SLD.In detail,the eastward travelling equatorial Kelvin waves,generated by zonally oscillated seasonal equatorial winds,result in the generation of upwelling (cold) and downwelling (warm) Rossby waves after hitting on the eastern boundary of the BoB (Wyrtki[15];Rao et al.[16];Sreenivas et al.[17]).As a result,the warm Rossby waves start in April and reach the east coast of Sri Lanka after September (Vinayachandran and Yamagata[2];Burns et al.[7]),in this study,the downwelling Rossby waves,which start during March and reach the east coast of Sri Lanka during August.In addition to the warm Rossby wave effect,the SLDPWC weakening is also an important factor for dissipation of SLD.

    Fig.4 Time-longitude diagrams of climatological average,meridional velocity over the region of

    7°N to 8°N (left) and zonal velocity over the region of 8°N to 9°N (right)〖TS)〗

    Moreover,the impact of remote forcing Rossby wave signals on the SLD is studied using Hovmoller plots of the zonal velocity and the meridional velocity in this study (Fig.4).Here,meridional velocity over zonal belt of 7°N to 8°N and zonal velocity over zonal belt of 8°N to 9°N are selected,since these two zonal belts cover western and northern flank of SLD.The warm Rossby waves,depicted by meridional and zonal velocity in Figure 4,start from the east during March and gradually reach the east coast of Sri Lanka during August.The downwelling Rossby signals favor strengthening the northward currents and eastward currents.Thus arrival of this warm meridional velocity Rossby signals result in weakening southward western flank flow of SLD? and weakening westward northern flank flow of SLD during August (Fig.4).As a result,the anticyclonic ocean circulation and corresponding downwelling condition start to develop in this region.In addition,as a supportive mechanism to SLD development,it also can be seen from upwelling Rossby waves propagation (Fig.4),which start from January and reach the east coast of Sri Lanka during April through July.It results in strengthen the westward northern flank flow of SLD and the SLD cyclonic circulation.

    In addition to the warm Rossby waves,weakening of the positive wind stress curl is also an important factor for SLD dissipation.Figure 2 and Figure 3 clearly that,the positive wind stress curl,directly forcing SLD,gradually decays after August.Correspondingly,the upwelling of SLD also gradually weakens according to vertical velocity variation shown in Figure 3 because of the strong positive relationship between local directly forcing wind stress curl and SLD.Therefore,the combined effect of the weakening of local positive wind stress curl and the arrival of warm Rossby waves results in decaying of the SLD after August.

    2.3 SLD and BBD

    After August,the SLD moves to northeastward and merges with BBD.So far,the interaction between SLD and BBD is still controversial due to two different viewpoints.First,McCreary et al.[6] showed that,the SLD cyclonic ocean circulation gradually migrates northward during the ending of SWM and becomes the BBD during which the dynamic link between SLD and BBD is not described.As opposed to the above illustration,Vinayachandran and Yamagata[2] showed that,the BBD independently evolves from the SLD during September and devoid of further dynamic interaction with the SLD.

    In contrast,the present study shows that,the BBD evolves independently initiated by Ekman pumping resulted from local positive wind stress curl and subsequently merges with the SLD accompany with shrinkage of negative wind stress curl sandwiched between two positive wind curl.Correspondingly,the subsurface temperature clearly shows evolvement of the BBD and combination of the BBD and the SLD (Fig.5c).As a result,the upwelled cold water masses of the SLD and the BBD merge to be a large cold water gyre in northeast of Sri Lanka.Vinayachandran and Yamagata[2] also stated that,the lateral convergence is the largest contributor for the heat changes in the BBD during the formation stage.It indicates that the cold water mass of decaying SLD plays an important role in the thermodynamics of BBD.Therefore,the present study proves both dynamic and thermodynamic links between the SLD and the BBD,further investigate in detail below.

    As mentioned above,the BBD evolves independently in the formation stage.Moreover,the Ocean currents and SSHA in Figure 5b indicate that,the formation of the BBD also to westward projection of the SLD during September.This BBD formation occurs in northeast of Sri Lanka simultaneous the eastward propagation of the EIPWC (Figs.5a and 5b).A regression analysis is carried out for the Bay of Bengal Dome box (black square marked in Figure 5b) (10°-13°N,81°-83°E) to understand the relationship between local wind stress curl and the BBD formation (Fig.6).The results reveal that,the local wind stress curl has a strong positive relationship with the upwelling of the BBD (r2:0.76,p>0.5),which means the BBD forms as a result of the EIPWC driven Ekman Pumping.In order to confirm this independent evolution of the BBD,a detailed analysis of EKE is carried out from June to December (Fig.7).Since the analysis on EKE variations during the SLD decaying,for convenience,a new Sri Lanka Dome box (8°-12°N,83°-87°E) (red square in Figure 5b) is defined,which is different from the region during the SLD peak (Fig.1).The Figure 7 illustrates that,the EKE of SLD box gradually decreases after June,while the EKE of? the BBD box gradually increases until November.Most importantly,a considerably higher value of EKE (~120 cm2·s-1) can be seen from the BBD box prior to the SLD interaction with the BBD during August confirms the BBD circulation starts to occur independently from the SLD.

    Fig.5 Monthly climatological characteristics,(a) wind stress curl,(b) ocean current vectors (35 m depth) overlaid

    on SSHA (shaded),and (c) temperature at 35 m depth from September to October.Red square is for the SLD box

    Fig.6 Relationship between monthly wind stress curl and

    monthly 35 m depth velocity (cm·s-1) in

    BBD box (10°-13°N,81°-83°E) (SODA,1988-2008),

    with black line for linear regression

    With the degradation of the NWC,the positive wind stress curl dominates over southwest of the BoB and favors the combination of the weakening SLD and the newly formed BBD (Figs.5a and 5b).The spatial temperature distributions and ocean currents clearly indicate the merging of these two separate during October (Figs.5b and 5c).Furthermore,the EKE of the BBD,which remains constant (-120 cm2·s-1) during August to October,suddenly increases to the maximum level (-160 cm2·s-1) in November,whereas the EKE of the SLD gets the lowest (-10 cm2·s-1)(Fig.7).These two simultaneous EKE variations are associated with the SLD completion and the BBD peak in November,for which the SLD is decaying in November and afterward the major part of the SLD EKE moves to the BBD and favor BBD? (Fig.5b).It clearly shows that,the upwelled cold water masses of these two eddies merge owing to the interaction of their two cyclonic ocean circulations (Fig.5c).This cold water masses interaction further reveals the thermodynamic link between the SLD and the BBD relevant to their dynamic interaction.Eventually,the merging of the SLD and the BBD creates a large cold water gyre in southwest of the BoB.

    Fig.7 Monthly variation of the Eddy Kinetic Energy

    (EKE) of the Sri Lanka Dome box (red square in Fig.5b)

    (red color) and the Bay of Bengal Dome box (black

    square in Fig.5b) (blue color) from June to December based

    on monthly composites of AVISO data during 1993-2008

    3 Discussions and Conclusions

    As studied above,the SLDPWC related Ekman Pumping mechanism offers a reasonable explanation for the formation of the SLD.The regression analysis proves that,there is a strong positive relationship between the SLDPWC and the upwelling of the SLD (r2:0.93,p>0.5) (Fig.3).The cyclonic circulation,which starts from May,gradually strengthens during June to August and moves northeast accompany with northeast propagation of the SLDPWC.The present study clearly demonstrates the consistency between the SLD migration and positive wind stress curl propagation during SLD evolution.Further,Ekman upwelling of SLD results in the upward movement of subsurface high salinity cold water east of Sri Lanka during boreal summer.

    The role of eastern boundary reflected Rossby wave is importantin the SLD evolution.Cold Rossby waves propagation,observed in time-longitude diagrams of zonal velocity,favors the SLD developing.Similarly,the reflected warm Rossby waves reach the east coast of Sri Lanka during August and play a major role in dissipation of the SLD (Fig.4).In addition,the present study shows that,the weakening of SLDPWC is also an important factor for the dissipation mechanism because of the strong positive relationship between SLDPWC and the SLD.

    In addition to the SLDPWC,there are two other wind stress curls located northward to the SLDPWC,which run parallelly northeastward during boreal summer (Fig.2).One is the positive wind stress curl located near east coast of India (EIPWC),and the other is a negative wind curl (NWC) which can be seen between the related wind curl and EIPWC.The present study shows that,evolution of the SLD and the BBD are closely related to variations of these three wind curls.Regarding to the BBD,it first evolves independently from the SLD due to the EIPWC driven Ekman Pumping,for which the regression analysis confirms that the EIPWC has a strong positive relationship with the upwelling of the BBD (r2:0.76,p>0.5) (Fig.6).Although these three wind curls weaken after September,the BBD develops and peaks accompany with disappearance of NWC.As a result,weak positive wind curl is dominant over southwest of BoB in November,which favors combination of SLD and BBD.As a dynamic interaction,the EKE transfers to the BBD when SLD decaying (Fig.3).Simultaneous,also as a thermodynamic interaction,the upwelled cold water mass of the SLD and the BBD merge revealed by subsurface temperature variations (Fig.5c).It illustrates the close relationship between the SLD and the BBD,for which they have not only a thermodynamic interaction,but also a dynamic interaction.

    Acknowledgement

    We would like toexpress our special gratitude to China-Sri Lanka Joint Center for Education and Research,Chinese Academy of Sciences and University of Ruhuna (Sri Lanka) for their guidance and the administrative support.This study was funded by the Strategic Priority Research Program of Chinese Academy of Sciences under contract No.XDA20060502;the National Natural Science Foundation of China under contract Nos.41676013,41521005,41731173;the National Key Research and Development Program of China under contract No.2016YFC1401401;the Independent Research Project Program of State Key Laboratory of Tropical Oceanography under contract No.LTOZZ1702;and the CAS/SAFEA International Partnership Program for Creative Research Teams.Further we would like to extend our gratitude to NCAR,as all the plots that are included in this paper are created by using NCAR Command Language (NCL).

    References

    [1] De Vos A,Pattiaratchi C B,Wijeratne E M S.Surface circulation and upwelling patterns around Sri Lanka[J].Biogeosciences,2014,11(20):5909-5930

    [2] Vinayachandran P N,Yamagata T.Monsoon response of the sea around Sri Lanka:generation of thermal domes and anticyclonic vortices[J].J Phys Oceanogr,1998,28(10):1946-1960

    [3] Vinayachandran P N,Masumoto Y,Mikawa T,et al.Intrusion of the Southwest Monsoon Current into the Bay of Bengal[J].J Geophys Res-Oceans,1999,1041(C5):11077-11085

    [4] Schott F A,McCreary Jr J P.The monsoon circulation of the Indian Ocean[J].Prog Oceanogr,2001,51(1):1-123

    [5] Shetye S R,Shenoi S S C,Gouveia A D,et al.Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon[J].Cont Shelf Res,1991,11(11):1397-1408

    [6] McCreary Jr J P,Han W,Shankar D,et al.Dynamics of the East India Coastal Current 2.Numerical solutions[J].J Geophys Res,1996,101(C6):13993-14010

    [7] Burns J M,Subrahmanyam B,Murty V S N.On the dynamics of the Sri Lanka Dome in the Bay of Bengal[J].J Geophys Res-Oceans,2017,122(9):7737-7750

    [8] Carton J A,Giese B S.A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J].Mon Weather Rev,2008,136(8):2999-3017

    [9] Kraus E B,Businger J A.Atmosphere-ocean interaction[M].London:Oxford University Press,1994:362

    [10] Asia-Pacific Data-Research Center of the IPRC.AVISO maps of sea level anomalies & geostrophic velocity anomalies (MSLA)[EB/OL].[2018-01-26].http://apdrc.soest.hawaii.edu/datadoc/aviso_upd_msla_mon.php

    [11] Jia F,Wu L X,Qiu B.Seasonal modulation of eddy kinetic energy and its formation mechanism in the Southeast Indian Ocean[J].J Phys Oceanogr,2011,41(4):657-665

    [12] Vinayachandran P N,Chauhan P,Mohan M,et al.Biological response of the sea around Sri Lanka to summer monsoon[J].Geophys Res Lett,2004,31(1):1-4

    [13] Jensen T G.Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model[J].Geophys Res Lett,2001,28(20):3967-3970

    [14] Wilson E A,Riser S C.An assessment of the seasonal salinity budget for the upper Bay of Bengal[J].J Phys Oceanogr,2016,46(5):1361-1376

    [15] Wyrtki K.An equatorial jet in the Indian Ocean[J].Science,1973,181(4096):262-264

    [16] Rao R R,Kumar M S G,Ravichandran M,et al.Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean,the coastal Bay of Bengal and the southeastern Arabian Sea during 1993-2006[J].Deep Sea Res Pt I,2009,57(1):1-13

    [17] Sreenivas P,Gnanaseelan C,Prasad K V S R.Influence of El Nio and Indian Ocean Dipole on sea level variability in the Bay of Bengal[J].Global Planet Change,2011,80-81:215-225

    a级毛片免费高清观看在线播放| 久久久久久九九精品二区国产| 久久精品国产亚洲av涩爱 | 波多野结衣高清无吗| 国产精品乱码一区二三区的特点| 亚洲午夜理论影院| 亚洲在线自拍视频| 级片在线观看| 色av中文字幕| 老司机午夜福利在线观看视频| 国产69精品久久久久777片| 久久久色成人| 亚洲四区av| 精品欧美国产一区二区三| 国产亚洲av嫩草精品影院| 嫁个100分男人电影在线观看| 亚洲精品久久国产高清桃花| 亚洲av免费高清在线观看| 男女视频在线观看网站免费| 嫩草影院入口| 欧美激情在线99| 日本 欧美在线| 成人午夜高清在线视频| 成人无遮挡网站| 在线观看午夜福利视频| 日本 欧美在线| 亚洲av熟女| 色精品久久人妻99蜜桃| 亚洲欧美清纯卡通| 性色avwww在线观看| 少妇的逼好多水| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久亚洲 | 少妇人妻精品综合一区二区 | 在线播放无遮挡| 麻豆一二三区av精品| 国产伦精品一区二区三区四那| 中文字幕高清在线视频| 联通29元200g的流量卡| 联通29元200g的流量卡| 中文资源天堂在线| 国产伦在线观看视频一区| 熟妇人妻久久中文字幕3abv| 亚洲最大成人中文| av天堂中文字幕网| 日本-黄色视频高清免费观看| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av涩爱 | 久9热在线精品视频| 91精品国产九色| 国产综合懂色| 亚洲,欧美,日韩| 身体一侧抽搐| 午夜影院日韩av| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 99久久成人亚洲精品观看| 国内精品久久久久精免费| 国产伦精品一区二区三区四那| 国产毛片a区久久久久| 欧美精品啪啪一区二区三区| 成人特级黄色片久久久久久久| 波多野结衣高清无吗| 久久国产乱子免费精品| 草草在线视频免费看| 国产一区二区亚洲精品在线观看| 舔av片在线| 一区二区三区免费毛片| 亚洲欧美日韩高清专用| 国产精品伦人一区二区| 欧美日韩亚洲国产一区二区在线观看| 十八禁国产超污无遮挡网站| 在线国产一区二区在线| 特级一级黄色大片| 国产精品98久久久久久宅男小说| 12—13女人毛片做爰片一| 在线观看一区二区三区| 在线免费观看的www视频| АⅤ资源中文在线天堂| 少妇裸体淫交视频免费看高清| 在线观看午夜福利视频| 精品一区二区三区视频在线| 啦啦啦啦在线视频资源| 又黄又爽又刺激的免费视频.| 日韩一区二区视频免费看| 欧美日韩瑟瑟在线播放| 午夜福利在线观看免费完整高清在 | 国产伦在线观看视频一区| 久久香蕉精品热| 精品人妻1区二区| 99久久中文字幕三级久久日本| av在线天堂中文字幕| 久久6这里有精品| 亚洲av免费高清在线观看| 日本在线视频免费播放| 国产亚洲精品综合一区在线观看| 国产精品国产高清国产av| 我的老师免费观看完整版| 村上凉子中文字幕在线| 香蕉av资源在线| 乱人视频在线观看| 色精品久久人妻99蜜桃| 国产亚洲av嫩草精品影院| 日韩亚洲欧美综合| 国产单亲对白刺激| 亚洲av成人精品一区久久| 91狼人影院| 999久久久精品免费观看国产| 日日啪夜夜撸| 日韩欧美一区二区三区在线观看| 久久久久久大精品| 欧美xxxx黑人xx丫x性爽| 免费看日本二区| 成人综合一区亚洲| 国产黄片美女视频| 午夜福利高清视频| 亚洲精品日韩av片在线观看| 欧美黑人欧美精品刺激| 久久6这里有精品| av女优亚洲男人天堂| 中出人妻视频一区二区| 成人美女网站在线观看视频| 内射极品少妇av片p| 国产熟女欧美一区二区| 嫩草影视91久久| avwww免费| 国产一区二区在线av高清观看| 69av精品久久久久久| 国产淫片久久久久久久久| 啦啦啦啦在线视频资源| 99热这里只有是精品50| 在线播放无遮挡| 一区二区三区高清视频在线| 黄色女人牲交| 舔av片在线| 麻豆成人午夜福利视频| 亚洲av不卡在线观看| 99热精品在线国产| 色综合色国产| 久久热精品热| 97超视频在线观看视频| 岛国在线免费视频观看| 狂野欧美白嫩少妇大欣赏| 免费黄网站久久成人精品| 午夜免费男女啪啪视频观看 | 国产黄片美女视频| 欧美又色又爽又黄视频| 亚洲精品成人久久久久久| 国产男人的电影天堂91| 在线观看美女被高潮喷水网站| 给我免费播放毛片高清在线观看| 亚洲精品456在线播放app | 九色成人免费人妻av| 午夜福利在线观看吧| 国内精品久久久久久久电影| 亚洲人成网站高清观看| 内射极品少妇av片p| 91久久精品电影网| 一区福利在线观看| 成年女人永久免费观看视频| 性插视频无遮挡在线免费观看| aaaaa片日本免费| 国产成人a区在线观看| 在线观看舔阴道视频| 国产爱豆传媒在线观看| 内地一区二区视频在线| 人人妻人人看人人澡| 精品一区二区三区视频在线观看免费| 久久婷婷人人爽人人干人人爱| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 波多野结衣巨乳人妻| .国产精品久久| 91av网一区二区| a级毛片a级免费在线| 人妻少妇偷人精品九色| 男女那种视频在线观看| 又黄又爽又免费观看的视频| av中文乱码字幕在线| 女生性感内裤真人,穿戴方法视频| 春色校园在线视频观看| 精品99又大又爽又粗少妇毛片 | 亚洲av第一区精品v没综合| 日本黄色片子视频| 内射极品少妇av片p| 黄色女人牲交| 国产淫片久久久久久久久| 日日夜夜操网爽| 12—13女人毛片做爰片一| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 男女啪啪激烈高潮av片| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 国产精品av视频在线免费观看| 久久久久国内视频| 免费看光身美女| 久久久久久久久久黄片| 女的被弄到高潮叫床怎么办 | aaaaa片日本免费| 在线观看66精品国产| 久久久久久国产a免费观看| 老司机福利观看| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 国产伦精品一区二区三区四那| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| 尤物成人国产欧美一区二区三区| 美女大奶头视频| 精品欧美国产一区二区三| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一级一片aⅴ在线观看| 久久久久性生活片| 亚洲第一区二区三区不卡| 日本免费a在线| 男女那种视频在线观看| 国产主播在线观看一区二区| 一级黄片播放器| 三级男女做爰猛烈吃奶摸视频| 噜噜噜噜噜久久久久久91| 直男gayav资源| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 亚洲,欧美,日韩| 精品一区二区免费观看| 成年女人毛片免费观看观看9| 永久网站在线| 亚洲五月天丁香| 亚洲中文日韩欧美视频| 国产成年人精品一区二区| 中出人妻视频一区二区| 国产av在哪里看| 久久九九热精品免费| 国产精品99久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 级片在线观看| 久久精品国产自在天天线| 国产真实乱freesex| 一个人看的www免费观看视频| 成人特级av手机在线观看| 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 久久精品国产99精品国产亚洲性色| 色哟哟哟哟哟哟| 啪啪无遮挡十八禁网站| 中文字幕av在线有码专区| 香蕉av资源在线| 欧美中文日本在线观看视频| 中文字幕av成人在线电影| 欧美成人一区二区免费高清观看| 少妇熟女aⅴ在线视频| 色哟哟·www| 直男gayav资源| 无遮挡黄片免费观看| 亚洲欧美日韩高清专用| av.在线天堂| 深爱激情五月婷婷| 中文字幕av在线有码专区| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 人人妻人人澡欧美一区二区| 国产中年淑女户外野战色| 女同久久另类99精品国产91| 丝袜美腿在线中文| 少妇熟女aⅴ在线视频| 九九热线精品视视频播放| 老师上课跳d突然被开到最大视频| 搡老岳熟女国产| 少妇人妻精品综合一区二区 | 99久久精品热视频| 国产在视频线在精品| 亚洲乱码一区二区免费版| 久久精品影院6| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 他把我摸到了高潮在线观看| 99在线视频只有这里精品首页| 亚洲在线自拍视频| 男人舔女人下体高潮全视频| 久久久国产成人免费| 欧美日韩瑟瑟在线播放| 国产黄a三级三级三级人| 精品日产1卡2卡| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 美女免费视频网站| 99精品久久久久人妻精品| 尾随美女入室| 国产高清激情床上av| 欧美色欧美亚洲另类二区| 国产亚洲精品久久久久久毛片| 国产精品精品国产色婷婷| 天堂影院成人在线观看| 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| 国产精品亚洲一级av第二区| 天美传媒精品一区二区| 窝窝影院91人妻| 国产蜜桃级精品一区二区三区| 日本黄色片子视频| 少妇高潮的动态图| а√天堂www在线а√下载| 亚洲天堂国产精品一区在线| 国内精品美女久久久久久| 亚洲av.av天堂| 欧美丝袜亚洲另类 | 美女 人体艺术 gogo| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三| 久久精品影院6| 亚洲一区高清亚洲精品| 国产精品亚洲美女久久久| av国产免费在线观看| 日本a在线网址| 成人亚洲精品av一区二区| 免费一级毛片在线播放高清视频| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 亚洲国产精品久久男人天堂| 国产高潮美女av| 亚洲精品日韩av片在线观看| 观看美女的网站| 亚洲第一电影网av| 在线观看66精品国产| www.色视频.com| 性色avwww在线观看| 日本黄色片子视频| 午夜视频国产福利| 日韩欧美国产一区二区入口| 免费不卡的大黄色大毛片视频在线观看 | 窝窝影院91人妻| 亚洲av五月六月丁香网| 日韩欧美在线乱码| 不卡一级毛片| 国产精品久久久久久精品电影| 精品久久国产蜜桃| 美女cb高潮喷水在线观看| 国产精品永久免费网站| 色5月婷婷丁香| 久久国产乱子免费精品| 欧美在线一区亚洲| 日本黄色片子视频| 国产伦一二天堂av在线观看| 一区二区三区激情视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美性感艳星| 美女高潮的动态| 国产精品国产高清国产av| 国产精品久久久久久精品电影| 国内精品宾馆在线| 国产色婷婷99| 人人妻,人人澡人人爽秒播| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 一个人看视频在线观看www免费| 热99在线观看视频| 欧美在线一区亚洲| 久久精品国产鲁丝片午夜精品 | 精品久久久久久久久亚洲 | 啦啦啦韩国在线观看视频| 久久久久久九九精品二区国产| 亚洲内射少妇av| 俄罗斯特黄特色一大片| 99九九线精品视频在线观看视频| 国产精品伦人一区二区| 国产乱人伦免费视频| 五月玫瑰六月丁香| 国内精品宾馆在线| 国产精品乱码一区二三区的特点| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 国产伦人伦偷精品视频| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 欧美性感艳星| 亚洲三级黄色毛片| 少妇人妻一区二区三区视频| 日韩欧美精品免费久久| 国产亚洲精品av在线| 久久久久久久久久黄片| 99久国产av精品| 精品人妻偷拍中文字幕| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添小说| 午夜a级毛片| 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 免费看美女性在线毛片视频| 观看免费一级毛片| 老熟妇仑乱视频hdxx| 精品久久久久久久久av| 国产人妻一区二区三区在| 久久久久久久久中文| 日韩精品有码人妻一区| 在线观看午夜福利视频| 真人做人爱边吃奶动态| 国产一区二区三区av在线 | 久久久久国产精品人妻aⅴ院| 久久精品夜夜夜夜夜久久蜜豆| 嫁个100分男人电影在线观看| 免费一级毛片在线播放高清视频| 久久精品国产自在天天线| 国产精品一区www在线观看 | 床上黄色一级片| 国产精品一区www在线观看 | av女优亚洲男人天堂| 精品一区二区三区人妻视频| 国产成人aa在线观看| 亚洲 国产 在线| 三级毛片av免费| 日日啪夜夜撸| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 午夜福利在线在线| 免费看日本二区| 3wmmmm亚洲av在线观看| 国产av一区在线观看免费| 高清日韩中文字幕在线| 天堂网av新在线| 欧美日韩中文字幕国产精品一区二区三区| 欧美日本视频| 日本a在线网址| 婷婷精品国产亚洲av| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 久久九九热精品免费| 麻豆久久精品国产亚洲av| 午夜爱爱视频在线播放| 亚洲真实伦在线观看| 极品教师在线视频| 99久久精品热视频| 国产探花在线观看一区二区| 国产精品精品国产色婷婷| 人妻制服诱惑在线中文字幕| 久久午夜福利片| 又紧又爽又黄一区二区| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产成人久久av| 大又大粗又爽又黄少妇毛片口| 亚洲无线在线观看| 欧美激情国产日韩精品一区| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久久电影| 国产麻豆成人av免费视频| 亚洲成人精品中文字幕电影| 别揉我奶头 嗯啊视频| 亚洲一级一片aⅴ在线观看| 日韩大尺度精品在线看网址| a级毛片a级免费在线| 伊人久久精品亚洲午夜| 国产成人影院久久av| 国产精品一区二区性色av| 国产麻豆成人av免费视频| 少妇人妻一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 小蜜桃在线观看免费完整版高清| 校园人妻丝袜中文字幕| 熟女电影av网| 日韩 亚洲 欧美在线| 免费看a级黄色片| 亚洲男人的天堂狠狠| 亚洲av.av天堂| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| 免费无遮挡裸体视频| 亚洲欧美清纯卡通| 久久精品人妻少妇| 免费看日本二区| 亚洲av.av天堂| 99久久精品一区二区三区| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱 | 中文字幕熟女人妻在线| 亚洲国产精品合色在线| 男人的好看免费观看在线视频| 91久久精品电影网| 干丝袜人妻中文字幕| 久久这里只有精品中国| 亚洲天堂国产精品一区在线| 日韩精品有码人妻一区| 国产精品久久久久久av不卡| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 搡女人真爽免费视频火全软件 | 3wmmmm亚洲av在线观看| 国产美女午夜福利| 午夜福利在线观看免费完整高清在 | 高清在线国产一区| 日韩人妻高清精品专区| 午夜福利高清视频| 中国美女看黄片| 欧美激情国产日韩精品一区| 亚洲七黄色美女视频| 看十八女毛片水多多多| 97热精品久久久久久| 精品福利观看| 欧美性感艳星| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 日韩欧美在线二视频| 日本与韩国留学比较| 国产欧美日韩一区二区精品| 看十八女毛片水多多多| 超碰av人人做人人爽久久| 国产探花在线观看一区二区| 亚洲美女视频黄频| 最新在线观看一区二区三区| 亚洲电影在线观看av| 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 久久久久性生活片| 小说图片视频综合网站| 天美传媒精品一区二区| 可以在线观看毛片的网站| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片 | 亚洲av日韩精品久久久久久密| 国产成人a区在线观看| 一进一出好大好爽视频| 乱码一卡2卡4卡精品| 在线免费观看的www视频| 久久久久久久亚洲中文字幕| 国产高清视频在线观看网站| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 国产激情偷乱视频一区二区| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| av在线天堂中文字幕| 国产午夜精品论理片| 免费看美女性在线毛片视频| 伊人久久精品亚洲午夜| 少妇猛男粗大的猛烈进出视频 | 久久久久久国产a免费观看| 午夜视频国产福利| 国产伦人伦偷精品视频| 白带黄色成豆腐渣| 中亚洲国语对白在线视频| 22中文网久久字幕| 国产精品永久免费网站| 国产精品精品国产色婷婷| 午夜福利在线观看免费完整高清在 | 亚洲av免费在线观看| 在线观看舔阴道视频| 禁无遮挡网站| 精品久久久久久,| 男女那种视频在线观看| 亚洲av一区综合| 成人特级黄色片久久久久久久| 亚洲成a人片在线一区二区| 国产91精品成人一区二区三区| 国产亚洲精品av在线| 免费观看的影片在线观看| 日本色播在线视频| 国产精品野战在线观看| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 国产成人a区在线观看| 九九爱精品视频在线观看| 少妇被粗大猛烈的视频| 成人精品一区二区免费| a在线观看视频网站| 日本与韩国留学比较| 午夜精品一区二区三区免费看| 99国产精品一区二区蜜桃av| 22中文网久久字幕| 午夜久久久久精精品| 校园人妻丝袜中文字幕| 午夜福利高清视频| 天堂影院成人在线观看| 校园人妻丝袜中文字幕| 久久热精品热| 国产久久久一区二区三区| 国产一区二区在线av高清观看| 成年版毛片免费区| 狂野欧美白嫩少妇大欣赏| 美女黄网站色视频| 久久久久国产精品人妻aⅴ院| bbb黄色大片| 久久久成人免费电影| 韩国av一区二区三区四区| 精品欧美国产一区二区三| 18禁黄网站禁片免费观看直播| 欧美最黄视频在线播放免费| 国产精品久久视频播放| 久久热精品热| 国产色爽女视频免费观看| 久久久久久久精品吃奶| 精品人妻1区二区| 又黄又爽又刺激的免费视频.| 校园人妻丝袜中文字幕| 91午夜精品亚洲一区二区三区 | 国产精品自产拍在线观看55亚洲| 亚洲中文字幕日韩| 校园春色视频在线观看| 91久久精品国产一区二区三区| 变态另类成人亚洲欧美熟女| 男人狂女人下面高潮的视频| 黄色女人牲交| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 99久久无色码亚洲精品果冻| 在线a可以看的网站|