• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RAIM Algorithm Based on Fuzzy Clustering Analysis

    2019-05-27 01:44:22ShouzhouGuJinzhongBeiChuangShiYamingDangZuoyaZhengandCongcongCui

    Shouzhou Gu , Jinzhong Bei Chuang Shi, Yaming Dang Zuoya Zheng and Congcong Cui

    Abstract: With the development of various navigation systems (such as GLONASS, Galileo, BDS), there is a sharp increase in the number of visible satellites.Accordingly, the probability of multiply gross measurements will increase.However, the conventional RAIM methods are difficult to meet the demands of the navigation system.In order to solve the problem of checking and identify multiple gross errors of receiver autonomous integrity monitoring (RAIM), this paper designed full matrix of single point positioning by QR decomposition, and proposed a new RAIM algorithm based on fuzzy clustering analysis with fuzzy c-means (FCM).And on the condition of single or two gross errors, the performance of hard or fuzzy clustering analysis were compared.As the results of the experiments, the fuzzy clustering method based on FCM principle could detect multiple gross error effectively, also achieved the quality control of single point positioning and ensured better reliability results.

    Keywords: Integrity, RAIM, FCM, single point positioning.

    1 Introduction

    Surveying and navigation industries have been revolutionized over the past three decades by the global navigation satellite system (GNSS).The integrity of GNSS is a major limitation for many existing and potential applications.GNSS integrity refers to the ability of the system to alert users when the navigation system fails or the positioning cannot be used for navigation and positioning [Bei (2010)].As a measure of the user's availability of information provided by the system and an important parameter, receiver autonomous integrity monitoring (RAIM) refers to monitoring the completeness of user positioning results based on redundant observations from the user receiver.RAIM is a key part in the integrity monitoring system and the last link to ensure the security of user positioning [Parkinson, Spilker, Axelrad et al.(1996)].

    The RAIM algorithms have always become research focuses in the GNSS field.RAIM is the ability to detect and identify the failures in GNSS by using measurements from receiver which needs more than 4 visible satellites to detect failures and more than 5 to identify.

    The current RAIM algorithms, mainly including the parity vector method [Wang, Zhang, Xu et al.(2016); Li and Li (2012)], the least squares residual method [Li, Zhu, Yang et al.(2016)], and the approximate radial error protection method [Hunzinger, Morgren, Studenny et al.(1997)], use the residual comparison to perform fault detection, which has a better recognition effect for a single gross error, but has a poor effect under multiple gross errors.The overall least squares method [Juang (2000); Jeon and Lachapelle (2005); Yang, Liu and Zhang (2009)] can perform fault detection and fault identification, but because it takes into account the correspondence between the smallest singular value mutation and the satellite fault, the algorithm is complex, the calculation load is heavy, and the timeliness is not satisfied; In addition, the maximum de-separation method [Nowak (2015); Joerger, Chan and Pervan (2014)], the weighted RAIM method [Yu (2008)], the Bayesian method [Zhang and Gui (2015)] and the Kalman filter algorithm [Song, Hou and Xue (2017)] have not solved the fault identification problem well.

    With the development of various navigation systems (such as GLONASS, Galileo, BDS), there is a sharp increase in the number of visible satellites.Accordingly, the probability of multiply gross measurements will increase.However, the conventional RAIM methods are difficult to meet the demands of the navigation system.In order to solve this problem, this paper proposes a new RAIM algorithm based on fuzzy clustering analysis, which can effectively solve the problem of detection and recognition of multiple gross errors.

    2 Principle of fuzzy clustering analysis

    Fuzzy clustering analysis is a mathematical method that uses fuzzy mathematics to describe and classify things according to certain requirements.Fuzzy clustering analysis generally refers to constructing a fuzzy matrix according to the attributes of the concerned object itself.The clustering relationship is determined according to a certain degree of membership, that is, fuzzy mathematics is used to quantitatively determine the fuzzy relationship between samples to objectively and accurately cluster.There are many clustering methods, such as based on similarity relations and fuzzy relations, transitive closures based on fuzzy equivalence relations, maximum support trees based on fuzzy graph theory, and methods based on convex decomposition, dynamic programming and difficult identification of data.But the most widely used in practice is the fuzzy clustering method based on objective function.This paper selects the most complete and widely used fuzzy c-means (FCM) based on the objective function-based clustering algorithm.

    A given data set X={x1,x2,…,xn} is a set of finite set of observation samples for n modes in the pattern space, xk={xk1,xk2,…,xks} is the eigenvector of the observed sample xk, corresponding to a point of the feature space.xkjis the assignment on the j-th dimension of the feature vector xk.For a given sample X, if it is divided into class c, then corresponding to c class centers.Each sample belongs to a class i with a membership degree of uij.Then define an FCM objective function and its constraints are as follows:

    where

    where, m is called a weighted exponent or smoothing parameter and is a membership factor; dijrepresents the degree of distortion between the sample xjin the i-th class and the i-th cluster center ci, measured by the distance between the two vectors.As shown in Eq.(4).

    The criterion for clustering is to take the minimum value of the objective function, that is:

    We can obtain

    Furthermore, we have

    It can be known from the constraint condition 2 expressed in Eq.(3)

    that

    As can be seen from the above, if the data set X, the clustering class number c, and the weight m are known, the best fuzzy classification matrix and cluster center can be determined from the above equation.

    3 Construction of full design matrix

    3.1 Definition of full design matrix

    In the single-point positioning based on the least squares, the observational equation reads,

    where “l(fā) ” represents the pseudo-range residuals, l=ρ-Dis-δ0

    B is the coefficient matrix, XSi=(xsi,ysi,zsi) represents the position of satellite i, X=(x,y,z) represents the position of user, δx=(dx,dy,dz,dt) is the user’s position and time bias, ρ is the pseudo-range, δ0is the sum of various error including troposphere and ionosphere error, which is calculated by model, Disiis the distance of user and the satellite i, n is the number of satellite.

    Then the user location can be given by the LS estimation

    At the same time, we can obtain the reliability matrix R, it is expressed an equation (17).

    Where I is the n-dimensional unit matrix

    The properties of the reliability matrix R include

    (1) The reliability matrix R is an idempotent matrix, it means R2=R.

    (2) The reliability matrix R is not full rank matrix, its rank is n-t, n is the number of satellite and t is necessary observation number, in here t=4.

    Suppose there is a linear transformation, it is expressed as equation (18)

    Then, we can obtain the definition of QR parity check vector t,

    The properties of the QR parity check vector t are as follows

    QR parity check vector conversion matrix T is a special transformation that transforms ndimensional observation space into n-4 dimensional parity space.T has the following special properties:

    (1) Each row of T is orthogonal to the columns of B;

    (2) The rows of T are orthogonal to each other;

    (3) The rows of T are normalized, and the size of each row is unity;

    In the QR parity method, it is proved that:

    Eq.(19) is defined by the QR parity check vector, and l is replaced by its equivalent Bδx-V.Since the orthogonal propertyTB=0, and we have:

    Where: t is the QR parity detection vector; T is the QR parity detection generation matrix; ε is the negative residual.

    The matrix expansion can be obtained from Eq.(23):

    where: m=n-4;n is the number of satellites; εi(i=1,2,…,n) is the negative residual of observation i, which is a numerical variable.

    Where Tiis the columns i of T determined by the geometric matrix of the satellite position, εiis determined by the functional characteristics of the observation, so εiTiis determined by the observation error and the satellite geometry matrix.When there is a gross error in a certain measurement, it will be expressed that the ‖ εiTi‖ value of the observation is larger, that is, the modulus of the vector εiTiis larger; and it has an advantage in the left half of the formula (25) medium, that is, the share is relatively large.Therefore, the formula (25) the right part of the middle part is mainly affected by the gross error εiT, so the QR parity check vector t has a relatively strong correlation with the influence vector εiPiof the error observation.

    By converting the formula (25) into a matrix form, you can get:

    That is, the left part and the right part in the formula (26) are combined, and this formula is called a full design matrix.

    3.2 Calculation of full design matrix

    The full design matrix is calculated by coefficient matrix Bn×4.Firstly, we take QR decomposition for matrix Bn×4.

    The QR decomposition (also called the QR factorization) of a matrix is a decomposition of the matrix into an orthogonal matrix and a triangular matrix.A QR decomposition of a real square matrix B is a decomposition of B as B = QS, where Q is an orthogonal matrix and S is an upper triangular matrix.If A is nonsingular, then this factorization is unique.It means that

    The upper triangular matrix can be express asis 4×4 an upper triangular matrix, Syis a (n-4)×4 zero matrix.

    Similarly, we can take the transpose of orthogonal matrix Q asis 4×n matrix, Qyis a (n-4)×n matrix.

    Then, for the observational equation V=Bδx-l, we can know

    Eq.(29) are multiplied by the transpose of orthogonal matrix Q on both sides.

    then

    Because Syis a (n-4)×4 zero matrix, we can know

    If we take Qyl=QyV=t, then Qyis the full design matrix.

    4 Single-point positioning RAIM algorithm based on FCM

    The full design matrix in Section 3 of this paper is a sample of fuzzy clustering.Each column of the full design matrix represents a satellite.The specific clustering process is as follows:

    (1) Calculate the relative distance matrix D of the full design matrix.

    (2) The number of clustering categories is determined.This paper determines three categories, which are health observations, suspected outliers and outliers.The maximum, minimum and intermediate values are selected as cluster centers.

    (3) Calculating the membership function

    (4) Update cluster center

    (5) Calculating the variation of cluster centers

    (6) If Δ is less than the threshold, stop the calculation, otherwise repeat Step 3 to Step 5.

    5 Experiments and analysis

    5.1 Data and experimental scheme

    Method availability analysis uses two options:

    (1) Introducing a single gross error (introducing a 4 m magnitude gross error on a single value of negative residual ε), performing gross error detection and identification, and comparing it with hard cluster analysis.

    (2) Introducing two gross errors (introducing the 4 m magnitude gross error on the two values of the negative residual ε), performing gross error detection and identification, and comparing with the hard cluster analysis.

    The data is based on the data in [Bei (2010)].C001 station in the continuous operating reference stations (CORS) network in Hebei Province.The data time is UTC 0:00:00-24:00:00 on August 1, 2017.The data sampling rate is 30 s.

    5.2 Introducing a single gross error

    This study selects an observation epoch of the C001 station.According to the single-point positioning model, there are 4 unknowns, including the coordinates XYZ of the position to be fixed and the receiver clock error t.The basic observation equation is n×4, then QR parity check method produces matrix T is (n-4)×4.In this example, the number of satellites is n=9.This example starts with the matrix T and matrix ε obtained after QR decomposition.

    T5×9 = 0.421 -0.047 -0.127 0.053 0.689 -0.297 -0.421 -0.248 -0.023 0.224 0.353 0.175 0.226 0.026 0.649 0.169 0.369 0.396 0.313 0.193 0.441 0.365 -0.313 -0.402 0.403 -0.291 0.174 0.250 -0.410 -0.090 0.106 0.008 -0.296 0.185 0.670 -0.422 0.304 -0.604 0.187 -0.390 -0.083 -0.031 0.193 -0.120 0.544 Matrix ε9×1 (the gross error is added to the fourth column here) 0.774 -0.590 0.581 -3.303 -0.762 0.684 -0.842 0.223 -0.872 Full design matrix 0.326 0.028 -0.074 -0.175 -0.525 -0.203 0.354 -0.055 0.020 -0.304

    Figure 1: Cluster graph of one single gross error with hard cluster analysis methods

    0.173 0.208 -0.102 -0.746 -0.020 0.444 -0.142 -0.082 0.345 0.078 0.242 -0.114 -0.256 -1.206 0.239 -0.275 -0.339 -0.065 -0.152 -1.926 0.193 0.242 -0.052 -0.350 -0.006 -0.202 -0.156 0.149 0.368 0.186 0.235 0.356 0.109 1.288 0.063 -0.021 -0.163 -0.027 -0.474 1.367

    5.2.1 Using hard clustering analysis

    Calculate the correlation distance matrix by using the Mahala Nobis distance calculation method according to the full design matrix:

    Further cluster analysis is shown in Fig.1.

    As can be seen from Fig.1, the class 10 and class 4 are finally synthesized into one class, because class 10 is a gross error class, it is classified as a gross error class; Other classes fall into one category, which is a random error class.Obviously, the gross error is separated.

    5.2.2 Using fuzzy class analysis

    According to the full design matrix, the Mahala nobis distance calculation method is used to calculate the correlation distance matrix, and three initial cluster centers are set.According to the distance as the initial membership coefficient, and then iterative operation, and finally all the data into three categories, the clustering results shown in Fig.2.

    As can be seen from Fig.2, all classes are finally divided into three categories: the first class contains class 1, class 2, and class 9; the second class contains class 10 and class 4; and the third class contains class 3, class 5, class 6 and class 7.Where class 10 is a known gross error class, so the second class is a gross error class; There are large correlations between multiple subclasses (class 5, class 6, class 7, class 9) in the first class and the third class, so they are grouped into one class called health class.

    It can be seen from Fig.1 and Fig.2 that the hard cluster analysis method and the fuzzy clustering analysis method can better realize the gross error recognition under the condition of single gross error.

    5.3 Introducing two gross errors

    This study selects the same observation epoch from the introduction of a single gross error.According to the single-point positioning model, there are 4 unknowns, including the coordinates XYZ of the position to be fixed and the receiver clock error t.The basic observation equation is n×4, then QR parity check method produces matrix Tis (n-4)×4.In this example, the number of satellites is (n=9.This example starts with the matrix Tand matrix ε obtained after QR decomposition.

    0.304 -0.604 0.187 -0.390 -0.083 -0.031 0.193 -0.120 0.544 Matrix ε9×1 (The fourth and seventh columns here have added gross errors.) 0.774 -0.590 0.581 -3.303 -0.762 0.684 -4.842 0.223 -0.872 Full design matrix 0.326 0.028 -0.074 -0.175 -0.525 -0.203 2.038 -0.055 0.020 1.380 0.173 0.208 -0.102 -0.746 -0.020 0.444 -0.818 -0.082 0.345 -0.598 0.242 -0.114 -0.256 -1.206 0.239 -0.275 -1.951 -0.065 -0.152 -3.538 0.193 0.242 -0.052 -0.350 -0.006 -0.202 -0.896 0.149 0.368 -0.554 0.235 0.356 0.109 1.288 0.063 -0.021 -0.935 -0.027 -0.474 0.595

    5.3.1 Using hard clustering analysis

    Calculate the correlation distance matrix by using the Mahala nobis distance calculation method according to the full design matrix:

    ?

    Cluster analysis is shown in Fig.3.

    Figure 3: Cluster graph of two gross errors with hard cluster analysis methods

    As can be seen from Fig.3, class 10 and class 7 are finally synthesized into one class, which is classified as a gross error class; Other classes fall into one category, which is a random error class.Obviously, the largest gross error that existed was first separated, but the gross error class 4 was not identified.

    5.3.2 Using fuzzy class analysis

    According to the full design matrix, the Mahala nobis distance calculation method is used to calculate the correlation distance matrix, and three initial cluster centers are set.According to the distance as the initial membership coefficient, and then iterative operation, and finally all the data into three categories, the clustering results shown in Fig.4.

    Figure 4: Membership Map of Two Gross Errors with Fuzzy Cluster

    As can be seen from Fig.4, all classes are finally divided into three categories: the first class contains class 4; the second class contains class 10 and class 7; and the third class contains class 1, class 2, class 3, class 5, class 6, class 7 and class 9.Where class 10 is a known gross error class, so the second class is a gross error class.As can be seen from Fig.4, the first class has only one single sample, which is the isolated data, which can be judged as gross error data, which is classified as gross error class; the remaining the third class is classified as health class.

    It can be seen from Fig.3 and Fig.4 that the fuzzy clustering analysis method effectively realizes the gross error recognition under the condition of two gross errors, but the hard cluster analysis method recognizes at one time.

    5 Citations

    With the development of various navigation systems (such as GLONASS, Galileo, BDS), there is a sharp increase in the number of visible satellites.Accordingly, the probability of multiply gross measurements will increase.However, the conventional RAIM methods are difficult to meet the demands of the navigation system.Aiming at the identification problem of multiple gross errors in GNSS RAIM, this paper introduces the fuzzy clustering analysis method of FCM, and then the full design matrix of single point positioning constructed by QR parity check method is taken as the initial sample.and studies the RAIM method based on fuzzy clustering analysis method.Combined with the actual observation data, it is compared with the traditional cluster analysis method.It can be seen from the results that the method can effectively realize the identification of multiple gross errors, and has certain application value for gross error recognition in practical engineering.

    Acknowledgement:This work was supported by “Key Project of China National Programs for Research and Development (No.2016YFB0501801, No.2016YFB0502105, No.2016YFB0501405), International GNSS Monitoring & Assessment System (iGMAS, No.GFZX0301040308-06), Fundamental Research Funds of the CASM(AR1901), The National High-tech Research and Development Program of China (863 Program) (No.2015AA124001), The Fundamental Research Funds for CASM(No.7771730) and thanks for the data from Hebei province surveying and mapping data archives.

    References

    Bei, J.Z.(2010): GNSS Integrity Monitoring Method, Technology and Application.Wuhan: Wuhan University.

    Bei, J.Z.(2012): Theory and Application of GNSS Integrity Monitoring.Beijing: Surveying and Mapping Press.

    Hunzinger, J.F.; Morgren, S.D.; Studenny, J.(1997):CDGPS RAIM algorithm and protection radius calculation.Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation.

    Jeon, C.W.; Lachapelle, G.(2005): A new TLS-based sequential algorithm to identify two failed satellites.International Journal of Control, Automation, and Systems, vol.3, no.2, pp.166-172.

    Joerger, M.; Chan, F.C.; Pervan, B.(2014): Solution separation versus residual-based RAIM.Navigation, vol.61, no.4, pp.273-291.

    Juang, J.C.(2000): On GPS position and integrity monitoring.IEEE Transactions on Aerospace and Electronic Systems, vol.36, no.1, pp.327-336.

    Li, C.; Zhu, L.F.; Yang, Q.(2016): Research on receiver autonomous integrity monitoring by least squares residuals.GNSS World of China, vol.41, no.1, pp.69-72.

    Li, Y.; Li, M.(2012): Study on RAIM algorithm of GPS receiver based on parity vector.Geomatics & Spatial Information Technology, vol.35, no.1, pp.158-160.

    Nowak, A.(2015): The proposal to “snapshot” rain method for GNSS vessel receivers working in poor space segment geometry.Polish Maritime Research, vol.22, no.4, pp.3-8.

    Parkinson, B.W.; Spilker, J.; Axelrad, P.(1996): Global Positoning System: Theory and Applications: VolumeⅡ.Reston, VA, USA: AIAA.

    Song, J.C.; Hou, C.P.; Xue, G.X.(2017): GNSS receiver autonomous integrity monitoring based on EKF, Journal of Tianjin University (Science and Technology), vol.50, no.4, pp.405-410.

    Wang, W.B.; Zhang, P.F.; Xu, C.D.(2016): The research on parity vector RAIM algorithm based on BDS/GPS multi-constellation.China Satellite Navigation Conference.

    Yang, Y.B; Liu, J.N.; Zhang, L.(2009): RAIM algorithm based on total least squares method.Urban Geotechnical Investigation & Surveying, no.6, pp.55-57.

    Yu, C.C.(2008): Research on the Technology of High Dynamic GNSS Receiver and Multi-Mode Calculation.Hangzhou: Zhejiang University.

    Zhang, Q.; Gui Q.(2015): A new Bayesian RAIM for multiple faults detection and exclusion in GNSS.Journal of Navigation, vol.68, no.3, pp.465-479.

    亚洲人成电影观看| 两个人免费观看高清视频| 精品国产美女av久久久久小说| 亚洲激情在线av| 19禁男女啪啪无遮挡网站| 免费看十八禁软件| 国内久久婷婷六月综合欲色啪| 制服人妻中文乱码| 黑人巨大精品欧美一区二区mp4| 麻豆久久精品国产亚洲av | 桃红色精品国产亚洲av| 欧美成人免费av一区二区三区| 日本vs欧美在线观看视频| 国产极品粉嫩免费观看在线| 一区二区三区精品91| 精品国产乱码久久久久久男人| 国产av一区二区精品久久| 国产野战对白在线观看| 悠悠久久av| 99久久久亚洲精品蜜臀av| 一二三四在线观看免费中文在| 99国产精品99久久久久| 久久热在线av| 久久人妻av系列| 国产成人av激情在线播放| 777久久人妻少妇嫩草av网站| 久久人人97超碰香蕉20202| 岛国视频午夜一区免费看| 亚洲五月天丁香| 少妇的丰满在线观看| 久久草成人影院| 国产av又大| 在线看a的网站| 99精国产麻豆久久婷婷| 在线天堂中文资源库| 国产av一区二区精品久久| 在线永久观看黄色视频| 久热这里只有精品99| 久久人人97超碰香蕉20202| 波多野结衣高清无吗| 国产深夜福利视频在线观看| 99国产极品粉嫩在线观看| 午夜a级毛片| 19禁男女啪啪无遮挡网站| 性色av乱码一区二区三区2| 亚洲一区二区三区欧美精品| 男人的好看免费观看在线视频 | 日日干狠狠操夜夜爽| 18美女黄网站色大片免费观看| 人成视频在线观看免费观看| 亚洲一区二区三区欧美精品| 久久国产精品人妻蜜桃| 午夜视频精品福利| 叶爱在线成人免费视频播放| 国产区一区二久久| 欧美国产精品va在线观看不卡| 日韩欧美国产一区二区入口| 免费高清在线观看日韩| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频| 久久欧美精品欧美久久欧美| 女性生殖器流出的白浆| 51午夜福利影视在线观看| 国产成人精品无人区| 狠狠狠狠99中文字幕| 免费看十八禁软件| 中文字幕人妻熟女乱码| 久久草成人影院| 人人妻人人添人人爽欧美一区卜| 亚洲av第一区精品v没综合| 久久久国产成人精品二区 | 成人亚洲精品一区在线观看| aaaaa片日本免费| 韩国av一区二区三区四区| 亚洲伊人色综图| 丝袜美腿诱惑在线| 中文字幕色久视频| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出 | 国产精品影院久久| 欧美成人性av电影在线观看| 免费av中文字幕在线| 又紧又爽又黄一区二区| 欧美老熟妇乱子伦牲交| 国产国语露脸激情在线看| 免费一级毛片在线播放高清视频 | 少妇被粗大的猛进出69影院| 国产一区二区三区在线臀色熟女 | 国产成人免费无遮挡视频| 高清欧美精品videossex| 成人特级黄色片久久久久久久| av天堂在线播放| 亚洲九九香蕉| 老司机午夜福利在线观看视频| 在线观看舔阴道视频| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 婷婷六月久久综合丁香| 国产精华一区二区三区| av国产精品久久久久影院| 精品电影一区二区在线| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 无限看片的www在线观看| 一区二区三区激情视频| 亚洲国产看品久久| 日本精品一区二区三区蜜桃| 久久人妻熟女aⅴ| 亚洲一区二区三区欧美精品| 日韩一卡2卡3卡4卡2021年| 国产在线精品亚洲第一网站| 欧美国产精品va在线观看不卡| 午夜两性在线视频| 久久久久亚洲av毛片大全| 国产免费av片在线观看野外av| 欧美日本中文国产一区发布| cao死你这个sao货| 成人18禁在线播放| 老熟妇仑乱视频hdxx| 久久久久久大精品| 法律面前人人平等表现在哪些方面| 美女国产高潮福利片在线看| 日韩欧美三级三区| 女人被狂操c到高潮| 国产精品国产高清国产av| 午夜福利一区二区在线看| www.www免费av| 精品国内亚洲2022精品成人| 999久久久国产精品视频| 大陆偷拍与自拍| 成年女人毛片免费观看观看9| 精品卡一卡二卡四卡免费| 色哟哟哟哟哟哟| 国产一区二区三区在线臀色熟女 | 精品一品国产午夜福利视频| 欧美日韩视频精品一区| 热99国产精品久久久久久7| 国产一区在线观看成人免费| 亚洲国产欧美一区二区综合| 国产色视频综合| 日韩成人在线观看一区二区三区| 少妇 在线观看| 国产在线观看jvid| 国产蜜桃级精品一区二区三区| 国产一卡二卡三卡精品| 国产精品自产拍在线观看55亚洲| 免费搜索国产男女视频| 国产极品粉嫩免费观看在线| 免费在线观看日本一区| 91九色精品人成在线观看| 国产av又大| 亚洲免费av在线视频| 脱女人内裤的视频| 国产精品99久久99久久久不卡| 激情视频va一区二区三区| avwww免费| 丝袜美腿诱惑在线| 9色porny在线观看| 一级a爱片免费观看的视频| 一级,二级,三级黄色视频| 亚洲 欧美一区二区三区| 国产亚洲精品第一综合不卡| 18美女黄网站色大片免费观看| 精品久久久久久久久久免费视频 | 淫秽高清视频在线观看| 免费久久久久久久精品成人欧美视频| 国产99白浆流出| 黑丝袜美女国产一区| 91麻豆av在线| 欧美亚洲日本最大视频资源| 亚洲av第一区精品v没综合| av天堂久久9| 91字幕亚洲| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 欧美在线黄色| 欧美日韩视频精品一区| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 精品国产一区二区久久| 国产精品一区二区精品视频观看| 国产一区二区三区综合在线观看| bbb黄色大片| 制服人妻中文乱码| 国产精品1区2区在线观看.| 午夜福利影视在线免费观看| 亚洲成人免费电影在线观看| 涩涩av久久男人的天堂| 免费高清在线观看日韩| 黄色片一级片一级黄色片| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| av视频免费观看在线观看| 大型av网站在线播放| 免费不卡黄色视频| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看| 久久久精品欧美日韩精品| 国产极品粉嫩免费观看在线| 日日爽夜夜爽网站| 亚洲av成人不卡在线观看播放网| 午夜福利一区二区在线看| 亚洲一区二区三区欧美精品| 欧洲精品卡2卡3卡4卡5卡区| 国产精品乱码一区二三区的特点 | 亚洲第一av免费看| 亚洲成人国产一区在线观看| 母亲3免费完整高清在线观看| 性欧美人与动物交配| 91九色精品人成在线观看| 国产三级在线视频| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人一区二区三| 国产精品影院久久| 亚洲狠狠婷婷综合久久图片| 精品国产一区二区久久| 91九色精品人成在线观看| 搡老岳熟女国产| 嫩草影院精品99| 国内久久婷婷六月综合欲色啪| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 91大片在线观看| 久久国产乱子伦精品免费另类| a级毛片在线看网站| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 高清av免费在线| 亚洲全国av大片| 国产精品 国内视频| 可以在线观看毛片的网站| 在线观看一区二区三区| 美女 人体艺术 gogo| 亚洲精品一卡2卡三卡4卡5卡| av有码第一页| 黄色a级毛片大全视频| 国产在线观看jvid| 操美女的视频在线观看| 一进一出抽搐gif免费好疼 | 12—13女人毛片做爰片一| 交换朋友夫妻互换小说| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 亚洲三区欧美一区| 涩涩av久久男人的天堂| 久久精品国产清高在天天线| 久久精品人人爽人人爽视色| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 不卡一级毛片| 精品国产美女av久久久久小说| 精品国产美女av久久久久小说| 国产一区二区在线av高清观看| 最近最新免费中文字幕在线| 91麻豆av在线| 又黄又爽又免费观看的视频| 在线观看一区二区三区激情| 国产伦人伦偷精品视频| 欧美中文日本在线观看视频| 精品久久久久久久久久免费视频 | 一级片'在线观看视频| 多毛熟女@视频| 又黄又粗又硬又大视频| 午夜精品国产一区二区电影| 国产一区二区三区综合在线观看| 中文欧美无线码| 亚洲色图综合在线观看| av天堂在线播放| 精品福利永久在线观看| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 精品无人区乱码1区二区| 国产精品国产高清国产av| 88av欧美| 黄片大片在线免费观看| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| 麻豆一二三区av精品| 老司机靠b影院| 日本黄色日本黄色录像| 国产精品久久视频播放| 久久伊人香网站| 少妇 在线观看| 日韩三级视频一区二区三区| 国产麻豆69| 两性午夜刺激爽爽歪歪视频在线观看 | www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 男人舔女人的私密视频| 国产一区二区在线av高清观看| 亚洲一区二区三区欧美精品| 校园春色视频在线观看| 亚洲熟女毛片儿| 国产一区二区激情短视频| 性欧美人与动物交配| 久热爱精品视频在线9| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 在线播放国产精品三级| 9热在线视频观看99| av欧美777| 午夜福利在线免费观看网站| 久久精品国产99精品国产亚洲性色 | av中文乱码字幕在线| 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 国产成人影院久久av| 极品人妻少妇av视频| 人妻丰满熟妇av一区二区三区| 日韩精品中文字幕看吧| av中文乱码字幕在线| 叶爱在线成人免费视频播放| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| av在线播放免费不卡| 99香蕉大伊视频| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 久久 成人 亚洲| 午夜免费成人在线视频| 亚洲男人天堂网一区| 日韩欧美免费精品| 性少妇av在线| 9191精品国产免费久久| 涩涩av久久男人的天堂| 中文字幕另类日韩欧美亚洲嫩草| 日韩有码中文字幕| 一二三四在线观看免费中文在| 他把我摸到了高潮在线观看| 视频在线观看一区二区三区| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 丝袜在线中文字幕| 天天添夜夜摸| 久99久视频精品免费| 免费一级毛片在线播放高清视频 | 天天影视国产精品| 露出奶头的视频| 老汉色av国产亚洲站长工具| 亚洲av日韩精品久久久久久密| 丝袜人妻中文字幕| 精品久久久精品久久久| 国产精品久久久人人做人人爽| 91国产中文字幕| 看片在线看免费视频| 国产成人欧美| 免费在线观看完整版高清| 免费av毛片视频| 又大又爽又粗| 午夜免费鲁丝| 亚洲国产精品sss在线观看 | 女性生殖器流出的白浆| 午夜精品在线福利| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 国产黄色免费在线视频| 脱女人内裤的视频| 久久狼人影院| 精品国产一区二区久久| 亚洲三区欧美一区| 性色av乱码一区二区三区2| 亚洲男人的天堂狠狠| 色老头精品视频在线观看| 亚洲国产精品sss在线观看 | 午夜精品在线福利| 在线国产一区二区在线| 亚洲成人免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 极品人妻少妇av视频| 国产免费男女视频| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡免费网站照片 | 天堂√8在线中文| 日韩人妻精品一区2区三区| 91大片在线观看| 大型黄色视频在线免费观看| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 日韩国内少妇激情av| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| 久久精品国产综合久久久| 1024香蕉在线观看| tocl精华| 一区二区三区国产精品乱码| 男人舔女人的私密视频| 91成年电影在线观看| 日本撒尿小便嘘嘘汇集6| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 极品教师在线免费播放| 亚洲欧美激情综合另类| 欧美最黄视频在线播放免费 | 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品久久久久5区| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 97超级碰碰碰精品色视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产99白浆流出| 午夜福利在线免费观看网站| 中出人妻视频一区二区| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 丰满人妻熟妇乱又伦精品不卡| 精品人妻1区二区| 亚洲成国产人片在线观看| av天堂在线播放| 久9热在线精品视频| 久久久久国产精品人妻aⅴ院| 自线自在国产av| 黄频高清免费视频| 伦理电影免费视频| 999久久久国产精品视频| av超薄肉色丝袜交足视频| 91老司机精品| 天天躁狠狠躁夜夜躁狠狠躁| 日本免费a在线| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 少妇的丰满在线观看| 一a级毛片在线观看| 黄色丝袜av网址大全| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 亚洲性夜色夜夜综合| 一级毛片女人18水好多| 一级a爱片免费观看的视频| 大香蕉久久成人网| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| av网站免费在线观看视频| 91老司机精品| 久久亚洲精品不卡| x7x7x7水蜜桃| 亚洲三区欧美一区| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 久久久国产成人精品二区 | 久久久国产成人精品二区 | 制服诱惑二区| 亚洲av成人一区二区三| 国产主播在线观看一区二区| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 欧美黄色片欧美黄色片| 亚洲精品国产一区二区精华液| 午夜两性在线视频| 久久人妻熟女aⅴ| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 超碰成人久久| 91国产中文字幕| 韩国精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 黄网站色视频无遮挡免费观看| 视频区欧美日本亚洲| 国产精品 欧美亚洲| 一区二区三区激情视频| 国产有黄有色有爽视频| 黑人欧美特级aaaaaa片| 日本五十路高清| 日韩有码中文字幕| 黄色成人免费大全| 欧美日韩乱码在线| 黄色怎么调成土黄色| 国产一区二区三区在线臀色熟女 | av在线天堂中文字幕 | 国产成人系列免费观看| 日本wwww免费看| 色播在线永久视频| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 亚洲五月色婷婷综合| 精品久久久久久久毛片微露脸| 少妇的丰满在线观看| 成人特级黄色片久久久久久久| 少妇裸体淫交视频免费看高清 | 美女扒开内裤让男人捅视频| av中文乱码字幕在线| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 在线天堂中文资源库| 高清av免费在线| 成人av一区二区三区在线看| 一夜夜www| 欧美乱色亚洲激情| videosex国产| 亚洲欧美日韩高清在线视频| 午夜福利一区二区在线看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲片人在线观看| 免费久久久久久久精品成人欧美视频| 久久婷婷成人综合色麻豆| 国产一区二区三区在线臀色熟女 | 中文亚洲av片在线观看爽| 69av精品久久久久久| 亚洲午夜理论影院| 精品人妻在线不人妻| 在线av久久热| 麻豆久久精品国产亚洲av | 91在线观看av| 亚洲性夜色夜夜综合| 国产精品免费视频内射| 一级片免费观看大全| 曰老女人黄片| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 日韩免费av在线播放| 一区二区三区精品91| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 新久久久久国产一级毛片| 99久久国产精品久久久| 国产精品综合久久久久久久免费 | 久久精品国产亚洲av高清一级| 久久国产精品影院| 精品久久久久久电影网| 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 91国产中文字幕| 一区二区三区国产精品乱码| 黄色女人牲交| 中出人妻视频一区二区| 国产野战对白在线观看| 两人在一起打扑克的视频| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 亚洲男人天堂网一区| 国产免费男女视频| 亚洲精品中文字幕一二三四区| 可以在线观看毛片的网站| 中文字幕人妻丝袜一区二区| 日韩欧美在线二视频| 巨乳人妻的诱惑在线观看| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 日日干狠狠操夜夜爽| 成年版毛片免费区| 国产成人精品久久二区二区91| 欧美日韩国产mv在线观看视频| 成人免费观看视频高清| 老司机亚洲免费影院| 亚洲aⅴ乱码一区二区在线播放 | 男男h啪啪无遮挡| 亚洲熟妇中文字幕五十中出 | 色在线成人网| 女人精品久久久久毛片| 国产三级在线视频| 首页视频小说图片口味搜索| 搡老岳熟女国产| 最新美女视频免费是黄的| 99在线人妻在线中文字幕| netflix在线观看网站| 午夜亚洲福利在线播放| 免费在线观看视频国产中文字幕亚洲| 欧美黑人欧美精品刺激| 伦理电影免费视频| 午夜福利一区二区在线看| 国产成人啪精品午夜网站| 啦啦啦免费观看视频1| www.精华液| 午夜免费观看网址| 欧美久久黑人一区二区| 久久久水蜜桃国产精品网| 在线国产一区二区在线| 性色av乱码一区二区三区2| 手机成人av网站| www.www免费av| 老司机靠b影院| 99香蕉大伊视频| ponron亚洲| 99热国产这里只有精品6| 亚洲全国av大片| 视频区图区小说| 精品人妻1区二区| 精品欧美一区二区三区在线| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 88av欧美| 看黄色毛片网站| 男女下面插进去视频免费观看| 一边摸一边抽搐一进一出视频| 免费搜索国产男女视频| 女同久久另类99精品国产91| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 欧美日韩一级在线毛片| 日韩精品青青久久久久久| 亚洲成国产人片在线观看| 国产精品久久久av美女十八| 欧美中文综合在线视频| 国产成年人精品一区二区 | 18禁观看日本| 无人区码免费观看不卡| 亚洲成人免费av在线播放| 欧美日韩亚洲国产一区二区在线观看|