• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional flow field simulation of steady flow in the serrated diffusers and nozzles of valveless micro-pumps *

    2019-05-27 10:20:32YinghuaXuWeipingYanKairongQinTunCao

    Ying-hua Xu, Wei-ping Yan, Kai-rong Qin, Tun Cao

    1. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China

    2. School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China

    Abstract: This paper presents a three-dimensional flow field simulation of the steady flows through diffusers and nozzles with straight or serrated-sided walls to analyze the effect of the channel structure on the flow characteristics. The pressure and velocity profiles in the diffusers and the nozzles as well as the net volumetric flow rate are determined. Our simulation demonstrates that the pressure and velocity profiles in the serrated diffuser/nozzles are more complicated than those with the straight-sided wall, while the net steady flow rate with the straight-sided wall increases monotonically with the increase of the pressure difference, the steady flow rate with serrated sided walls increases gradually to reach a maximum and then decreases with the increase of the pressure difference. The results suggest that the number of the sawteeth plays a significant role in optimizing the design of serrated diffusers and nozzles for improving the transport efficiency of valveless micro-pumps.

    Key words: Valveless micro-pump, steady flow, diffuser and nozzle, serrated-sided wall, three-dimensional flow field simulation

    Introduction

    The microfluidic drives are important parts in the microfluidics, and the micropumps are central components of a large variety of microfluidic applications and devices such as the micro fuel cells[1], the trace drug dispensing and injection systems[2], the liquid cooling systems[3-4], the micro satellite propulsion systems[5], and the biochemical analysis[6]. The micropumps can be categorized by the design of their micro-structures. Some design items include the diffuser/nozzle micro channels[7-9], the straight sided pipes[10], the flap valves[11], the two-stage pump designs[12], the multi-chamber phase change designs,the magnetic pole channel and the electrode microchannel in the magnetohydrodynamics (MHD)[13]and the electrohydrodynamics(EHD)[14]micropumps. The valveless micropumps draw a considerable attention with their great reliability, long operating life, and because they do not plug up easily. In a diffuser/nozzle valveless micropump, the microvalve is replaced with two simple wedge-shaped channels having a relatively easy fabrication[15], which can be operated with many kinds of drivers[16], and allows a precise flow control to ensure that the living cells are not damaged by the fluctuating flow. They are thus suitable for many applications in biological and chemical synthesis.

    The first diffuser/nozzle valveless micro-pump was built in 2015 by Salari and Dalton[17]. As shown in Fig. 1, a diffuser/nozzle valveless micropump consists of one single chamber with a diaphragm that is lifted and pushed back at a certain frequency by an actuator, and the pump chamber is connected to a diffuser channel for the fluid intake and a nozzle channel to export the fluid. The channels are both connected at their wider end to the pump chamber, but the diffuser and the nozzle differ in their basic volumetric flow rate, greater in the diffuser than in the nozzle in both the intake and outflow phases:Qi,d> Qi,n, Qo,d> Qo,n, where Q stands for the volumetric flow rate, o for the outlet, i for the inlet,d for the diffuser, and n for the nozzle. It follows that:Qi= Qi,d-Qi,n>0, Qo=Qo,n-Qo,d<0. This ensures the valveless unidirectional steady flow of the pump.The direction of the flow in the diffuser is always opposite to that in the nozzle since the pump reciprocates between the intake and outflow phases.So a “diffuser” becomes a “nozzle” when the flow direction is changed, and vice versa. The fluid is sucked into the pump chamber predominantly through the diffuser when the pump's diaphragm is lifted and is expelled predominantly through the nozzle as the diaphragm is pushed down.

    Fig. 1 (Color online) A valveless micro-pump with one single chamber and diffuser/nozzle channels

    Following Sima et al.[18], a number of diffuser/nozzle valveless pumps were designed by adding more chambers to improve the pumping performance.Although adding more chambers can improve the overall efficiency of micro-pumps, the efficiency of each chamber is not improved. So the structure of the diffuser or nozzle becomes a major concern of studies.Kim et al.[19]designed the Tesla-type channel to optimize the valve body. Wang et al.[20-21]Study of the flow mechanism in the valve-less micropump may help to further improve the pumping efficiency, the high velocity fluid generates a vortex in the interfacial area of the nozzle and chamber. Such a vortex works as a “virtual valve”, which can block the reflux and result in unidirectional flow. Izzo et al.[22]optimized the diffuser and nozzle channel structures by using the whirlpool principle and proposed a diffuser and nozzle model with eddy zones. Recently, Zhu et al.[23]designed a serrated diffuser/nozzle valveless micropump with four pairs of sawteeth, each with a base angle of 10° and a vertex angle of 90°. With a computational fluid dynamics (CFD) simulation, they show that the sawtooth structures could reduce the difference between its positive and negative flow rates.Afterwards, based on the design by Guan et al.[24]modified the vertex angles from 90° to 120° and also analyzed the influence of the length, the width, the wedge angle, and the depth on the steady flow by a CFD simulation. However, the effect of the number of sawteeth on the steady flow in the serrated diffusers/nozzles was not investigated in their work. In addition,their flow field simulationswere two-dimensional.Particularly, the wall effect of any micro-channel on the viscous fluid flow cannot be ignored as the sizes of the diffusers/nozzles are decreased down to microscale. Therefore, a knowledge of the threedimensional flow field is vital for characterizing the microscale diffusers/nozzles.

    This paper presents a three-dimensional simulation of the flow field through diffusers and nozzles with straight or serrated side walls of a diffuser/nozzle valveless micro-pump by using the ANSYS FLUENT 15.0 (ANSYS Inc.). We analyze the effect of the channel structure on the flow characteristics, including the pressure and velocity profiles as well as the relationship between the pressure difference and the net flow rate to provide a basis for optimizing structural parameters to improve the pumping performance.

    1. Model and methods

    1.1 Structure of simulation model

    Fig. 2 (Color online) Structure parameters of diffuser/nozzles: Straight-sided channel (n=0) and channels with pairs of uniform sawteeth with a common base angle

    Fig. 3 (Color online) Illustration of sawtooth channel surface mesh

    The proposed diffuser and nozzle channels have two different shapes: (1) simple truncated wedges with rectangular straight side walls, (2) a “uniform serrated” type with sawteethee of the same base angle α. The two types of structures are shown in Fig. 2.The longitudinal section of the type a is an isosceles trapezoid with the wedge angle θ=7°, while in the type b, the area is expanded by sawtooth triangles along both sides. The common sawtooth base angle of the uniform sawtooth channels is α=10° while the sawtooth base angles of variable channels increase from the narrow end to the wide end of the channel.To calculate the area of the longitudinal section of the serrated channels, the wedge angle θ is replaced by a virtual wedge angle Θ, between the straight lines running from points A and B at the narrow end of the channel through the respective sawtooth vertex closest to the wide channel end. The other parameters include the channel length L=1mm, the width of the narrow end w =0.09 mm , the channel depth d =0.15 mm ,the angle of the sawtooth vertex β=120°. The channel width at its wide end WTis determined by the wedge angle θ (for straight-sided channels) or the virtual wedge angle Θ. The channel types investigated in this study are thus the “straight-sided”one without sawtooth (n=0), and the “uniform serrated” one with 1-5 uniform sawteeth pairs (n=1,n =2, n=3, n=4 or n=5).

    1.2 Simulation models

    Fig. 4 (Color online) The band plot of three-dimensional pressure in the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa, respectively

    Fig. 5 (Color online) Pressures against the length x of the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa

    In this study, the steady flows through the diffusers/nozzles as shown in Fig. 2 are simulated by the ANSYS FLUENT15.0 (ANSYS Inc.), visualized by the Tecplot 360 2015 (TecPlot, Inc.). In all simulations, the sweep method is used to generate hexahedron mesh with the Workbench Mesh with the mesh size of 5×10-6m, which is suitable for viscous sublayers of a dimensionless distance of y+<5 from the first layer mesh centroid to the wall. Meshrefined surfaces and an enlarged view of one mesh surface are shown in Fig. 3. To investigate the characteristics of the flow through diffusers and nozzles influenced by different numbers of sawteeth,simulations are carried out with the k-ω SST turbulence model.

    Herein, the fluid density is ρ=1000 kg/m3, the dynamic viscosity of 20°C water μ= 10-3Pa? s, the length of the channel L=1mm, the height d=0.15 mm, the narrower width w=0.09 mm , and the vertex angles of the all sawteeth are identical, β=120°, the pressure psat the outlet of a diffuser/nozzle is set to be zero, i.e., ps=0 while the pressure poat the inlet is a constant in the range of 100 Pa-10 000 Pa, Δp is defined as Δp = po- ps.

    The pressure and velocity profiles along the diffusers/nozzles could be directly obtained from the FLUENT software. Once the velocity profiles are obtained, the steady volumetric flow rates through the diffusers or nozzles could be calculated by the integration over the cross-section. The net volumetric flow rate is calculated by the difference between the flow rate through the diffuser and that through the nozzle. The pressure loss coefficient ξ is calculated by the following equation

    where p, v are the pressure and the sectionaveraging velocity along the length of the diffuser/nozzle channel, respectively.

    2. Results and discussions

    2.1 Pressure distribution in the diffusers/nozzles with straight-sided walls and uniform sawteeth

    The band plot of the three-dimensional pressure in the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa are shown in Figs. 4(a), 4 (b), respectively.

    It can be seen from Fig. 4 that the pressure drop in a diffuser is greater than that in a nozzle since the pressures at the entrance of the diffuser and the nozzle remains the same, and the widening diffuser decreases the pressure rapidly.

    Fig. 6 (Color online) Pressure loss coefficients against the length x of the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa

    To clarify this point, the pressures against the length x of the diffusers and the nozzles at Δp=500 Pa-7 500 Pa, are compared in Fig. 5. It is worth noting that the pressure in the straight-sided diffuser or nozzle decreases monotonically while those in the serrated diffusers or nozzles decrease in an oscillating way (Fig. 5). It is also seen from Fig. 5 that the number of the oscillations is the same as the sawtooth number, and the oscillating amplitude deceases with the increase of the number of the sawteeth.

    2.2 Pressure loss coefficient along the length of the diffusers/nozzles with straight-sided walls and uniform sawteeth

    Figure 6 shows the pressure loss coefficients along the length of the diffusers/nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa. It is observed from Fig. 6, where f is the pressure loss coefficient. While the pressure loss coefficient is close to zero along the length of the diffuser/nozzle with straight-sided walls, those for the diffusers/nozzles with uniform sawteeth are not zero along the full length; this pressure loss coefficient is related with the number of sawteeth, it is worth pointing out that the pressure loss coefficients in the diffusers are larger than those in the nozzles, which ensures that the volumetric flow rates through the diffusers are larger than those in the nozzles.

    2.3 Flow velocity distribution in the diffusers/nozzles

    with straight-sided walls and uniform sawteeth

    Figures 7(a), 7(b) show the three-dimentional distributions of the velocity in the x-direction in the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa, respectively. From Figs. 7(a), 7(b) it is observed that the steady flow in the diffuser or nozzle with straightsided walls is laminar at Δp=500 Pa or 7 500 Pa.However, the steady flow in the serrated diffusers or nozzles is turbulent at Δp=7 500 Pa while it is laminar at Δp=500 Pa. Eddies or vortices could be found around the corners of the serrated walls. These eddies or vortices become larger by decreasing the number of sawteeth.

    Figure 8 shows the velocity profiles in x-direction against the width of the outlet at the plane z=d /2 in the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa,respectively, where W is the width of the outlet, Vxis the velocity profile in x-direction. It can be clearly seen from Fig. 8 that the maximum velocities in x-direction at the outlets of nozzles are always larger than those at the outlets of diffusers. However,the volumetric flow rate through a nozzle is always smaller than that through a diffuser because the area of the cross section of a nozzle is much smaller than that of a diffuser.

    Fig. 7 (Color online) Distributions of flow velocity in x-direction in the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa, respectively

    At a low pressure difference Δp=500 Pa , the maximums of the velocities in x-direction at the outlet of the diffusers or nozzles decrease with the increase of the number of sawteeth, however, at a high pressure difference Δp=7 500 Pa, the velocities in x-direction at the outlet of the diffusers/nozzles may increase or decrease with the increase of the number of sawteeth, which demonstrates that the number of sawteeth plays an important role in regulating the outlet flow rate of the diffuser/nozzle.

    2.4 Relationship between pressure difference and net steady volumetric flow rate in the diffusers/nozzles with straight-sided walls and uniform sawteeth

    In order to understand the pumping performance for different kinds of diffuser/nozzle valveless micropumps, the relationship between the pressure difference and the net steady volumetric flow rate corresponding to different diffusers/nozzles with straight-sided walls and uniform sawteeth are shown in Fig. 9, where Dpis the pressure difference, Q is the net steady flow rate in the diffusers/ nozzles. It is shown that for the diffuser/nozzle with straightsided walls, the net flow rate increases monotonically with the increase of the pressure difference; but for the diffusers/nozzles with uniform sawteeth, the net flow rate increases gradually to the peak and then decreases gradually when the pressure difference increases. It is worth noting that for the diffusers/nozzles with uniform sawteeth, the flow rate increases with the increase of the number of sawteeth before any flow rate reaches its maximum (i.e., when the pressure difference is low), however, the flow rate decreases with the increase of the number of sawteeth after the flow rate reaches its maximum (i.e., when the pressure difference is high). In addition, the relationship between the pressure difference and the net flow rate is related with the number of the sawteeth.

    3. Conclusion

    In order to analyze the effect of the channel structure on the flow characteristics, we carry out athree-dimensional flow field simulation of the steady flows through diffusers and nozzles with straight or serrated-sided walls. The simulation results demonstrate that the steady flow in the diffuser/nozzle with straight-sided walls is laminar but that in the serrated diffuser/nozzles is a disturbed flow. The net steady flow rate through the diffusers and nozzles with straight-sided walls increases monotonically as the pressure difference rises, however, the steady flow rate through the diffusers and nozzles with serrated sided walls increases gradually to reach the peak and then decreases with the increase of the pressure difference. This relationship between the pressure difference and the net flow rate is related with the number of the sawteeth. The results suggest that the number of the sawteeth is a critical factor in optimizing the design of serrated diffusers and nozzles of valveless micro-pumps.

    Fig. 8 (Color online) The velocity profiles in x-direction against the widths of the outlet at the plane z=d/2 in the diffusers and nozzles with straight-sided walls and uniform sawteeth at Δp=500 Pa, 7 500 Pa, respectively

    Fig. 9 Relationship between pressure difference and net steady flow rate in the diffusers/nozzles with straight-sided walls and uniform sawteeth

    22中文网久久字幕| 一个人看的www免费观看视频| 久久精品国产亚洲网站| 99热6这里只有精品| 国产精品一区www在线观看| av女优亚洲男人天堂| 一本久久精品| 日韩一区二区三区影片| 国产精品久久电影中文字幕| 国产久久久一区二区三区| 久久精品国产鲁丝片午夜精品| 国产又黄又爽又无遮挡在线| 中文字幕久久专区| 亚洲人成网站高清观看| 久久这里有精品视频免费| 十八禁国产超污无遮挡网站| 看黄色毛片网站| 国产成人午夜福利电影在线观看| 看十八女毛片水多多多| 日本免费一区二区三区高清不卡| 亚洲美女视频黄频| 我要看日韩黄色一级片| 午夜免费激情av| 欧美xxxx性猛交bbbb| videos熟女内射| 看黄色毛片网站| 人体艺术视频欧美日本| 永久免费av网站大全| 中文天堂在线官网| 中文字幕av成人在线电影| 寂寞人妻少妇视频99o| 日韩人妻高清精品专区| 亚洲激情五月婷婷啪啪| 久久久亚洲精品成人影院| 国产乱人视频| 久久欧美精品欧美久久欧美| 国产真实伦视频高清在线观看| 黄片wwwwww| 日韩欧美三级三区| 国产精品一区二区三区四区久久| 国产视频首页在线观看| 久久韩国三级中文字幕| 国模一区二区三区四区视频| 国产老妇伦熟女老妇高清| 欧美3d第一页| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 亚洲经典国产精华液单| 九九在线视频观看精品| 亚洲国产高清在线一区二区三| 成人毛片60女人毛片免费| 国产爱豆传媒在线观看| 免费av毛片视频| 成人特级av手机在线观看| 国产高清有码在线观看视频| 欧美成人一区二区免费高清观看| 成年女人看的毛片在线观看| 亚洲真实伦在线观看| 亚洲美女视频黄频| 免费大片18禁| 精品欧美国产一区二区三| 一级av片app| 日韩欧美精品v在线| 久久精品人妻少妇| 久久国产乱子免费精品| 精品人妻视频免费看| 久久亚洲精品不卡| 我的女老师完整版在线观看| 精品久久国产蜜桃| 国产高清有码在线观看视频| 2021少妇久久久久久久久久久| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| 亚洲国产高清在线一区二区三| 久久久成人免费电影| av视频在线观看入口| 国产69精品久久久久777片| 亚洲成av人片在线播放无| 91久久精品电影网| 中文精品一卡2卡3卡4更新| 久久精品久久精品一区二区三区| 干丝袜人妻中文字幕| 亚洲成av人片在线播放无| 午夜福利在线在线| 欧美一区二区亚洲| 欧美3d第一页| 亚洲色图av天堂| 哪个播放器可以免费观看大片| 成年女人永久免费观看视频| 久久6这里有精品| 日韩亚洲欧美综合| 中文乱码字字幕精品一区二区三区 | 国产v大片淫在线免费观看| 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 欧美性感艳星| 国产一级毛片在线| 国产精品不卡视频一区二区| 神马国产精品三级电影在线观看| 淫秽高清视频在线观看| 男人狂女人下面高潮的视频| 国产精品乱码一区二三区的特点| 91aial.com中文字幕在线观看| 我要看日韩黄色一级片| 中文字幕免费在线视频6| 亚洲国产精品合色在线| 99久久精品热视频| 男人的好看免费观看在线视频| 国产高清三级在线| 91午夜精品亚洲一区二区三区| 国产一区二区在线av高清观看| 国产精品一区www在线观看| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 精品午夜福利在线看| 亚洲四区av| 亚洲在线自拍视频| 日韩人妻高清精品专区| 日本爱情动作片www.在线观看| 亚洲欧美精品综合久久99| 看免费成人av毛片| 亚洲自偷自拍三级| a级毛色黄片| 国产成人一区二区在线| 日韩大片免费观看网站 | 亚洲色图av天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久中文字幕三级久久日本| 久久国内精品自在自线图片| 亚洲丝袜综合中文字幕| 日韩av在线免费看完整版不卡| 我要搜黄色片| 色尼玛亚洲综合影院| 成年女人看的毛片在线观看| 一级毛片电影观看 | 免费观看在线日韩| 少妇丰满av| 又粗又硬又长又爽又黄的视频| 久久99热这里只频精品6学生 | 欧美另类亚洲清纯唯美| 一级爰片在线观看| 国产精品不卡视频一区二区| 黄色日韩在线| 成人毛片a级毛片在线播放| av国产免费在线观看| 深爱激情五月婷婷| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| 国产精品三级大全| 色尼玛亚洲综合影院| 午夜福利网站1000一区二区三区| 一级二级三级毛片免费看| 成年av动漫网址| 欧美激情久久久久久爽电影| 日本色播在线视频| 一个人免费在线观看电影| 毛片女人毛片| 久久精品国产亚洲av天美| 国产午夜精品一二区理论片| 日本黄大片高清| 中文精品一卡2卡3卡4更新| 1024手机看黄色片| 午夜精品一区二区三区免费看| 黄色一级大片看看| 久久精品人妻少妇| 久久久久久久久久黄片| 99国产精品一区二区蜜桃av| 狂野欧美白嫩少妇大欣赏| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 亚洲av成人精品一二三区| 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 亚洲天堂国产精品一区在线| 亚洲精华国产精华液的使用体验| 亚洲电影在线观看av| 日韩制服骚丝袜av| 丰满乱子伦码专区| 国产在视频线在精品| 亚洲国产精品成人综合色| 又黄又爽又刺激的免费视频.| 神马国产精品三级电影在线观看| 亚洲精品影视一区二区三区av| 日韩视频在线欧美| 草草在线视频免费看| 老司机影院成人| 搞女人的毛片| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 一区二区三区高清视频在线| 国产高清有码在线观看视频| 欧美97在线视频| 欧美日本亚洲视频在线播放| 一区二区三区乱码不卡18| 久久久久久久久中文| 久久精品国产自在天天线| 99在线视频只有这里精品首页| 久久精品国产亚洲av涩爱| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 人体艺术视频欧美日本| 中国国产av一级| 午夜精品国产一区二区电影 | 亚洲av电影不卡..在线观看| 麻豆久久精品国产亚洲av| 国产黄片视频在线免费观看| 亚洲人成网站高清观看| 91av网一区二区| 97热精品久久久久久| 亚洲在线自拍视频| 91午夜精品亚洲一区二区三区| 长腿黑丝高跟| 亚洲成av人片在线播放无| 亚洲性久久影院| 亚洲高清免费不卡视频| 能在线免费看毛片的网站| 国产精品蜜桃在线观看| 国产精品99久久久久久久久| 日本免费在线观看一区| 亚洲欧美日韩无卡精品| 黄片无遮挡物在线观看| 色综合亚洲欧美另类图片| 综合色av麻豆| 日本色播在线视频| av视频在线观看入口| 国产精品野战在线观看| 国产精品人妻久久久影院| 亚洲欧美精品综合久久99| 成人毛片a级毛片在线播放| 日韩av在线大香蕉| 国产成人a区在线观看| eeuss影院久久| 国产精品久久久久久精品电影小说 | 亚洲精品日韩在线中文字幕| 91在线精品国自产拍蜜月| 日本三级黄在线观看| 亚洲,欧美,日韩| 两个人视频免费观看高清| 久久精品国产亚洲网站| 麻豆一二三区av精品| 亚洲精品乱码久久久久久按摩| 亚洲av电影在线观看一区二区三区 | 非洲黑人性xxxx精品又粗又长| 国产高清三级在线| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| .国产精品久久| 高清日韩中文字幕在线| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 国产中年淑女户外野战色| 高清午夜精品一区二区三区| 日本免费a在线| 国产淫语在线视频| 免费不卡的大黄色大毛片视频在线观看 | 麻豆乱淫一区二区| 少妇熟女aⅴ在线视频| 国产伦精品一区二区三区视频9| 岛国在线免费视频观看| 亚洲人与动物交配视频| 波多野结衣巨乳人妻| ponron亚洲| 91久久精品国产一区二区三区| 国产视频内射| 少妇的逼水好多| av在线观看视频网站免费| 两个人视频免费观看高清| 一级毛片aaaaaa免费看小| 精品久久久久久电影网 | www.色视频.com| 男人狂女人下面高潮的视频| 亚洲精品亚洲一区二区| 国产真实乱freesex| 夫妻性生交免费视频一级片| 嫩草影院新地址| 免费一级毛片在线播放高清视频| 日日撸夜夜添| 国产久久久一区二区三区| 日韩欧美精品v在线| 国产淫片久久久久久久久| 人体艺术视频欧美日本| 一边摸一边抽搐一进一小说| 九草在线视频观看| av在线播放精品| 免费av观看视频| 亚洲熟妇中文字幕五十中出| 九九爱精品视频在线观看| 国产三级在线视频| 建设人人有责人人尽责人人享有的 | 黑人高潮一二区| 99热这里只有精品一区| 欧美日韩在线观看h| 精品人妻熟女av久视频| 亚洲精品aⅴ在线观看| 欧美成人a在线观看| 不卡视频在线观看欧美| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 婷婷六月久久综合丁香| 久热久热在线精品观看| 久久国产乱子免费精品| 色视频www国产| 国产女主播在线喷水免费视频网站 | 乱系列少妇在线播放| 在线天堂最新版资源| 国产成人a∨麻豆精品| 卡戴珊不雅视频在线播放| 国产伦一二天堂av在线观看| 丰满乱子伦码专区| 看黄色毛片网站| 国产黄a三级三级三级人| 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 免费看日本二区| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 国产免费一级a男人的天堂| 一本久久精品| 国产精品.久久久| 免费观看人在逋| 欧美日本视频| 18禁在线播放成人免费| 亚洲成av人片在线播放无| 国产一区二区亚洲精品在线观看| 啦啦啦韩国在线观看视频| 久久久久久久久久黄片| 黄色欧美视频在线观看| 国产成人福利小说| 小蜜桃在线观看免费完整版高清| 国产亚洲午夜精品一区二区久久 | av黄色大香蕉| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 国产 一区精品| a级毛色黄片| 亚洲精品aⅴ在线观看| 久久久色成人| 成人毛片a级毛片在线播放| 亚洲欧美日韩高清专用| 久久久久久九九精品二区国产| 毛片女人毛片| 边亲边吃奶的免费视频| 51国产日韩欧美| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 国产精品一区二区性色av| 亚洲最大成人手机在线| 永久网站在线| 久99久视频精品免费| 午夜福利网站1000一区二区三区| 成人午夜高清在线视频| 亚洲av中文字字幕乱码综合| 日韩av在线免费看完整版不卡| 中文资源天堂在线| 亚洲精品自拍成人| 欧美性感艳星| 日韩欧美国产在线观看| 成人毛片a级毛片在线播放| 午夜福利在线观看吧| 亚洲,欧美,日韩| 男女边吃奶边做爰视频| 美女高潮的动态| 麻豆成人av视频| 亚洲精品色激情综合| 日本三级黄在线观看| 国产免费一级a男人的天堂| 综合色丁香网| 男女那种视频在线观看| 精华霜和精华液先用哪个| 成人av在线播放网站| 国产黄片美女视频| 欧美性猛交╳xxx乱大交人| 欧美97在线视频| 久久精品夜夜夜夜夜久久蜜豆| 青春草国产在线视频| 永久网站在线| 国产精品久久视频播放| 特级一级黄色大片| 日本猛色少妇xxxxx猛交久久| 日本一本二区三区精品| 久久亚洲精品不卡| 建设人人有责人人尽责人人享有的 | 最近的中文字幕免费完整| 九九在线视频观看精品| 日日干狠狠操夜夜爽| 黄色配什么色好看| 毛片一级片免费看久久久久| 精品不卡国产一区二区三区| 春色校园在线视频观看| 国产爱豆传媒在线观看| 成年免费大片在线观看| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂 | 青青草视频在线视频观看| 一个人看视频在线观看www免费| 国产黄片视频在线免费观看| 欧美激情久久久久久爽电影| 精品久久久久久久末码| 天堂中文最新版在线下载 | 国产精品三级大全| 色5月婷婷丁香| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩无卡精品| 日本黄色片子视频| 日本免费一区二区三区高清不卡| 亚洲国产精品成人综合色| 欧美一级a爱片免费观看看| 91av网一区二区| 成人av在线播放网站| 麻豆久久精品国产亚洲av| 亚洲真实伦在线观看| 大香蕉久久网| 亚洲av电影在线观看一区二区三区 | 九草在线视频观看| 精品久久久久久久久av| 国产精品永久免费网站| 成人三级黄色视频| 国产视频内射| 亚洲av中文av极速乱| 亚洲欧美日韩高清专用| 韩国高清视频一区二区三区| 99久久成人亚洲精品观看| 久久99蜜桃精品久久| 成人性生交大片免费视频hd| 美女脱内裤让男人舔精品视频| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 久久久久久久久久黄片| 国产乱人偷精品视频| 亚洲国产成人一精品久久久| 欧美97在线视频| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 国产片特级美女逼逼视频| 国产免费男女视频| 免费不卡的大黄色大毛片视频在线观看 | 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色| 国产乱人视频| 亚洲av免费高清在线观看| 欧美激情久久久久久爽电影| 偷拍熟女少妇极品色| 免费av观看视频| 国产男人的电影天堂91| 欧美另类亚洲清纯唯美| 国产精品一区二区三区四区久久| 欧美日本视频| 美女内射精品一级片tv| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 久久这里只有精品中国| 成人一区二区视频在线观看| 综合色丁香网| 在线天堂最新版资源| 精品人妻熟女av久视频| av免费观看日本| 亚洲不卡免费看| 国产成人精品婷婷| 搞女人的毛片| 午夜福利视频1000在线观看| 日本五十路高清| 成人亚洲精品av一区二区| 国产成人免费观看mmmm| 国产在线男女| 岛国在线免费视频观看| 国产成人精品久久久久久| 少妇熟女欧美另类| 欧美日韩精品成人综合77777| 老女人水多毛片| 九九热线精品视视频播放| 成人高潮视频无遮挡免费网站| 国产成人a∨麻豆精品| av在线蜜桃| 免费在线观看成人毛片| 在线观看一区二区三区| 联通29元200g的流量卡| 国产黄片视频在线免费观看| 午夜福利在线观看免费完整高清在| 国产美女午夜福利| 欧美bdsm另类| 啦啦啦观看免费观看视频高清| 亚洲一级一片aⅴ在线观看| 18+在线观看网站| 91精品伊人久久大香线蕉| 国产午夜福利久久久久久| 国产精品国产三级国产专区5o | 成人综合一区亚洲| 搡老妇女老女人老熟妇| 亚洲欧美精品自产自拍| 亚洲一区高清亚洲精品| 在线免费观看的www视频| 午夜免费男女啪啪视频观看| 欧美激情在线99| av在线蜜桃| 久久草成人影院| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩国产亚洲二区| 一区二区三区乱码不卡18| 亚洲精品日韩在线中文字幕| 国产精品永久免费网站| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 少妇丰满av| 免费黄网站久久成人精品| 亚洲国产精品专区欧美| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 色视频www国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品国产精品| 国产高清视频在线观看网站| 成人午夜精彩视频在线观看| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费| av在线播放精品| 国产精品一区二区在线观看99 | 免费看美女性在线毛片视频| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 日本黄色视频三级网站网址| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 高清午夜精品一区二区三区| 在线免费十八禁| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 亚洲精品日韩av片在线观看| 国产精品蜜桃在线观看| 成人国产麻豆网| 国产又黄又爽又无遮挡在线| 亚洲内射少妇av| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 日本免费a在线| 老司机影院毛片| 成人性生交大片免费视频hd| 日本与韩国留学比较| 高清毛片免费看| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 熟妇人妻久久中文字幕3abv| 久久6这里有精品| 欧美日韩综合久久久久久| 午夜福利在线观看吧| 亚洲av日韩在线播放| 人妻系列 视频| 成人三级黄色视频| 亚洲美女搞黄在线观看| 丰满人妻一区二区三区视频av| 嫩草影院精品99| 亚洲欧美成人精品一区二区| 国产私拍福利视频在线观看| 99久久精品一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 免费观看的影片在线观看| 亚洲av中文av极速乱| 国产单亲对白刺激| 亚洲av男天堂| 久久久久久久久中文| 亚洲aⅴ乱码一区二区在线播放| 你懂的网址亚洲精品在线观看 | 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 三级经典国产精品| 青青草视频在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 国产一级毛片七仙女欲春2| 久久99热6这里只有精品| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 国产国拍精品亚洲av在线观看| 国产亚洲精品av在线| 国产免费视频播放在线视频 | 午夜福利在线在线| 欧美成人免费av一区二区三区| av又黄又爽大尺度在线免费看 | 国产真实伦视频高清在线观看| 久热久热在线精品观看| 热99在线观看视频| 99热这里只有是精品50| 日本猛色少妇xxxxx猛交久久| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| 色播亚洲综合网| 麻豆久久精品国产亚洲av| 久久99热6这里只有精品| 看非洲黑人一级黄片| 久久久a久久爽久久v久久| 欧美一区二区国产精品久久精品| 国产伦理片在线播放av一区| 亚洲婷婷狠狠爱综合网| 成人毛片60女人毛片免费| 久久99热6这里只有精品| 日韩中字成人| 高清在线视频一区二区三区 | 亚洲欧美中文字幕日韩二区|