平 巍,吳 彥,楊春霞,辛 倩,王 翔, 李 靈,張 敏,蔣昕辰,劉 利
?
香蕉皮改性材料對(duì)廢水中二價(jià)Cd離子的吸附特性與機(jī)理
平 巍,吳 彥※,楊春霞,辛 倩,王 翔, 李 靈,張 敏,蔣昕辰,劉 利
(重慶三峽學(xué)院環(huán)境與化學(xué)工程學(xué)院,三峽庫(kù)區(qū)水環(huán)境演變與污染防治重慶高校市級(jí)重點(diǎn)試驗(yàn)室,重慶 404100)
為探究農(nóng)業(yè)生物質(zhì)制備綠色吸附材料處理含Cd2+廢水方法,以香蕉皮為原料,制備改性吸附材料。采用單因素試驗(yàn),優(yōu)化了改性工藝條件。通過靜態(tài)吸附試驗(yàn),結(jié)合等溫模型和吸附動(dòng)力學(xué)模型探討了其對(duì)Cd2+吸附過程。利用比表面及孔徑分析(brunner-emmet-teller)、掃描電鏡(scanning electron microscope)、能譜儀(energy disperse spectroscopy)、元素分析儀、傅里葉變換紅外光譜(Fourier transform infrared spectroscopy)等手段對(duì)改性前后材料的表面形態(tài)和結(jié)構(gòu)進(jìn)行表征,并分析了改性和吸附過程的機(jī)理。結(jié)果表明:改性較佳工藝條件為NaOH濃度為0.25 mol/L,改性時(shí)間為30 min。在此條件下香蕉皮改性后,對(duì)水中Cd2+的理論飽和吸附量由37.61 mg/g提高到87.15 mg/g,平衡時(shí)間由60 min縮短到45 min。吸附符合Langmuir等溫模型(2=0.998)和準(zhǔn)二級(jí)動(dòng)力學(xué)模型(2=0.999)。改性后的香蕉皮對(duì)水中Cd2+的吸附以離子交換吸附為主。研究結(jié)果可為木質(zhì)纖維素生物質(zhì)改性制備綠色吸附材料處理含重金屬?gòu)U水提供理論依據(jù)。
生物質(zhì);重金屬;吸附;改性;香蕉皮;Cd2+
鎘(Cd)是一種重金屬污染物,因其容易在生物體內(nèi)富集[1]、毒性大[2-3],不能生物降解等特點(diǎn),對(duì)人體健康威脅較大[4-5]。目前中國(guó)Cd污染形勢(shì)嚴(yán)峻,覆蓋11個(gè)省份25個(gè)地區(qū)[6],含鎘廢水的處理技術(shù),亟待突破。吸附法被認(rèn)為是去除環(huán)境重金屬較為經(jīng)濟(jì)有效的方法[7]。目前,利用農(nóng)林固體廢棄物制備吸附材料,廣泛應(yīng)用于含重金屬?gòu)U水處理[8-10]。其中化學(xué)改性制備天然吸附劑,制備方法簡(jiǎn)單、成本低,產(chǎn)品具有可降解性和可再生性,具有獨(dú)特的優(yōu)勢(shì)[11-12]。Munusamy等[13]以檸檬皮為原料,通過堿和草酸化學(xué)改性的檸檬皮纖維對(duì)Cu、Pb、Zn、Ni、Cd等眾多離子都具有較高的吸附量;齊亞鳳等[14]以甘蔗渣為原料,通過均苯四甲酸二酐(pyromellitic dianhydride, PMDA)乙二酸四乙酸二酐(tetraacetic anhydride oxalate, EDTAD)改性,對(duì)Cu2+和Zn2+的吸附量分別達(dá)到60.21 mg/g和33.45 mg/g;毛娜[15]以橘子皮為原料,通過氫氧化鉀、乙醇和氯化鈣進(jìn)行皂化處理,對(duì)Zn2+的最大吸附量可達(dá)92 mg/g。
大量研究表明不同原料采用不同的改性方法得到材料,其吸附能力差別甚大[16]。香蕉皮中含有大量纖維素、半纖維素、木質(zhì)素等膳食纖維,而且果膠和低聚糖含量豐富[17],較高的羥基基團(tuán)含量[18-19]使得香蕉皮本身具有一定的吸附潛力。張才零等[20]在其研究中發(fā)現(xiàn),香蕉皮對(duì)水中的Cd2+具備一定的吸附能力。Shang等[18]在其研究中發(fā)現(xiàn),香蕉皮通過丁二酸酐改性之后,對(duì)水中的油類有較好的吸附性能;胡巧開等[21]研究發(fā)現(xiàn),香蕉皮通過乙酸和乙醇浸泡改性后,能有效去除水中的Cr2O72–。鄭文釗等[22]利用乙醇和乙酸改性香蕉皮,得到的材料對(duì)水中的Pb2+的最大吸附量為6.87mg/L。前期研究[23-25]發(fā)現(xiàn),采用NaOH溶液對(duì)香蕉皮進(jìn)行改性,能夠有效提高其對(duì)氨氮和重金屬離子的吸附能力,是一種較為可行的改性方法。但未對(duì)針對(duì)各類重金屬吸附優(yōu)化改性工藝條件,且改性機(jī)理尚不明確。
本文以香蕉皮為原料,通過NaOH改性制備吸附材料,吸附去除水中的Cd2+,通過單因素試驗(yàn)優(yōu)化了改性工藝條件,在此基礎(chǔ)上進(jìn)一步研究了pH值、投加量、初始濃度和吸附時(shí)間對(duì)吸附過程的影響效果,并通過等溫模型、動(dòng)力學(xué)研究結(jié)合儀器表征探究了改性過程及其吸附Cd2+機(jī)理,以期為木質(zhì)纖維素生物質(zhì)改性制備綠色吸附材料處理含重金屬?gòu)U水提供參考。
香蕉皮改性方法:市售香蕉取皮,用去離子水反復(fù)沖洗,于恒溫干燥箱中(103±3)℃烘至恒質(zhì)量,研磨成粉末,過篩(粒徑0.18~0.25 mm),放入干燥器備用。稱取10 g干香蕉皮粉末,放入2 L燒杯中,加入1 000 mL一定濃度的NaOH溶液,恒溫水浴振蕩器上以(25±2)℃恒溫震蕩一段時(shí)間后,抽濾,并用去離子水反復(fù)沖洗抽濾,直到濾液pH值為7且濾液無色透明,將獲得的固體粉末(103±3)℃烘干即制得香蕉皮改性吸附材料。
為優(yōu)化改性工藝,以Cd2+去除率為參指標(biāo),采用單因素試驗(yàn)討論了改性劑濃度和改性時(shí)間2個(gè)條件對(duì)改性效果的影響,并找出較佳改性工藝條件。試驗(yàn)條件設(shè)置如下:
1)改性劑濃度的影響:固液比設(shè)置為10 g/L(稱取10 g原香蕉皮加入1 L改性劑溶液),改性時(shí)間60 min,NaOH濃度因素水平設(shè)置為:0.05、0.1、0.15、0.2、0.25、0.3、0.4、0.5 mol/L。
2)改性時(shí)間的影響:固液比設(shè)置為10 g/L,改性劑濃度設(shè)置為0.25 mol/L,改性劑時(shí)間因素水平設(shè)置為:10、15、20、25、30、35、40、45、50、60 min。
材料的表征方法:材料的比表面積(brunner-emmet- teller)及孔徑分布采用比表面及孔徑分析儀(NOVA2000e,美國(guó)康塔儀器公司)測(cè)定;材料C、H的含量采用元素分析儀(EA3000,意大利歐維特公司)測(cè)定;材料表面形態(tài)采用掃描電子顯微鏡(JSM-7800F,日本電子株式會(huì)社)測(cè)定;材料表面元素組成采用能譜儀(Zeiss Supra 5,德國(guó)卡爾蔡司股份公司)測(cè)定;材料官能團(tuán)結(jié)構(gòu)采用傅里葉變換紅外光譜儀(Nicolet 6700,美國(guó)尼高力儀器公司)進(jìn)行KBr壓片法測(cè)定。
量取50 mL的Cd2+溶液于250 mL錐形瓶中,用 0.2 mol/L的HCl和NaOH調(diào)節(jié)pH值,加入改性香蕉皮(粒徑范圍0.15~0.18 mm),然后置于恒溫?fù)u床(25± 1)℃中振蕩,空白試驗(yàn)采用去離子水加入改性香蕉皮在同條件下振蕩。達(dá)到試驗(yàn)設(shè)定的吸附時(shí)間后,用0.25m的水系濾膜進(jìn)行過濾,收集濾液采用原子吸收分光光度計(jì)(AA7000,日本島津公司)測(cè)定濾液中Cd2+的濃度。每次吸附試驗(yàn)重復(fù)3次,取均值,試驗(yàn)條件設(shè)置如下:
1)改性工藝的優(yōu)化:Cd2+質(zhì)量濃度100 mg/L,pH值為6±0.05,吸附時(shí)間為120 min。
2)吸附劑投加量影響試驗(yàn):Cd2+質(zhì)量濃度100 mg/L,pH值為6±0.05,吸附時(shí)間為120 min,吸附劑投加量因素水平設(shè)定為:1.2、1.6、2、3、4、6、8、12 g/L。
3)pH值影響試驗(yàn):設(shè)定Cd2+濃度100 mg/L,吸附劑投加量為4 g/L,吸附時(shí)間為120 min(通過預(yù)試驗(yàn)確定)??紤]Cd2+在pH值>7的溶液中會(huì)發(fā)生水解,因此pH值因素水平為:3~7,梯度為0.5。
4)吸附等溫?cái)M合試驗(yàn):pH值為6±0.05,吸附劑投加量4 g/L,吸附時(shí)間60 min(通過預(yù)試驗(yàn)確定),Cd2+濃度水平設(shè)定為:10、15、20、30,…,1 000 mg/L。
5)吸附動(dòng)力學(xué)擬合試驗(yàn):Cd2+濃度1 000 mg/L,pH值為6±0.05,投加量設(shè)定為4 g/L,因素水平設(shè)定為:1、2、5、10、15、20,…,120 min。
為探討材料吸附性能的變化,試驗(yàn)過程中采用未改性的香蕉皮粉末作為對(duì)照,對(duì)照試驗(yàn)的方法和條件設(shè)置同上。
吸附量的計(jì)算參照公式(1),去除率計(jì)算參照公式(2):
式中為去除率,%;q為吸附量,mg/g;0為吸附前Cd2+質(zhì)量濃度,mg/L;為吸附后濾液Cd2+質(zhì)量濃度,mg/L;為水樣體積,L;為吸附劑投加量,g。
1.4.1 等溫模型
為了更好地探討吸附行為,分別用Langmuir、Freundlich、Temkin和Dubinin-Radushkevich(D-R)等溫吸附模型對(duì)試驗(yàn)結(jié)果擬合。
1)Langmuir假定吸附質(zhì)以單分子層的形式均勻地被吸附在吸附劑的表面上,最后達(dá)到穩(wěn)定值,即最大吸附量q[26-27]。
通過k的值可計(jì)算吸附平衡常數(shù)。
式中q為理論飽和吸附量,mg/g;k為 Langmuir吸附平衡常數(shù),L/mg;R為吸附反應(yīng)平衡常數(shù),無量綱。
2)Freundlich模型通常能夠模擬不均勻表面吸附劑的吸附行為,其吸附中心的吸附熱呈指數(shù)下降[27-28]。
式中k為與吸附劑的吸附能力有關(guān)的常數(shù),(mg/g)×(L/mg),是與吸附強(qiáng)度有關(guān)的常數(shù),無量綱。
3)Temkin模型中,吸附質(zhì)在吸附劑表面的吸附熱隨覆蓋度的增大而線性降低[28-29]。
式中為Temkin方程平衡結(jié)合常數(shù),mg/L;是與吸附熱有關(guān)的系數(shù),無量綱。
4)Dubinin-Radushkevich(D-R)等溫模型
D-R模型能估算吸附自由能,并判斷吸附過程的類型[28-29]。
式中是D-R方程系數(shù),mol2/J2;是Polanyi吸附勢(shì),J/mol;為理想氣體常數(shù),8.314 J/(mol·K);為絕對(duì)溫度,K;為吸附自由能,J/mol。
1.4.2 動(dòng)力學(xué)模型
吸附動(dòng)力學(xué)是用吸附量隨吸附時(shí)間的變化關(guān)系揭示吸附過程中的傳質(zhì)和反應(yīng)規(guī)律。本研究采用以下4種動(dòng)力學(xué)模型對(duì)改性香蕉皮吸附Cd2+吸附動(dòng)力學(xué)數(shù)據(jù)進(jìn)行擬合。
1)一級(jí)動(dòng)力學(xué)模型用于描述邊界擴(kuò)散控制的單層吸附,基于假定吸附受擴(kuò)散步驟的控制,吸附速率與平衡吸附量呈線性關(guān)系[27,30]。
式中q為時(shí)刻的吸附量,mg/g;為吸附時(shí)間,min;1為一級(jí)吸附速率常數(shù),min–1;
2)準(zhǔn)二級(jí)動(dòng)力學(xué)模型通常用于描述包括液膜擴(kuò)散、表面吸附和孔內(nèi)擴(kuò)散的整個(gè)吸附過程,能夠全面反映吸附過程的動(dòng)力學(xué)機(jī)制[31-33]。
式中2為二級(jí)吸附速率常數(shù),g/(mg·min)。
3)Elovich模型用于描述由反應(yīng)速率和擴(kuò)散因子綜合調(diào)控的非均相擴(kuò)散過程[32,34]。
式中(g/(mg·min))、(g/mg)為Elovich方程常數(shù),分別表示吸附速率及解吸常數(shù)。
4)粒子擴(kuò)散模型用于描述孔內(nèi)擴(kuò)散為主導(dǎo)的吸附過程。用來判斷其是否為吸附速率控制步驟[22,35]。
式中k為擴(kuò)散速率常數(shù),mg/(g·min0.5),為邊界層常數(shù),越大說明邊界層對(duì)吸附的影響越大。
圖1a為改性劑的濃度對(duì)材料去除Cd2+性能的影響,由圖可知,當(dāng)濃度從0.05提高至0.25 mol/L,去除率由67.45%升高至87.76%,進(jìn)一步提高改性劑濃度,則去除率開始下降,這是因?yàn)镹aOH能夠有效溶解香蕉皮內(nèi)的膠質(zhì)[36],NaOH濃度較低時(shí),這些膠質(zhì)的去除不完全,改性不徹底;而濃度過高,則會(huì)破壞香蕉皮材料骨架,可能導(dǎo)致微觀結(jié)構(gòu)坍塌,因此,0.25 mol/L為較適宜的改性劑濃度。圖1b為改性時(shí)間對(duì)材料去除Cd2+性能的影響,在改性時(shí)間為0~30 min范圍內(nèi),延長(zhǎng)改性時(shí)間對(duì)Cd2+的去除率有積極的作用,Cd2+去除率由72.30%升高至87.83%,然而,繼續(xù)延長(zhǎng)改性時(shí)間,則對(duì)Cd2+去除率影響不大,NaOH溶液隨香蕉皮內(nèi)的多糖、果膠等物質(zhì)的浸出需要一定的反應(yīng)時(shí)間[36],改性時(shí)間太短,反應(yīng)還未完全發(fā)生,改性效果受限;而30 min后,改性反應(yīng)基本完成,繼續(xù)延長(zhǎng)時(shí)間,對(duì)材料的影響甚微。因此,30 min是較為適宜的改性時(shí)間。
注:圖a中Cd2+質(zhì)量濃度為100 mg·L–1,改性固液比為10 g·L–1,改性時(shí)間為60 min。
Note: Concentration of Cd2+is 100 mg·L–1,modified solid-liquid ratio is 10 g·L–1, modification time is 60 min in Fig.a;
注:圖b中Cd2+質(zhì)量濃度為100 mg·L–1,改性劑濃度為0.25 mol·L–1,改性固液比為10 g·L–1
如圖2所示,改性前后的香蕉皮對(duì)水中Cd2+的去除率均隨著投加量的提高而升高。當(dāng)吸附材料投加量從 1.2 g/L提高至4 g/L,改性前后的香蕉皮去除率分別由32.53%、63.3%上升至65.78%、86.8%。而吸附量則分別從27.11 、52.72 mg/L下降至16.45 、21.7 mg/L。進(jìn)一步提高吸附劑投加量,2種材料對(duì)Cd2+去除率提升緩慢,而吸附量進(jìn)一步降低。Ajmal等[35]研究稻殼對(duì)Cd2+的吸附也發(fā)現(xiàn)了類似規(guī)律。這可以解釋為:溶液中可供吸附的點(diǎn)位隨著投加量增加而增多,因此能夠吸附去除更多的Cd2+。同時(shí),也使得部分吸附點(diǎn)位空閑,因此單位吸附量下降[37]。對(duì)比2種材料對(duì)Cd2+的去除效果可以看出,改性后香蕉皮對(duì)Cd2+的去除效果顯著增強(qiáng)(<0.05)。
由圖3可以看出,2種材料對(duì)Cd2+的吸附均隨pH值的增大而增大。在pH值3~5范圍內(nèi),無論改性前后的香蕉皮對(duì)Cd2+的去除率均低于50%,隨著pH值的升高,去除率緩慢提升,說明吸附過程在酸性條件下明顯受到抑制,這與鄭文釗等[22]的研究結(jié)論是一致的。在低pH值條件下,吸附劑表面會(huì)帶正電,同時(shí)材料中部分礦物質(zhì),如K+、Ca2+等離子在酸性條件下,釋放到溶液中,和Cd2+存在強(qiáng)烈的競(jìng)爭(zhēng)吸附,從而影響吸附效果[33]。隨著pH值的進(jìn)一步升高,去除率迅速提高,當(dāng)pH值為6時(shí),去除率達(dá)到87.71%。這是因?yàn)殡S著pH值的提高,H+的濃度下降,同時(shí)材料內(nèi)可溶性礦物質(zhì)釋放量較少,產(chǎn)生的吸附競(jìng)爭(zhēng)較弱[32]。另外,在較高的pH值條件下,改性吸附劑中一些極性官能團(tuán)開始電離,也可能會(huì)參與到吸附過程中,通過-COOH和-OH對(duì)Cd2+進(jìn)行離子交換機(jī)制或者H鍵作用發(fā)生吸附[25]。另外,由圖3可知,改性前后的香蕉皮,在吸附達(dá)到平衡后,其pH值均高于初始pH值,推斷一方面是因?yàn)椴牧媳旧淼木彌_作用,另一方面是因?yàn)樗械腃d2+和吸附劑表面的K+、Ca2+、Na+等堿性粒子發(fā)生了交換的緣故。當(dāng)pH值大于7,Cd2+開始水解沉淀,故試驗(yàn)不再針對(duì)更高的pH值作討論。對(duì)比可發(fā)現(xiàn),在試驗(yàn)pH值范圍內(nèi),改性后的香蕉皮對(duì)Cd2+的去除能力均顯著高于改性前(<0.05),表明改性方法對(duì)pH值具有較好的適應(yīng)性。
注:Cd2+濃度為100 mg·L–1,pH值為6±0.05,吸附時(shí)間為120 min
注:Cd2+濃度為100 mg·L–1,吸附劑投加量為4 g·L–1,吸附時(shí)間為120 min
如圖4所示,改性前后的香蕉皮對(duì)Cd2+的吸附量均隨著Cd2+濃度的增加而提高。對(duì)于未改性的香蕉皮,在初始濃度10~300 mg/L(對(duì)應(yīng)平衡濃度0.44~164.94 mg/L)范圍內(nèi),Cd2+的吸附量呈線性增長(zhǎng)趨勢(shì),吸附量從2.39迅速提高到33.76 mg/g。隨著濃度的增加,吸附量提高趨勢(shì)逐漸平緩,在400~1 000 mg/L(對(duì)應(yīng)平衡濃度260.23~851.08 mg/L)范圍內(nèi),Cd2+的吸附量?jī)H從34.93提高到37.23 mg/g。改性后,在初始濃度為10~600 mg/L(對(duì)應(yīng)平衡濃度0~306.13 mg/L)范圍內(nèi),吸附量從2.32提高到79.96 mg/g,在初始濃度700~ 1 000 mg/L(對(duì)應(yīng)平衡濃度384.18~676.06 mg/L)范圍內(nèi),吸附量?jī)H提高4.03 mg/g。這可以解釋為當(dāng)Cd2+濃度較低時(shí),材料具有足夠的吸附點(diǎn)位,而隨著濃度的提高,這些吸附點(diǎn)位逐漸被吸附質(zhì)占據(jù),吸附趨于飽和。在初始濃度為1 000 mg/L時(shí),改性前后的香蕉皮對(duì)Cd2+的吸附量分別為37.23、84.96 mg/g,因此,改性后的香蕉皮對(duì)Cd2+的吸附量顯著提高(<0.05),而且適用的濃度范圍更寬。
注:pH值為6±0.05,吸附劑投加量為4 g·L–1,吸附時(shí)間為120 min
對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行等溫?cái)M合,結(jié)果如圖4和表1所示。Langmuir等溫模型對(duì)2種材料的決定系數(shù)均大于0.99,且擬合的飽和吸附量與試驗(yàn)吸附量接近,這說明Langmuir等溫模型均能較好地描述吸附機(jī)理,意味著吸附過程以單分子層吸附為主導(dǎo)[38],這與劉恒博等[39]研究改性小麥秸稈吸附Cd2+的結(jié)論類似。通過擬合參數(shù)k計(jì)算無量綱平衡常數(shù)R,未改性香蕉皮對(duì)Cd2+的R在0.18~0.96范圍內(nèi),而改性后的香蕉皮的R在0.04~0.80范圍內(nèi)。通常,R的值在0~1之間,說明無論改性與否,香蕉皮對(duì)Cd2+的吸附均為有益吸附。
表1 吸附等溫?cái)M合參數(shù)
注:q是理論飽和吸附量;k是Langmuir吸附平衡常數(shù);k為與吸附劑的吸附容量有關(guān)的Freundlich常數(shù);是與吸附強(qiáng)度有關(guān)的 Freundlich 模型常數(shù);為Temkin平衡結(jié)合常數(shù);是 Temkin 方程與吸附熱有關(guān)的系數(shù);是吸附自由能;2為決定系數(shù)。
Note:qis the theoretical saturated adsorption;kis Langmuir adsorption equilibrium constant;kis the Freundlich constant related to the adsorptive capacity of adsorbents;is the Freundlich model constant related to the adsorptive strength;is the Temkin equilibrium binding constant;is the coefficient of the Temkin equation relating to the adsorption heat;is the adsorption free energy;2is coefficient of determination.
從Freundlich等溫模型擬合結(jié)果看,改性香蕉皮對(duì)Cd2+的吸附1/值均小于0.5。表明吸附易于發(fā)生[30]。而改性后的香蕉皮的k值為9.837,高于未改性的香蕉皮,說明,香蕉皮改性后對(duì)Cd2+有更高的分配系數(shù),即吸附能力更強(qiáng)[32]。Temkin模型對(duì)改性后的香蕉皮擬合值和值均高于未改性香蕉皮,表明香蕉皮改性后對(duì)Cd2+有更強(qiáng)的吸附勢(shì)[38]。D-R模型中,改性前后的香蕉皮對(duì)Cd2+的吸附自由能分別為0.055、0.069 kJ/mol,平均吸附能在8~16 kJ/mol代表吸附過程為化學(xué)吸附,低于8 kJ/mol為物理吸附[32-33],因此,2種材料對(duì)Cd2+的吸附均為物理吸附,分子間作用力起到了重要作用。
如圖5,改性前后的香蕉皮對(duì)Cd2+的吸附隨時(shí)間變化趨勢(shì)總體呈一致性,即先快后慢的趨勢(shì),這說明吸附過程嚴(yán)格受吸附材料的活性點(diǎn)位數(shù)量的控制[40-41]。即吸附前期吸附材料空閑活性點(diǎn)位數(shù)量多,因此吸附推動(dòng)力很大。隨著吸附時(shí)間的延長(zhǎng),水中Cd2+濃度逐漸減小,吸附材料表面的空閑活性點(diǎn)位變少,吸附傳質(zhì)推動(dòng)力迅速減小,吸附速率逐漸下降并最終趨于飽和。改性前后2種材料分別在60 和45 min達(dá)到了吸附平衡。對(duì)應(yīng)的吸附量分別為36.38和83.69 mg/g,這說明香蕉皮改性后,無論是吸附速率還是吸附量,都得到了強(qiáng)化。為進(jìn)一步探討改性前后的香蕉皮對(duì)水中Cd2+的吸附過程,分別用一級(jí)動(dòng)力學(xué)模型、準(zhǔn)二級(jí)動(dòng)力學(xué)模型、Elovich模型和粒子擴(kuò)散模型對(duì)試驗(yàn)數(shù)據(jù)擬合,結(jié)果圖5和表2。由結(jié)果可知,香蕉皮改性前后對(duì)Cd2+的吸附準(zhǔn)二級(jí)動(dòng)力學(xué)決定系數(shù)更高,且準(zhǔn)二級(jí)動(dòng)力學(xué)模型擬合的平衡吸附量(未改性38.526 mg/g,改性85.957 mg/g)與試驗(yàn)值(未改性37.07 mg/g,改性84.56 mg/g)更接近,說明準(zhǔn)二級(jí)動(dòng)力學(xué)模型比一級(jí)動(dòng)力學(xué)模型能更好地?cái)M合兩種材料對(duì)水中Cd2+吸附過程,這表明改性前后的香蕉皮對(duì)Cd2+的吸附為物理-化學(xué)復(fù)合過程[30]。從Elovich模型擬合結(jié)果分析,改性后香蕉皮的值明顯高于改性前,值正好相反,說明改性后香蕉皮的吸附速率更快,解吸速率更低[34],因此,改性后的香蕉皮對(duì)Cd2+的吸附速率高于改性前,同時(shí)暗示了香蕉皮改性后,對(duì)Cd2+有更高的親和力和更高的吸附勢(shì),這與Freundlich等溫模型擬合結(jié)果一致。從粒子擴(kuò)散模型擬合結(jié)果分析,改性后值(28.241 kJ/mol)大于未改性(11.259 kJ/mol),說明改性后的香蕉皮對(duì)Cd2+的吸附受邊界層影響更大,更傾向于表面吸附[42-44]。
注:Cd2+濃度為100 mg·L–1,pH值為6±0.05,吸附劑投加量為4 g·L–1
2.6.1 改性過程即吸附機(jī)理探討
未改性和改性后的香蕉皮表面形態(tài)結(jié)構(gòu)如圖6所示??梢园l(fā)現(xiàn),香蕉皮經(jīng)改性后,其表面的褶皺變得更突出,表面異構(gòu)化程度明顯提高。這是因?yàn)镹aOH對(duì)香蕉皮內(nèi)的果膠和多糖類物質(zhì)具有強(qiáng)烈的溶解浸出作用[36],改性后香蕉皮表面覆蓋和空隙內(nèi)填充的膠質(zhì)成分被去除,疏松的骨架結(jié)構(gòu)開放外露,有利于離子擴(kuò)散進(jìn)入材料內(nèi)部而被吸附。香蕉皮改性前后的比表面積和孔徑分布如表3所示。由表3可以看出,對(duì)比改性前,改性后的香蕉皮BET比表面積、總孔容分別增加了108倍和3.6倍。其中,微孔容、介孔容和大孔容分別增加了35.3倍、3.48倍和2.7倍,微孔孔容大幅提高,對(duì)比表面積具有很大的貢獻(xiàn),并使得平均孔徑下降。同時(shí),應(yīng)該指出,改性后的香蕉皮比表面積仍遠(yuǎn)小于活性炭[45]和生物炭[6,32-33],暗示了改性香蕉皮的吸附性能并不完全依賴其比表面積。
表2 吸附動(dòng)力學(xué)擬合參數(shù)
注:q為吸附量;1為一級(jí)吸附速率常數(shù);2為二級(jí)吸附速率常數(shù);為 Elovich方程常數(shù);K是顆粒內(nèi)擴(kuò)散速率常數(shù);是邊界層常數(shù)。
Note:qis the quantity of adsorption;1is first order adsorption rate constant;2is pseudo second-order adsorption rate constant;are Elovich equation constant;Kis intraparticle diffusion rate constant;is boundary layer constant.
圖6 香蕉皮改性前后表面形態(tài)(× 2 000)
表3 香蕉皮改性前后比表面積及孔徑分析
香蕉皮改性前后及改性香蕉皮吸附Cd2+后的表面元素組成見表4。對(duì)比改性前后香蕉皮的元素組成可知,改性后,C的相對(duì)含量提高,H和O的相對(duì)含量降低,這使得材料的H/C由0.158降低到0.102,而O/C比由0.731降低至0.469。H/C值降低,表明香蕉皮改性后芳香性增強(qiáng),結(jié)構(gòu)變得更穩(wěn)強(qiáng)[46],而O/C值降低說明改性后材料極性下降[47]。這些改變有利于材料在水中保持穩(wěn)定的形態(tài),有利于Cd2+的吸附。另一方面,改性后,K相對(duì)含量降低了4.38個(gè)百分點(diǎn),而Na的相對(duì)含量從0增加至1.55%,推測(cè)在改性過程中,NaOH電離出的Na+進(jìn)入了材料內(nèi)部,取代了香蕉皮中的K和部分游離H。從離子交換的角度分析,Na+的交換勢(shì)低于K+和H+[48],因此,該過程有利于Cd2+通過離子交換被材料吸附。而吸附Cd2+后,未改性香蕉皮和改性后的香蕉皮Cd2+相對(duì)含量分別從0增加至3.65%,和8.03%,證實(shí)Cd2+確實(shí)被兩種材料吸附,也表明改性后的香蕉皮對(duì)Cd2+的吸附能力有所提高。此外,未改性的香蕉皮在吸附Cd2+后,K含量從4.9%降低到2.93%,同時(shí)H/C由0.158降低到0.141,這可以解釋為吸附過程中,Cd2+與香蕉皮中的K和H發(fā)生了交換作用。而改性后的香蕉皮在吸附Cd2+后,K和Na的相對(duì)含量均降至0,這說明在吸附過程,材料中的K、Na等金屬元素中與Cd2+發(fā)生了離子交換,同時(shí),H/C比和O/C變化幅度不大,說明其他元素成分變化不大,暗示了離子交換是吸附的主要方式。對(duì)比可知,未改性的香蕉皮K元素交換不徹底,這是因?yàn)楦男郧埃罅慷嗵俏镔|(zhì)和可溶性纖維覆蓋在材料表面,阻礙了Cd2+與材料充分接觸。而改性后的香蕉皮,在去除表面覆蓋物后,內(nèi)部結(jié)構(gòu)開放外露,使得離子交換徹底完成,因此,改性有利于香蕉皮對(duì)Cd2+的吸附。
表4 未改性和改性后香蕉皮吸附Cd2+前后元素組成分析
圖7是未改性和改性后的香蕉皮分別在吸附Cd2+前后的傅里葉變換紅外光譜(Fourier transform infrared spectroscopy, FT-IR)。對(duì)比改性前后香蕉皮的FT-IR圖譜,均含有O-H(3 320cm–1)、C-H (2 910 cm–1)、C=O (1 600 cm–1)、C-C(1 390 cm–1)、C-O(1 020 cm–1)[49]。香蕉皮改性后,3 320 cm–1的峰有所減弱,這是因?yàn)橐环矫?,部分含O-H的成分在改性過程中被溶出,這與材料在改性前后O/C比變小推斷一致。另一方面,材料表面部分締合O-H的H被Na取代導(dǎo)致材料O-H含量降低;此外,改性后,2 910 cm–1處C-H伸縮振動(dòng)增強(qiáng),說明改性后材料C-H相對(duì)含量增加;1 600 cm–1處的峰形發(fā)生了明顯的變化,是因?yàn)镹a+與C=C鍵提供的 π電子形成了基團(tuán)結(jié)構(gòu)導(dǎo)致的;1 020 cm–1處的峰明顯增強(qiáng),這說明部分C-O中的氧原子與Na結(jié)合成鍵。未改性香蕉皮在吸附Cd2+后,O-H基峰明顯減弱,表明O-H被Cd2+占據(jù),說明O-H與Cd2+發(fā)生配體交換作用,郭文娟等[50]在研究生物炭吸附Cd2+時(shí)發(fā)現(xiàn)了同樣的現(xiàn)象;1 600 cm–1處的峰型變化,說明C=C鍵提供的π電子與Cd2+結(jié)合生成了新的結(jié)構(gòu),即發(fā)生了陽(yáng)離子―π鍵作用[6,33]。1 020 cm–1處吸收峰明顯增強(qiáng),說明C-O基團(tuán)中的氧原子參與成鍵,在吸附過程中與Cd2+發(fā)生了配位。而改性后的香蕉皮在吸附Cd2+后,峰位置和峰形變化均不明顯,說明吸附前后官能團(tuán)無明顯變化,由此推斷材料中的Na、K等元素與Cd2+發(fā)生的離子交換是其吸附的主要途徑,這與之前吸附前后材料的元素組成變化得到的結(jié)論是一致的。離子交換的本質(zhì)是吸附劑表面帶負(fù)電荷基團(tuán)與溶液中帶正電荷的重金屬離子之間的靜電作用[51],而陽(yáng)離子―π鍵作用中也存在靜電力。靜電作用主要是由庫(kù)侖力引起的,吸附能較低,偏向物理吸附作用[37],這與香蕉皮吸附Cd2+的(表1)值較低相符。
圖7 未改性和改性后的香蕉皮吸附Cd2+前后傅里葉變換紅外光譜
基于試驗(yàn)數(shù)據(jù)和表征結(jié)果,可以推斷香蕉皮改性前后的變化及其對(duì)水中Cd2+的吸附機(jī)理,如圖8所示。香蕉皮中含有大量的纖維,富含各類活性基團(tuán),在改性前具備對(duì)Cd2+一定的吸附潛力。然而香蕉皮表面被大量多糖、果膠等物質(zhì)覆蓋,導(dǎo)致在吸附過程中,Cd2+很難擴(kuò)散進(jìn)入材料內(nèi)部。改性后,香蕉皮表面及空隙內(nèi)填充的多糖和果膠被NaOH溶液溶出,留下結(jié)構(gòu)疏松且富含大量活性基團(tuán)的纖維骨架,有利于Cd2+擴(kuò)散進(jìn)入材料空隙內(nèi)部充分吸附。同時(shí),通過改性,材料中引入了離子交換勢(shì)很小的Na,因此對(duì)Cd2+的親和提高。
圖8 香蕉皮改性過程及對(duì)Cd2+的吸附機(jī)理
2.6.2 改性香蕉皮對(duì)Cd2+的吸附性能及應(yīng)用
如表5,對(duì)比發(fā)現(xiàn),各類吸附材料對(duì)Cd2+的吸附差異較大,本研究采用NaOH改性香蕉皮對(duì)Cd2+的吸附量高于一般生物炭和改性生物質(zhì)材料。達(dá)到吸附平衡的時(shí)間僅略長(zhǎng)于棉花秸稈生物炭和改性小麥殼,由此可見,改性香蕉皮對(duì)Cd2+的吸附在能夠在較短的時(shí)間內(nèi)即可達(dá)到較高的吸附量,即在平衡時(shí)間和吸附量2個(gè)方面都具有一定優(yōu)勢(shì)。鑒于改性香蕉皮為粉末狀,可作為一次性的吸附材料,用作水體修復(fù)等領(lǐng)域,此外,朱中原[36]在其研究中表明,NaOH浸泡的香蕉皮實(shí)質(zhì)上是一種水不溶性膳食性纖維,在醫(yī)藥領(lǐng)域有應(yīng)用的潛力。后續(xù)可以對(duì)材料的成型進(jìn)行進(jìn)一步研究,提高工程應(yīng)用的價(jià)值。
表5 不同生物質(zhì)吸附材料對(duì)Cd2+吸附性能比較
1)NaOH改性香蕉皮能夠提高對(duì)水中Cd2+的吸附性能,其較優(yōu)改性工藝條件為NaOH濃度0.25 mol/L、改性時(shí)間30 min。在此工藝條件下對(duì)香蕉皮改性后,其對(duì)Cd2+的吸附達(dá)到平衡的時(shí)間由60 min縮短到45 min,飽和吸附量由37.61 mg/g提高到87.15 mg/g。
2)改性前后的香蕉皮對(duì)水中Cd2+吸附符合Langmuir等溫模型,動(dòng)力學(xué)模型符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型,說明兩種材料吸附Cd2+為單分子層吸附,吸附過程屬于物理-化學(xué)復(fù)合過程。
3)香蕉皮改性后表面的膠質(zhì)覆蓋物被去除,使得吸附點(diǎn)位完全暴露出來,且引入了大量Na,這是其吸附Cd2+性能提升的主要原因。
[1] 魯雪梅,熊鷹,張廣之. 樹脂在重金屬水處理中的應(yīng)用[J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,48(6):1030-1038.Lu Xuemei, Xiong Ying, Zhang Guangzhi. Application of resins on the treatment of waters polluted by heavy metals[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(6): 1030-1038. (in Chinese with English abstract)
[2] 郭卉,虞敏達(dá),何小松,等. 南方典型農(nóng)田區(qū)淺層地下水污染特征[J]. 環(huán)境科學(xué),2016,37(12):4680-4689.Guo Hui, Yu Minda, He Xiaosong, et al. Pollution characteristics analysis in shallow groundwater of typical farmland area, southern China[J]. Environmental Science, 2016, 37(12): 4680-4689. (in Chinese with English abstract)
[3] Islam M S, Ahmed M K, Raknuzzaman M, et al. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country[J]. Ecological Indicators, 2015, 48(48): 282-291.
[4] 何昱軒,張黎明,郭飛飛,等. 硅基吸附劑處理含鎘廢水的研究進(jìn)展[J]. 化工進(jìn)展,2018,37(2):724-736.He Yuxuan, Zhang Liming, Guo Feifei, et al. Advances in cadmium removal from wastewater by silica-based materials[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 724-736. (in Chinese with English abstract)
[5] Shah M T, Ara J, Muhammad S, et al. Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan[J]. Journal of Geochemical Exploration, 2012, 118: 60-67.
[6] 王震宇,劉國(guó)成,Monica Xing,等. 不同熱解溫度生物炭對(duì)Cd(Ⅱ)的吸附特性[J]. 環(huán)境科學(xué),2014,35(12):4735-4744.Wang Zhenyu, Liu Guocheng, Monica Xing, et al. Adsorption of Cd(Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environmental Science, 2014, 35(12): 4735-4744. (in Chinese with English abstract)
[7] Zhu Q, Wu J, Wang L, et al. Adsorption characteristics of Pb2+onto wine lees-derived biochar[J]. Bull Environ Contam Toxicol, 2016, 97(2): 294-299.
[8] Xu X, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science & Pollution Research International, 2013, 20(1): 358-368.
[9] 柳琴,郝林林,鄭彤,等. 改性木屑對(duì)水中Cr(Ⅵ)的吸附性能[J]. 環(huán)境工程學(xué)報(bào),2015,9(3): 1021-1026.Liu Qin, Hao Linlin, Zheng Tong, et al. Adsorptive performance of chromium(Ⅵ) by modified sawdust[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1021-1026. (in Chinese with English abstract)
[10] Jin H M, Hanif M U, Capareda S, et al. Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 365-372.
[11] Qu J, Meng X, Jiang X, et al. Enhanced removal of Cd(II) from water using sulfur-functionalized rice husk: Characterization, adsorptive performance and mechanism exploration[J]. Journal of Cleaner Production, 2018, 183(10): 880-886.
[12] 許芳,張利平,程先忠,等. 改性桑樹葉吸附材料對(duì)廢水中Cd(Ⅱ)的吸附性能研究[J]. 巖礦測(cè)試,2016,35(1):62-68.Xu Fang, Zhang Liping, Cheng Xianzhong, et al. Study on biosorption performance of Cd(Ⅱ) in waste water by modified mulberry leaves[J]. Rock and Mineral Analysis, 2016, 35(1): 62-68. (in Chinese with English abstract)
[13] Munusamy T A, Lai Y L, Lin L C, et a1. Cellulose based native and surface modified fruit pee is for the adsorption of heavy metal ions from aqueous solution: langrnuir adsorption isotherms[J]. Journal of Chemical and Engineering Data, 2010, 55(3): 1186-1192.
[14] 齊亞鳳,何正艷,余軍霞,等. 改性甘蔗渣對(duì)Cu2+和Zn2+的吸附機(jī)理[J]. 環(huán)境工程學(xué)報(bào),2013,7(2):585-590. Qi Yafeng, He Zhengyan, Yu Junxia, et al. Adsorption mechanism for Cu2+and Zn2+by modified bagasse[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 585-590. (in Chinese with English abstract)
[15] 毛娜. 改性橘子皮對(duì)水中金屬離子的吸附[J]. 廣州化工,2014,42(22):108-110. Mao Na, The adsorption capacity of zinc and iron of water by modified orange peel[J]. Guangzhou Chemical Industry, 2014, 42(22): 108-110. (in Chinese with English abstract)
[16] 李思,章宇飛,張金輝,等. 改性材料吸附處理重金屬?gòu)U水的研究進(jìn)展[J]. 當(dāng)代化工,2013,42(8):1093-1096. Li Si, Zhang Yufei, Zhang Jinhui, et al. Research progress in adsorption treatment of heavy metal wastewater by modified materials[J]. Contemporary Chemical Industry, 2013, 42(8): 1093-1096. (in Chinese with English abstract)
[17] Khawas P, Deka S C. Comparative nutritional, functional, morphological, and diffractogram study on culinary banana peel at various stages of development[J]. International Journal of Food Properties, 2016, 19(12): 2832-2853.
[18] Shang W, Sheng Z, Shen Y, et al. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid[J]. Carbohydrate Polymers, 2016, 141(5): 135-142.
[19] 劉志江,李檬,肖惠寧,等. 改性纖維素的制備及分光光度法對(duì)Cu2+吸附研究[J]. 影像科學(xué)與光化學(xué),2017,35(3):274-280. Liu Zhijiang, Li Meng, Xiao Huining, et al. Novel amino modified cellulose for copper(Ⅱ) adsorption via spectrophotometry[J] Imaging Science and Photochemistry, 2017, 35(3): 274-280. (in Chinese with English abstract)
[20] 張才靈,羅楠,智霞,等. 香蕉皮和香蕉葉對(duì)重金屬Cd2+離子的吸附性能研究[J]. 廣州化工,2013,41(14),52-55. Zhang Cailing, Luo Nan, Zhi Xia, et al. Absorption behavior for heavy metal Cd2+cations of banana peels and banana leaves[J]. Guangzhou Chemical Industry, 2013, 41(14): 52-55. (in Chinese with English abstract)
[21] 胡巧開,余中山. 改性香蕉皮吸附劑對(duì)六價(jià)鉻的吸附[J]. 工業(yè)用水與廢水,2012,43(5):67-70.Hu Qiaokai, Yu Zhongshan. Adsorption of Cr(VI) by modified banana peel[J]. Industrial Water & Wasterwater, 2012, 43(5): 67-70. (in Chinese with English abstract)
[22] 鄭文釗,胡巧開,陳芳,等. 改性香蕉皮對(duì)Pb2+的吸附研究[J]. 離子交換與吸附,2013,29(5):440-448. Zheng Wenzhao, Hu Qiaokai, Chen Fang, et al. Adsorption of Pb2+by modified banana peels[J]. Ion Exchange and Adsorption, 2013, 29(5): 440-448. (in Chinese with English abstract)
[23] 董建豐. 香蕉皮改性吸附劑的制備及其吸附性能研究[D]. 重慶:重慶大學(xué),2015. Dong Jianfeng. Study on Preparation and Adsorption Capability of the Modified Banana Peel Adsorbent[D]. Chongqing: Chongqing University, 2015. (in Chinese with English abstract)
[24] 平巍,李波,董建豐,等. 生物質(zhì)改性吸附材料的制備工藝優(yōu)化及對(duì)氨氮的吸附特性[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(12):2521-2526. Ping Wei, Li Bo, Dong Jianfeng, et al. Optimization of preparation technology for biomass-modified adsorption material and its adsorption properties for ammonia nitrogen[J]. Journal of Agro-Environment Science, 2017, 36(12): 2521-2526. (in Chinese with English abstract)
[25] 董建豐,平巍,張六一,等. 香蕉皮改性吸附劑對(duì)氨氮吸附特性[J]. 環(huán)境工程學(xué)報(bào),2016,10(4):1807-1812. Dong Jianfeng, Ping Wei, Zhang Liuyi, et al. Adsorption characteristics of banana peel modified adsorbent[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1807-1812. (in Chinese with English abstract)
[26] Demi?Ral H, Gündüzog?Lu G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse[J]. Bioresource Technology, 2010, 101(6): 1675-1680.
[27] Fang C, Zhang T, Li P, et al. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater[J]. International Journal of Environmental Research & Public Health, 2014, 11(9): 9217-9237.
[28] BalarakD, Mostafapour F, AzarpiraH.Temkin and dubinin- radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles[J]. Journal of Pharmaceutical Research Internationa, 2017, 20(2): 1-9.
[29] Dada A O, Olalekan A P, Olatunya A M, et al. Langmuir, freundlich, temkin and dubinin-radushkevich isotherms studies of equilibrium sorption of Zn2+unto phosphoric acid modified rice husk[J].IOSR Journal of Applied Chemistry, 2012, 3(1): 38-45.
[30] Lagergren S. About the theory of so-called adsorption of solution substances[J]. Kungliga Svenska Vetenskapsakademiens Handlinger, 1898, 24(4): 1-39.
[31] 常春,劉天琪,廉菲,等. 不同熱解條件下制備的秸稈炭對(duì)銅離子的吸附動(dòng)力學(xué)[J]. 環(huán)境化學(xué),2016,35(5):1042-1049. Chang Chun, Liu Tianqi, Lian Fei, et al. Adsorption kinetics of copper ion on straw biochars prepared under different pyrolysis condition[J]. Environmental Chemistry, 2016, 35(5): 1042-1049. (in Chinese with English abstract)
[32] 張連科,劉心宇,王維大,等. 油料作物秸稈生物炭對(duì)水體中鉛離子的吸附特性與機(jī)制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):218-226. Zhang Lianke, Liu Xinyu, Wang Weida, et al. Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 218-226. (in Chinese with English abstract)
[33] 王彤彤,馬江波,曲東,等. 兩種木材生物炭對(duì)銅離子的吸附特性及其機(jī)制[J]. 環(huán)境科學(xué),2017,38(5):2161-2171. Wang Tongtong, Ma Jiangbo, Qu Dong, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch[J]. Environmental Science, 2017, 38(5): 2161-2171. (in Chinese with English abstract)
[34] Peers A M. Elovich adsorption kinetics and the heterogeneous surface[J]. Journal of Catalysis, 1965, 4(4): 499-503.
[35] Ajmal M, Rao R A, Anwar S, et al. Adsorption studies on rice husk: Removal and recovery of Cd(II) from wastewater[J]. Bioresource Technology, 2003, 86(2): 147-149.
[36] 朱中原. 香蕉皮中水不溶性膳食纖維提取工藝研究[J]. 食品工程,2012(3):29-31. Zhu Zhongyuan. Study on extraction of soluble dietary fiber in banana peel[J]. Food Engineering, 2012(3): 29-31. (in Chinese with English abstract)
[37] 陳雷,韓楊,席北斗,等. 粉煤灰提鋁中間產(chǎn)物合成4A分子篩對(duì)氨氮的吸附行為研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2018,38(3):993-1000. Chen Lei, Han Yang, Xi Beidou, et al. Adsorption of ammonium with 4A zeolite synthesized by using byproducts duringalumina extraction from fly ash[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 993-1000. (in Chinese with English abstract)
[38] 羅來盛,周美華. 微波活化制備加拿大一枝黃花活性炭及對(duì)Cd(Ⅱ)的吸附[J]. 環(huán)境工程學(xué)報(bào),2012,6(5):1543-1547. Luo Laisheng, Zhou Meihua. Adsorption of Cd(Ⅱ) ions onto activated carbon prepared from solidago canadensis by means of microwave activated[J]. Chinese Journal of Enviromental Engineering, 2012, 6(5): 1543-1547. (in Chinese with English abstract)
[39] 劉恒博,徐寶月,李明明,等. 改性小麥秸稈對(duì)水中Cd2+吸附的研究[J]. 水處理技術(shù),2013,39(4):15-19. Liu Hengbo, Xu Baoyue, Li Mingming, et al. Adsorption of aquatic cadmium(II) by modified wheat straw[J]. Technology of Water Treatment, 2013, 39(4): 15-19. (in Chinese with English abstract)
[40] Belayachi A, Bestani B, Bendraoua A, et al. The influence of surface functionalization of activated carbon on dyes and metal ion removal from aqueous media[J]. Desalination & Water Treatment, 2016, 57(37) :17557–17569
[41] Ho Y S, Mckay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
[42] Li N, Bai R, Liu C. Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2005, 21(25): 11780.
[43] Cruz C C V, Costa A C A D, Luna A S. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum, sp. biomass[J]. Bioresource Technology, 2004, 91(3): 249-257.
[44] Weber W, Morris J. Proceeding of International Conference on water pollution symposium[M]. Oxford: Pergamon Press, 1962.
[45] Hasegawa G. Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area[J]. Journal of Materials Chemistry, 2011, 21(7): 2060-2063.
[46] 簡(jiǎn)敏菲,高凱芳,余厚平. 不同裂解溫度對(duì)水稻秸稈制備生物炭及其特性的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2016,36(5):1757-1765. Jian Minfei, Gao Kaifang, Yu Houping. Effects of different pyrolysis temperatures on rice straw preparation of bio-char and its characteristics[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765.(in Chinese with English abstract)
[47] Singh B, Singh B P, Cowie A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Australian Journal of Soil Research, 2010, 48(6/7): 516-525
[48] 袁俊生,楊永春. 鈉型斜發(fā)沸石在K+-Na+-NH4+和K+-Na+-Ca2+水溶液體系中的離子交換平衡[J]. 離子交換與吸附,2008,24(6):496-503. Yuan Junsheng, Yang Yongchun. Ion exchange equilibria between clinoptilolite and aqueous solutions of K+-Na+-Ca2+and K+-Na+-NH4+[J]. Ion Exchange and Adsorption, 2008, 24(6): 496-503. (in Chinese with English abstract)
[49] 丁文川,杜勇,曾曉嵐,等. 富磷污泥生物炭去除水中 Pb(Ⅱ)的特性研究[J]. 環(huán)境化學(xué),2012,31(9):1375-1380. Ding Wenchuan, Du Yong, Zeng Xiaolan, et al. Aqueous solution Pb(Ⅱ) removal by biochar derived from phosphorusrich excess sludge[J]. Environmental Chenistry, 2012, 31(9): 1375-1380. (in Chinese with English abstract)
[50] 郭文娟,梁學(xué)峰,林大松,等. 土壤重金屬鈍化修復(fù)劑生物炭對(duì)鎘的吸附特性研究[J]. 環(huán)境科學(xué),2013,34(9):3716-3721. Guo Wenjuan, Liang Xuefeng, Lin Dasong, et al. Adsorption of Cd2+on biochar from aqueous solution[J]. Environmental Science, 2013, 34(9): 3716-3721.
[51] 李力,陸宇超,劉婭,等. 玉米秸稈生物炭對(duì)Cd(Ⅱ)的吸附機(jī)理研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(11):2277-2283. Li Li, Lu Yuchao, Liu Ya, et al. Adsorption mechanisms of Cd(Ⅱ) on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277-2283.
[52] Xu X, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science & Pollution Research, 2013, 20(1): 358-368.
[53] 林芳芳,易筱筠,黨志,等. 改性花生殼對(duì)水中Cd2+和Pb2+的吸附研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(7):1404-1408. Lin Fangfang, Yi Xiaoyun, Dang Zhi, et al. Adsorption of Cd2+and Pb2+from Aqueous Solution by Modified Peanut Shells[J]. Journal of Agro-Environment Science, 2011, 30(7): 1404-1408. (in Chinese with English abstract)
[54] 郭學(xué)益,肖彩梅,梁莎,等. 改性柿子粉吸附劑對(duì)Cd2+的吸附性能[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,43(2): 9-14. Guo Xueyi, Xiao Caimei, Liang Sha, et al. Adsorption of Cd2+by chemically modified persimmon powder[J]. Journal of Central South University(Science and Technology), 2012, 43(2): 9-14. (in Chinese with English abstract)
[55] 梁東旭,羅春燕,周鑫,等. 改性小麥殼對(duì)水溶液中Cd2+的吸附研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(12):2364-2371. Liang Dongxu, Luo Chunyan, Zhou Xin, et al. Adsorption of Cd2+from aqueous solution by modified wheat chaff[J]. Journal of Agro-Environment Science, 2015, 34(12): 2364-2371. (in Chinese with English abstract)
Properties and mechanism of Cd(II) adsorption from waste water by modified banana peel
Ping Wei, Wu Yan※, Yang Chunxia, Xin Qian, Wang Xiang, Li Ling, Zhang Min, Jiang Xinchen, Liu Li
(404100
In order to explore the method of preparing green adsorption material from agricultural biomass to treat waste-water containing Cd2+, the banana peel was modified by NaOH to adsorb Cd2+. The condition of modification and adsorption process were discussed through static adsorption experiment combined with isotherm (involve Langmuir, Freundlich, Temkin and D-R) and kinetics models (involve First-order, Pseudo Second-order, Elovich and Intraparticle diffusion). The surface structure and properties were characterized by using Brunauer-Emmett-Teller (BET) surface area and pore size analysis, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), element analyzer (EA) and Fourier transform infrared spectrometer (FTIR), which were used to explore the mechanism of modification and adsorption. The results of optimized modification conditions showed that NaOH was 0.25 mol/L, modification time was 30 min. Static adsorption experiment showed that adsorption capacity of modified banana peel reached 87.15 mg/g and the Equilibrium time reached 45 min. The results showed that under the same conditions, the dosage of 4 g/L and the pH value of 6 were better than those of unmodified banana peel (adsorption capacity = 37.61 mg/g, equilibrium time = 60 min). BET specific surface area and pore size analysis confirmed that the specific surface area and total pore volume increased 108 times and 3.6 times respectively after modification. Scanning electron microscopy showed that the surface became uneven and wrinkled after modification. The changes mentioned above were conducive for Cd2+to enter the interior of the material along through diffusion,thus contacting and reacting fully with adsorbent. According to the change of element composition, the H/C ratio of the modified banana peel decreased from 0.158 to 0.102, while the K content decreased by 4.38 percentage points, while the Na content increased by 1.55 percentage points after the modification, indicating the exchange reaction between K and Na.Furthermore, FTIR denoted active functional groups such as O-H (3 320 cm–1), C-H (2 910 cm–1), C=O (1 600 cm–1), C-C (1 390 cm–1), C-O (1 020 cm–1) were found on the surfaces of banana peel whether modified or not, indicated good adsorption potential for Cd2+. The results showed that the isothermal adsorption and adsorption kinetics of banana peel under different modification conditions were described by Langmuir isotherm model and pseudo-second order model, respectively. The results showed that Cd2+ions were adsorbed by unmodified and modified banana peel through a single layer membrane, and the mechanism of Cd2+was complex interaction of physical and chemical factors. Freundlich, D-R isotherm model and Elovich kinetic fitting results showed that banana peel had a strong affinity for Cd2+and the adsorption capacity was enhanced after modification. Combined with characterization and model analysis, it was concluded that the adsorptive mechanism of raw banana for Cd2+was multiple, including ion exchange/ligand exchange, cation-π and electrostatic interaction, while the adsorptive mechanism of modified banana peel for Cd2+was ion exchange. The results showed that NaOH modified banana peel had good adsorbability for Cd2+in aqueous solution. This conclusion will provide an important theoretical basis for the preparation of environmental friendly adsorbents from lignocellulose biomass to remove heavy metals from polluted water.
biomass; heavy metals; adsorption; modification; banana peel; Cd2+
2018-08-19
2019-04-07
國(guó)家自然科學(xué)基金項(xiàng)目(31670467);重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1401023)
平 巍,講師,主要從事水處理技術(shù)、固體廢物資源化研究。Email:1510069@qq.com
吳 彥,講師,博士,主要從事固體廢物資源化技術(shù)研究。Email:wuyan19850827@hotmail.com
10.11975/j.issn.1002-6819.2019.08.032
X712
A
1002-6819(2019)-08-0269-11
平 巍,吳 彥,楊春霞,辛 倩,王 翔,李 靈,張 敏,蔣昕辰,劉 利.香蕉皮改性材料對(duì)廢水中二價(jià)Cd離子的吸附特性與機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):269-279. doi:10.11975/j.issn.1002-6819.2019.08.032 http://www.tcsae.org
Ping Wei, Wu Yan, Yang Chunxia, Xin Qian, Wang Xiang, Li Ling, Zhang Min, Jiang Xinchen, Liu Li.Properties and mechanism of Cd(II) adsorption from waste water by modified banana peel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 269-279. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.032 http://www.tcsae.org