• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Genetic Algorithm in Estimation of Gyro Drift Error Model

    2019-05-15 05:57:14LIDongmeiBAITaixunHEXiaoxiaZHANGRong
    Aerospace China 2019年1期

    LI Dongmei, BAI Taixun, HE Xiaoxia*, ZHANG Rong

    Department of Precision Instrument, Tsinghua University, Beijing 100084

    Abstract: Extended Kalman Filter (EKF) algorithm is widely used in parameter estimation for nonlinear systems. The estimation precision is sensitively dependent on EKF's initial state covariance matrix and state noise matrix. The grid optimization method is always used to find proper initial matrix for off-line estimation. However, the grid method has the draw back being time consuming hence, coarse grid followed by a fine grid method is adopted. To further improve efficiency without the loss of estimation accuracy, we propose a genetic algorithm for the coarse grid optimization in this paper. It is recognized that the crossover rate and mutation rate are the main influencing factors for the performance of the genetic algorithm, so sensitivity experiments for these two factors are carried out and a set of genetic algorithm parameters with good adaptability were selected by testing with several gyros' experimental data. Experimental results show that the proposed algorithm has higher efficiency and better estimation accuracy than the traversing grid algorithm.

    Key words: genetic algorithm, traversing grid algorithm, coarse grid optimization, gyro drift error model, crossover rate and mutation rate selecting

    1 INTRODUCTION

    The gyroscope is a high-precision angular sensor which directly determines navigational system performance. Therefore,the estimation precision for gyro drift error model is very important for the navigation system[1].

    The gyro drift model is nonlinear, so Extended Kalman Filter(EKF) algorithm is used for parameter estimation. Its estimation precision is sensitively dependent on the initial state covariance matrix and state noise matrix of EKF[2].

    A two-stage method, coarse grid followed by fine grid, is used in the current optimization. Since coarse grid optimization takes long time, we proposed a scheme with a genetic algorithm for the coarse optimization to further improve calculating efficiency. Based on tests with experimental data from several gyros, a set of adaptive genetic algorithm parameters were selected. Genetic algorithm with these parameters was used for testing and compared with the results using traversing grid algorithm. The comparison results confirmed the efficiency and accuracy of genetic algorithm method.

    In section 2, the gyro drift error model and optimization criterion are introduced. Then the basic principle of the two-stage grid optimization method used in the current gyro drift test and the proposed genetic algorithm and its implementation steps are described in section 3 and 4 respectively. Experimental results are compared and analyzed in section 5. The conclusion and discussion are given in the final section.

    2 GYRO DRIFT ERROR MODEL

    The gyro is tested on a servo-turntable and initially oriented to the geocentric coordinate system. Its drift error model with case rotating-dwelling auto compensation device is[3]:

    In the above formula, εx, εyare gyro random drifts. gx, gy,gzrepresent the projection of the gravity acceleration in the three-axis direction of the gyro coordination. dx0, dy0,d1, d2are the model parameters to be estimated. wdx, wdyare drift rate which can be calculated by the frame angles θx, θyof the servo-turntable.

    Because gravitational acceleration in gyro coordination is nonlinear with frame angles, the gyro model system is a nonlinear system and EKF is used to estimate model parameters. State equation and observation equation for the EKF are as follows[2]:

    where w and v are mutually independent and normally distributed white noise. F(t) represents the state transition matrix and the other parameters are as follows:

    The discrete nonlinear Kalman filter equation is[2]:

    where Zkis the measurement at time k, Kkthe Kalman filter's gain,the state correction value, the state prediction value, Δt the discretization period. Ksis iteratively calculated by the following formula.

    The state estimation covariance matrix represents the accuracy of the state estimation. The system has six state quantities,so the matrices P0and Q0are both 6×6 diagonal matrices.Therefore, there are 12 matrix parameters to be optimized.The criterion of optimization is the linear combination of the final random drift and the fluctuation of all the model parameters'which is formulated by the objective function

    where λ is the weight with range of [0,1].

    3 INTRODUCTION TO GRID OPTIMIZATION METHOD

    The grid optimization method is commonly used in parameter optimization problems, and the basic principle is traversal search. Its basic steps are to divide the range of parameters into grids, then calculate the objective function point by point and finally select better parameters by comparing all the grid points.In theory, as long as the grid is fine enough, the optimal parameters can be found within reasonable tolerance[4].

    The currently used method is two-stage method, coarse grid followed by fine grid, as shown in Figure 1. In each step,two parameters are selected from the 12-dimentianal optimization space to minimize the objective function, then these two states are updated, and another two different parameters are selected in the next searching step.

    Supposing the optimization space be divided into n×n grids,the parameter optimization range is [start, end ], and s represents the value on grid point. The specific calculation method of the grid search algorithm is

    Figure 1 Flow chart of coarse and fine two-stage grid method

    wherestepis grid size. The parameternwith range of [ 0,n- 1] is the index of grid point.

    Coarse and fine grid methods can reduce the calculation task and computation time. However, as the sample space or the number of parameters to be optimized increases, the amount of calculation will still be very large.

    4 THE BASIC PRINCIPLE OF THE GENETIC ALGORITHM AND ITS IMPLEMENTATION METHOD

    The genetic algorithm solves the parameter optimization problem by simulating the biological evolution on a computer.The basic theory is Darwin's biological evolution theory. The genetic algorithm improves the adaptability of the individual to find the optimal solution through selection, crossover, mutation and other processes[5].

    According to the experimental result, fine grid optimization takes far less time than coarse grid optimization, so we use the genetic algorithm in the coarse optimization.

    The genetic algorithm is mainly composed of gene coding,population size, fitness function and genetic operators as shown in Figure 2.

    Figure 2 Flow chart of genetic optimization algorithm

    The purpose of gene coding is to convert the practical problem into a computer-solvable genetic problem. The coding method adopted in this experiment is binary coding. The coded parameter isniin the grid optimization method in formula (7).For example, if the grid is divided into 16×16, the value range ofniis 0 - 15.

    Since two parameters are selected each time for model calculation, the length of an individual is set to eight-bit gene which represents the 16 values ofni. The first four bits represent the first parameter, while the last 4 bits represent the second one.

    The size of the population may affect the complexity and performance of the genetic algorithm. Too small population cannot reflect the diversity of organisms, while too large population will increase the complexity of the algorithm. Based on experience and multiple experiments, the population is set to 5.

    Fitness function is the criterion to guide how the genetic algorithm evolves, the key to measure the pros and cons of the algorithm. The higher the individual's fitness, the greater survival probability the individual will have. Usually, the fitness function of the individual is set as a linear combination of the objective function. The purpose of this paper is to minimize the objective functionYin formula (6), so (1-Y) can be used as the fitness function.

    Genetic operators consist of three basic operations: selection, crossover and mutation.

    The purpose of the selection operation is to select the best individuals for crossover and mutation operation so that the next generation of genes are more outstanding. To implement the selection operation, the first step is to calculate the individual fitness, and then select individuals based on fitness ratio or fitness order. The strategy adopted in this paper is proportional selection, that is, the probability that an individual is selected is proportional to its fitness. The specific implementation algorithm adopts the “roulette algorithm” with formula as follows[5]:

    In order to prevent the optimal solution from being destroyed by crossover and mutation during the process of genetic evolution, the elitism algorithm is used to copy the best individual in each generation to the next generation[6]. In addition,if the fitness of the worst individual in the current generation is worse than the best in the previous generation, the worst individual in the current generation will be replaced by the best in the previous. In this way, the population size is kept constant.

    Crossover operation simulates the phenomenon of gene recombination in nature, that is, the selected individuals exchange part of the genes to form new individuals according to the crossover operator. Genetic recombination is the main method to generate new individuals, which determines the global search ability of genetic algorithm. Commonly used crossover operators are single-point crossover, two-point crossover, uniform crossover, fusion crossover and so on.

    Since an individual's eight-bit genes represent two independent parameters, we use two-point crossover method here,that is the first four genes and the last four genes of two individuals each subjected to a single-point crossover. The crossover operation is carried out with a certain probability, called the crossover rate. Based on experiments' result, the crossover rate is set to 0.8.

    Mutation operation simulates the phenomenon of gene mutation in nature, that is, an individual's genes are mutated according to a certain probability to form a new individual. Gene mutation is an assistant method for generating new individuals,which determines the local search ability of genetic algorithm.Commonly used mutation operators include basic bit mutation,uniform mutation, quadratic mutation, Gaussian mutation and so on.

    In this paper, the random uniform mutation is adopted where an individual randomly is selected and a random gene position is mutated to 0 or 1. The mutation operation should also be carried out with a certain probability, which is called the mutation rate. Based on experiments' result, the mutation rate is set to 0.2.

    Genetic algorithm requires iterating continuously to get optimal results till the termination rule is met. Commonly used termination rules include iteration limit, calculation time limit,objective function limit and so on. In this paper, the number of iterations is used as the termination rule. After many experiments, the number of iterations found to be better within 25.

    5 EXPERIMENTAL RESULTS

    We conducted the experiments with the following steps:

    Step 1. Initialization

    Genetic algorithm parameters are selected as Table 1 shows. The parameter range of matrixP0for coarse optimization is [1e - 5, 1e5] and the parameter range of matrixQ0is [1e- 10, 1e2].

    Table 1 Genetic algorithm parameters

    In addition, the selection operator adopts the proportional selection - roulette algorithm. And the elitism algorithm is used to copy the best individual in each generation to the next generation.

    Step 2. Coarse and fine optimization

    The genetic algorithm with the above parameters is embedded into the coarse optimization process of the traversing grid algorithm. The grid divisions with 16×16 and 8×8 are both conducted. The fine optimization process still uses the grid optimization method. The grid division for fine optimization is 5×5.

    Step 3. Estimation

    Based on the above settings, the Extended Kalman Filter algorithm is used to estimate the parameters of gyro drift error model. The coefficient fluctuation is represented by the standard deviations during the last three hours of the filtering process. The random drift is represented by the prediction error.

    With these steps, we obtained the comparison results of efficiency shown in Table 2 and Table 3 and comparison result of accuracy shown in Table 4. All the experimental results have been normalized.

    Considering the randomness of the genetic algorithm, all the experimental tests of the genetic algorithm are carried out three times.

    Table 2 Efficiency comparison of optimization algorithms (mesh divided into 16×16)

    Table 3 Efficiency comparison of optimization algorithms (mesh divided into 8×8)

    Table 4 Accuracy comparison of optimization algorithms (compared with traversing algorithm)

    From the comparison results in Table 2 and Table 3, it can be seen that the genetic algorithm result is better or with equal effect to traversing gird algorithm, while the processing time is shortened. We can conclude that the new algorithm can meet the accuracy requirements of parameter optimization and improve the efficiency by 40% - 50%.

    From the comparison results in Table 4, it can be seen that the result using the new algorithm is more accurate than traversing algorithm. The coefficient fluctuation is reduced by at least one order of magnitude, while the prediction error is also improved. The running time is also shortened. Therefore, the genetic algorithm in this paper can improve both efficiency and accuracy.

    In summary, in the optimization of gyro drift model parameter, the grid optimization method based on genetic algorithm can improve the efficiency of the algorithm without loss of estimation accuracy compared with the traversing method. In the case of the same process time, the new algorithm can also improve the estimation accuracy.

    6 CONCLUSIONS

    In this paper, the two-stage grid optimization method for the gyro drift model is introduced, and the basic principle and implementation process of the genetic algorithm are described in detail. In order to simplify the complexity and shorten the running time of the program, the genetic algorithm is used to replace the coarse optimization stage of the traversing grid method. Based on experimental test, we can conclude that the running time of the genetic algorithm is shortened by 40% -50% without loss of the estimation accuracy.

    In this paper, the method is only used in optimization for two-dimensional space. Its efficiency and accuracy used in higher dimensional space should be further studied.

    桃红色精品国产亚洲av| 成年人黄色毛片网站| 69人妻影院| 91在线精品国自产拍蜜月 | 中文资源天堂在线| 伊人久久精品亚洲午夜| 手机成人av网站| 欧美最新免费一区二区三区 | 日韩国内少妇激情av| 成人国产综合亚洲| 精品不卡国产一区二区三区| 身体一侧抽搐| 成人国产一区最新在线观看| 精华霜和精华液先用哪个| 国产精品香港三级国产av潘金莲| 亚洲片人在线观看| 极品教师在线免费播放| 女人被狂操c到高潮| 午夜日韩欧美国产| 99久久久亚洲精品蜜臀av| 一进一出好大好爽视频| 夜夜爽天天搞| 制服人妻中文乱码| 国产99白浆流出| 18禁国产床啪视频网站| 夜夜爽天天搞| 亚洲成人久久爱视频| 国产真实乱freesex| 夜夜夜夜夜久久久久| 99久久精品国产亚洲精品| 欧美中文日本在线观看视频| 人妻久久中文字幕网| 国产精品永久免费网站| 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 亚洲av熟女| 中出人妻视频一区二区| 婷婷亚洲欧美| 一区福利在线观看| 男女视频在线观看网站免费| 成年女人毛片免费观看观看9| 黑人欧美特级aaaaaa片| 高潮久久久久久久久久久不卡| 99热精品在线国产| 啦啦啦韩国在线观看视频| 好看av亚洲va欧美ⅴa在| 成年版毛片免费区| 亚洲一区二区三区色噜噜| 97碰自拍视频| www日本黄色视频网| 免费电影在线观看免费观看| 成年女人永久免费观看视频| 免费大片18禁| 欧美成人一区二区免费高清观看| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清专用| 免费一级毛片在线播放高清视频| 97碰自拍视频| av视频在线观看入口| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 男女下面进入的视频免费午夜| 老汉色av国产亚洲站长工具| 欧美性猛交黑人性爽| 69av精品久久久久久| 国产精品嫩草影院av在线观看 | 日韩精品中文字幕看吧| 午夜福利在线观看免费完整高清在 | 午夜亚洲福利在线播放| 18禁裸乳无遮挡免费网站照片| x7x7x7水蜜桃| 午夜久久久久精精品| 国产亚洲精品av在线| 亚洲中文字幕日韩| 午夜福利18| 亚洲精品色激情综合| 51午夜福利影视在线观看| 午夜精品在线福利| 欧美丝袜亚洲另类 | 俄罗斯特黄特色一大片| 嫁个100分男人电影在线观看| 欧美3d第一页| 欧美国产日韩亚洲一区| 精品无人区乱码1区二区| 尤物成人国产欧美一区二区三区| 看黄色毛片网站| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 高清日韩中文字幕在线| 久久午夜亚洲精品久久| 女警被强在线播放| 丝袜美腿在线中文| 久久精品国产自在天天线| 日韩 欧美 亚洲 中文字幕| 岛国视频午夜一区免费看| 99国产综合亚洲精品| 欧美色视频一区免费| 法律面前人人平等表现在哪些方面| 波野结衣二区三区在线 | 久久亚洲真实| 精品国内亚洲2022精品成人| 欧美日本亚洲视频在线播放| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 黄色日韩在线| 香蕉av资源在线| 青草久久国产| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 亚洲av日韩精品久久久久久密| 非洲黑人性xxxx精品又粗又长| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 麻豆久久精品国产亚洲av| 老汉色∧v一级毛片| 少妇人妻一区二区三区视频| 丰满的人妻完整版| 听说在线观看完整版免费高清| 俺也久久电影网| 狂野欧美激情性xxxx| 精品国内亚洲2022精品成人| 免费av不卡在线播放| 国产午夜精品久久久久久一区二区三区 | 成人特级黄色片久久久久久久| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 精品午夜福利视频在线观看一区| 日日夜夜操网爽| 国产精品1区2区在线观看.| 2021天堂中文幕一二区在线观| 亚洲熟妇中文字幕五十中出| 丝袜美腿在线中文| 两人在一起打扑克的视频| 国产色婷婷99| 亚洲专区国产一区二区| 亚洲国产精品999在线| 久久精品影院6| 一区二区三区免费毛片| 又爽又黄无遮挡网站| 午夜视频国产福利| 亚洲国产高清在线一区二区三| 欧美在线黄色| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩高清专用| 99久久成人亚洲精品观看| 国产免费男女视频| 97碰自拍视频| 国产国拍精品亚洲av在线观看 | 精品一区二区三区av网在线观看| 99久久九九国产精品国产免费| 国产精品影院久久| 男女床上黄色一级片免费看| 99国产精品一区二区蜜桃av| 日本黄色片子视频| 天堂av国产一区二区熟女人妻| 午夜两性在线视频| 搡老岳熟女国产| 叶爱在线成人免费视频播放| tocl精华| 亚洲人成网站在线播| 18+在线观看网站| 亚洲一区二区三区色噜噜| 他把我摸到了高潮在线观看| 一夜夜www| 成年免费大片在线观看| 日日夜夜操网爽| 国产极品精品免费视频能看的| 国产伦精品一区二区三区视频9 | 老司机福利观看| 亚洲国产日韩欧美精品在线观看 | 欧美日韩一级在线毛片| www.熟女人妻精品国产| 国产免费男女视频| 午夜福利18| 亚洲,欧美精品.| 免费人成视频x8x8入口观看| 久久久色成人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜久久久久精精品| 国语自产精品视频在线第100页| 村上凉子中文字幕在线| 成人特级av手机在线观看| 精品一区二区三区视频在线 | 国产欧美日韩一区二区三| 日本a在线网址| 国产亚洲精品久久久com| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 波多野结衣高清无吗| 国产精品三级大全| 欧美色视频一区免费| 亚洲在线观看片| 欧美三级亚洲精品| 亚洲激情在线av| 天天躁日日操中文字幕| 亚洲av不卡在线观看| 欧美+日韩+精品| 2021天堂中文幕一二区在线观| 国产一区二区三区在线臀色熟女| 国产美女午夜福利| av专区在线播放| 日韩欧美 国产精品| 日本精品一区二区三区蜜桃| 国产精品1区2区在线观看.| 国产精品香港三级国产av潘金莲| 国产高清有码在线观看视频| www国产在线视频色| 亚洲国产日韩欧美精品在线观看 | 欧美成人性av电影在线观看| 美女高潮的动态| 欧美日本视频| ponron亚洲| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区视频在线 | 国产成人福利小说| 禁无遮挡网站| 久久国产精品人妻蜜桃| 欧美三级亚洲精品| 男女床上黄色一级片免费看| 久99久视频精品免费| 成人精品一区二区免费| 欧美+亚洲+日韩+国产| 午夜福利免费观看在线| 女警被强在线播放| 午夜免费男女啪啪视频观看 | 国产一区二区三区在线臀色熟女| 热99re8久久精品国产| 波多野结衣巨乳人妻| 嫩草影视91久久| 国产一区二区在线av高清观看| 国产淫片久久久久久久久 | 国产精品 欧美亚洲| 手机成人av网站| 国产蜜桃级精品一区二区三区| 国模一区二区三区四区视频| 高清在线国产一区| 亚洲中文字幕日韩| 日本精品一区二区三区蜜桃| 亚洲国产色片| 少妇的逼水好多| 12—13女人毛片做爰片一| a级毛片a级免费在线| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 少妇的丰满在线观看| 国产毛片a区久久久久| 男女做爰动态图高潮gif福利片| 国模一区二区三区四区视频| 久久国产精品人妻蜜桃| 免费在线观看影片大全网站| 女生性感内裤真人,穿戴方法视频| 在线免费观看不下载黄p国产 | 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 久久精品综合一区二区三区| 亚洲成a人片在线一区二区| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 国产精品 国内视频| av黄色大香蕉| 亚洲精品在线美女| 床上黄色一级片| 三级毛片av免费| 欧美日韩国产亚洲二区| 午夜福利欧美成人| 母亲3免费完整高清在线观看| 高清在线国产一区| 身体一侧抽搐| 哪里可以看免费的av片| 亚洲人与动物交配视频| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 欧美成人a在线观看| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站| 天天添夜夜摸| 国产精品久久电影中文字幕| 在线a可以看的网站| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 亚洲一区二区三区不卡视频| 男人舔女人下体高潮全视频| 欧美成人一区二区免费高清观看| 国产色婷婷99| 国产野战对白在线观看| 久久6这里有精品| 天堂影院成人在线观看| 亚洲成人久久性| 偷拍熟女少妇极品色| 亚洲人成网站在线播| 亚洲精品在线美女| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 久久这里只有精品中国| 国产成人影院久久av| 中文字幕久久专区| 亚洲真实伦在线观看| 女人十人毛片免费观看3o分钟| 国产aⅴ精品一区二区三区波| av在线蜜桃| 深爱激情五月婷婷| 国产精品久久电影中文字幕| 精品国产超薄肉色丝袜足j| 亚洲国产欧洲综合997久久,| 国产成人av教育| 日韩精品中文字幕看吧| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 老熟妇乱子伦视频在线观看| 高清日韩中文字幕在线| 成人av在线播放网站| 一本综合久久免费| 一区福利在线观看| 久久久色成人| 内射极品少妇av片p| 色吧在线观看| 国产中年淑女户外野战色| 欧美日韩精品网址| 99在线人妻在线中文字幕| 国产日本99.免费观看| 99久久九九国产精品国产免费| 日本精品一区二区三区蜜桃| xxxwww97欧美| 欧美激情久久久久久爽电影| 日本精品一区二区三区蜜桃| 日本黄色片子视频| 欧美区成人在线视频| 成人特级av手机在线观看| 亚洲av不卡在线观看| 日本黄大片高清| 亚洲av免费在线观看| 日本撒尿小便嘘嘘汇集6| 波野结衣二区三区在线 | 日本撒尿小便嘘嘘汇集6| 国产精品98久久久久久宅男小说| 少妇的逼好多水| 亚洲精品456在线播放app | 成人亚洲精品av一区二区| 亚洲成人久久性| 深爱激情五月婷婷| 中文字幕人妻熟人妻熟丝袜美 | 免费在线观看亚洲国产| 国产乱人伦免费视频| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 好男人电影高清在线观看| 欧美成人性av电影在线观看| 天堂网av新在线| 在线视频色国产色| 久久九九热精品免费| 国产亚洲精品一区二区www| 宅男免费午夜| e午夜精品久久久久久久| 女同久久另类99精品国产91| a级毛片a级免费在线| 欧美一级毛片孕妇| 国产一区二区三区视频了| 一夜夜www| 国产色婷婷99| 日韩 欧美 亚洲 中文字幕| 久久久国产成人免费| 又黄又粗又硬又大视频| 日韩欧美三级三区| 欧美3d第一页| 色哟哟哟哟哟哟| av视频在线观看入口| 成人欧美大片| 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 欧美国产日韩亚洲一区| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 欧美日本视频| 99精品欧美一区二区三区四区| 免费看日本二区| 我的老师免费观看完整版| 最近最新中文字幕大全免费视频| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 99视频精品全部免费 在线| av在线天堂中文字幕| 国产高清三级在线| 国产真人三级小视频在线观看| 久99久视频精品免费| 亚洲专区国产一区二区| 偷拍熟女少妇极品色| 亚洲欧美日韩高清在线视频| 美女免费视频网站| 久久午夜亚洲精品久久| 激情在线观看视频在线高清| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 精品福利观看| 嫩草影院精品99| 免费在线观看日本一区| 国产高清videossex| 婷婷亚洲欧美| 露出奶头的视频| 美女 人体艺术 gogo| 全区人妻精品视频| 欧美性猛交黑人性爽| 最近最新中文字幕大全电影3| 日本五十路高清| 69av精品久久久久久| 欧美一级a爱片免费观看看| 午夜福利18| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 国产野战对白在线观看| 午夜福利在线观看吧| 亚洲国产欧美网| 18禁国产床啪视频网站| 99热6这里只有精品| 亚洲精品一卡2卡三卡4卡5卡| 精品国产美女av久久久久小说| 一本久久中文字幕| 亚洲av成人精品一区久久| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看| 成人欧美大片| av国产免费在线观看| 青草久久国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本一二三区视频观看| 老司机在亚洲福利影院| 乱人视频在线观看| 脱女人内裤的视频| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 国产高清视频在线播放一区| 男插女下体视频免费在线播放| 色老头精品视频在线观看| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 日韩欧美一区二区三区在线观看| 欧美一级毛片孕妇| 日本免费一区二区三区高清不卡| 久久精品91无色码中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲精品国产精品久久久不卡| 亚洲av二区三区四区| 午夜福利免费观看在线| 午夜精品一区二区三区免费看| 丰满的人妻完整版| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 三级毛片av免费| 国产高潮美女av| 男人和女人高潮做爰伦理| 小说图片视频综合网站| 91久久精品国产一区二区成人 | 久久精品国产自在天天线| 美女高潮的动态| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| 两个人的视频大全免费| 黄片大片在线免费观看| 在线观看66精品国产| 亚洲黑人精品在线| 伊人久久精品亚洲午夜| 偷拍熟女少妇极品色| 国产成+人综合+亚洲专区| 有码 亚洲区| 一级毛片女人18水好多| 国产高清视频在线观看网站| 夜夜躁狠狠躁天天躁| 国产91精品成人一区二区三区| 国产v大片淫在线免费观看| 香蕉久久夜色| 美女高潮喷水抽搐中文字幕| 中文在线观看免费www的网站| 久久这里只有精品中国| 欧美另类亚洲清纯唯美| 在线视频色国产色| 成年免费大片在线观看| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看 | 日韩高清综合在线| 亚洲av二区三区四区| 欧美黑人巨大hd| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av一区综合| 亚洲国产日韩欧美精品在线观看 | 亚洲在线观看片| 色吧在线观看| 国产综合懂色| 色吧在线观看| 黑人欧美特级aaaaaa片| 亚洲av美国av| 夜夜躁狠狠躁天天躁| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美| 宅男免费午夜| 精品一区二区三区av网在线观看| 亚洲av美国av| 天堂网av新在线| 免费高清视频大片| 免费观看精品视频网站| 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清| 久久精品影院6| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 亚洲18禁久久av| 夜夜躁狠狠躁天天躁| 少妇的逼好多水| 日本一本二区三区精品| 五月玫瑰六月丁香| 午夜精品一区二区三区免费看| 免费高清视频大片| 可以在线观看毛片的网站| 久久精品综合一区二区三区| 午夜日韩欧美国产| 极品教师在线免费播放| 久久精品国产亚洲av涩爱 | 丰满人妻一区二区三区视频av | 神马国产精品三级电影在线观看| 99精品久久久久人妻精品| 欧美一区二区精品小视频在线| 久99久视频精品免费| 此物有八面人人有两片| 夜夜夜夜夜久久久久| 丁香欧美五月| 老司机福利观看| 久久久成人免费电影| av黄色大香蕉| 国产高清视频在线观看网站| 成人一区二区视频在线观看| 国产三级黄色录像| netflix在线观看网站| 观看美女的网站| 老熟妇乱子伦视频在线观看| 午夜福利在线观看吧| 欧美日韩黄片免| 成人性生交大片免费视频hd| 国产精品久久久久久亚洲av鲁大| 国产成人欧美在线观看| 国产不卡一卡二| 亚洲第一电影网av| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 欧美乱色亚洲激情| 丝袜美腿在线中文| 日本成人三级电影网站| 国产精品嫩草影院av在线观看 | 国产精品美女特级片免费视频播放器| 久久久久亚洲av毛片大全| 亚洲精品456在线播放app | 国产精品99久久久久久久久| 免费人成视频x8x8入口观看| 在线天堂最新版资源| 成年人黄色毛片网站| 日韩人妻高清精品专区| 最新在线观看一区二区三区| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 五月玫瑰六月丁香| 欧美高清成人免费视频www| 性色av乱码一区二区三区2| 国产乱人伦免费视频| 国产亚洲精品久久久com| 国内少妇人妻偷人精品xxx网站| 国产视频内射| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美 | 国产探花在线观看一区二区| 长腿黑丝高跟| 色综合婷婷激情| 91在线精品国自产拍蜜月 | 男插女下体视频免费在线播放| 一进一出抽搐gif免费好疼| 夜夜夜夜夜久久久久| 国内揄拍国产精品人妻在线| 国产高清三级在线| 90打野战视频偷拍视频| 99国产精品一区二区三区| 亚洲精华国产精华精| 麻豆久久精品国产亚洲av| 在线看三级毛片| 一a级毛片在线观看| 国产高清三级在线| 综合色av麻豆| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 好男人电影高清在线观看| 中出人妻视频一区二区| 欧美午夜高清在线| 中文字幕久久专区| 黄色视频,在线免费观看| 婷婷亚洲欧美| 久久午夜亚洲精品久久| 免费看a级黄色片| 国内久久婷婷六月综合欲色啪| 哪里可以看免费的av片| 国产免费男女视频| 最后的刺客免费高清国语|