• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automated p ebble mosaic stylization of images

    2019-05-14 13:26:06LarsDoyleForestAndersonEhrenChoyandDavidould
    Computational Visual Media 2019年1期

    Lars Doyle(),Forest And erson ,Ehren Choy ,and David M ould

    Abstract Digital mosaics have usually used regular tiles,simulating historical tessellated mosaics.In this paper,we present a method for synthesizing pebble mosaics,a historical mosaic style in which the tiles are rounded pebbles.We address both the tiling problem,of distributing pebbles over the image plane so as to approximate the input image content,and the problem of geometry,creating a smooth rounded shape for each pebble.Weadopt simplelinear iterativeclustering(SLIC)to obtain elongated tiles conforming to image content,and smooth the resulting irregular shapes into shapes resembling pebble cross-sections.Then,we create an interior and exterior contour for each pebble and solve a Laplace equation over the region between them to obtain height-f ield geometry.The resulting pebble set approximates the input image while representing full geometry that can berendered and textured for a highly detailed representation of a pebble mosaic.

    Keyword s non-photorealistic rendering;digital mosaics;image stylization;segmentation;image processing

    1 Introduction

    Mosaics are an art form that date back thousands of years.The earliest historical mosaics were pebble mosaics[1,2],whose component pebbles were heterogeneous in size and shape.Pebble mosaics paved f loors with pebbles,arranged so as to form an image or design.The craft of pebble mosaics continues into the 21st century[3]with new pebble mosaics being built by hobbyists and city planners.Pebble mosaics,as well as the contemporaneous chip mosaics made of fragments of quarried stone[1],use entirely irregular tiles.The archetypal mosaic is the tessellated mosaic,made of regular cubes of stone(tesserae).Such tessellated mosaics are the most familiar kind of mosaics and have been the most thoroughly studied in computer graphics.Tessellated mosaics have been dated to the third century BCE.However,pebble mosaicsappeared in Greece hundreds of yearsearlier[1]and havenot received much attention in computer graphics.In thispaper,weproposea novel algorithm for constructing irregular pebble mosaics,using a variant of simple linear iterative clustering(SLIC)[4]to obtain an initial segmentation,smoothing the resulting boundaries,and using a Poisson solver to interpolate a smooth height field for each pebble which we can then render using conventional lighting and texturing.

    For a mosaic to successfully convey an image,it is important to align tile edges with image edges.The use of square tiles imposes severe restrictions on the detail level that can be captured;our irregular tiles can convey considerable detail,including interior edges of f igures,something often neglected in previous techniques.Our algorithm isentirely automatic;users can optionally guide the output by annotating the input image with an importance map or by manually adding decorative features in a preprocessing phase.

    Fig.1 Fragment of a pebble mosaic f loor dating from the 4th century BCE.

    Fig.2 An image progressing through our system.Left to right:input,segmentation,boundary smoothing,pebble geometry,lighting.

    This paper makes two main contributions.Firstly,we adapt SLIC so that it is suitable for creating irregular,elongated pebble shapes.We estimate the local direction of the image and then bias the SLIC clustering distance according to a local coordinate system,producing natural-looking size and aspect ratio variations.Secondly,we compute smooth pebble geometry for the resulting tiles.We use the Laplace equation,setting up constraints and then solving to meet them,to produce smooth shapes resembling river pebbles.By creating and rendering this geometry,we bridge photorealism and non-photorealism.

    This paper is organized as follows. Section 2 reviews previous work on computer-generated mosaics.Section 3 describes our algorithm in detail.Section 4 shows images created using our method and discusses its benef its and drawbacks.Finally,Section 5 summarizes the work and suggests future directions.

    2 Related work

    Battiato et al.[5]proposed a taxonomy of digital mosaic research in which the two initial branches divide tile mosaics from multi-picture mosaics.This distinction stems from the nature of the basic picture elements.In tile mosaics,the image plane is divided into small regions,each individually colored to represent the underlying input image.In contrast,multi-picture mosaics employ a dataset of images that are used to assemble an approximation to the input image based on local color and structure similarity;the typical result is a photomosaic[6].We situate our current work within the tile mosaic branch.

    In the seminal Paint by Numbers[7],Haeberli introduced many of the concepts that have since been used for mosaic emulation.His idea of using Voronoi diagrams for mosaics has been used in commercial products and in subsequent research;centroidal Voronoi diagrams(CVDs)are particularly common.CVDs are often produced by Lloyd’s algorithm,a relaxation process that repeatedly moves the Voronoi centres to the centroids of their regions.The CVD process has formed the basis for much work in mosaic and stipple creation[8–10],since it is a good way to distribute points on the plane.

    Hausner[8]presented an iterative algorithm for placing mosaic centres,using hardware-accelerated CVDs to distribute tiles.Hausner also identif ied a crucial issue in mosaics:tile edges should be aligned with image edges.Hausner resolved this in his work by having tiles move away from user-specif ied edges.An alternative method for achieving edge alignment was given by Elber and Wolberg[11],who arranged rows of tiles along streamlines parallel to initial userspecif ied curves.Yet another way of addressing edge alignment was given by Di Blasi and Gallo[12],who proposed to cut the rectangular tiles where they cross image edges.Liu et al.[13]used graph cuts rather than explicit edge detection to prevent tiles from crossing image edges.

    Within the multi-picture mosaic branch a thread of research involves populating a set of container shapes with tiles,generally without any intention of providing interior image detail.Kim and Pellacini’s Jigsaw Image Mosaic[14]is an example,where the method producesan irregular tiling of theimageplane with predef ined tiles,minimizing a set of error criteria including tile overlap and color mismatch.More recent work by Saputra et al.[15,16]arranges f igures within the container shape while seeking an aesthetic distribution rather than a full packing.Kwan et al.[17]accelerated partial-shape matching,through their pyramid of arc-length descriptor,for packing irregular shapes.

    Other methodsfor distributing primitivesand tiling the plane have been devised,and we brief ly mention a few others.Smith et al.[18]focussed on coherent movement of tiles to create animated mosaics;later,Dalal et al.[19]used Fourier transforms to f ind good packings of input primitives.Kaplan and Salesin[20,21]worked on automatically controlling tile shapes to produce Escher-like tilings in which the tiles were close to an input goal shape.Similarly,Goferman et al.[22]extracted irregular regions of interest from a seriesof photographsand packed them in a puzzle-like manner within a chosen aspect ratio.Photo collage is a related area,but removes the constraint that an underlying image or containing shape must be represented.Using convolutional neural networks,Liu et al.[23]produced photo collages by grouping together images with similar content over the image plane.

    3 Constructing p ebble mosaics

    In our approach,we tile the image plane using heterogeneous,3D pebble-shaped objects. As in previous methods[8,11,12],our tiles avoid crossing image boundaries and are oriented to align with a direction map.However,we take a dif ferent approach towards this goal. Section 3.1 describes how we modify the simple linear iterative clustering(SLIC)algorithm[4]to produce oriented pebble shapes.We take advantage of the inherent boundary-avoiding quality of SLICand thushaveno need for explicit edge detection nor associated parameters or thresholds.We describe how we simplify the boundaries of the initial segmentation in Section 3.2 to produce smooth,“river-worn”pebbles. Finally,in Section 3.3 we construct a height f ield from the 2D boundaries to extend pebbles into 3D,before applying lighting to the resulting geometry.A schematic representation of our algorithm pipeline in Fig.3 shows how an input image I is transformed into a pebble mosaic.

    3.1 Segmentation

    SLIC produces compact super-pixels by clustering pixels into groups,based on colour and spatial distance. Their tendency to adhere to image boundaries is benef icial for describing image content and forms the basis of our pebble shapes.In its original formulation,the spatial distance of a pixel p from a cluster center c can be described by an of fset vectorv=p?c,allowing us to compute the l2distance as

    where vxand vyare the components ofv parallel to the x-and y-axes.It is often the case in nature that pebbles are longer in one dimension than the other,forming approximate,oval-like boundaries as opposed to circular ones.As a f irst modif ication to Eq.(1)we can apply dif ferent scaling factors to the x and y components ofv.This results in the elongated super-pixels that are shown in the top right image of Fig.4.

    Fig.3 Pipeline of our proposed method.

    Artists often take advantage of pebble shapes and will emphasize image edges by aligning the long side of a pebble parallel to an edge.We can approximate this ef fect with one further modif ication to our distance metric.First,we construct a structure tensor[24]at each super-pixel center by integrating the matrix f ield,?I?IT,weighted by a Gaussian function.The tensor’s unit eigenvectors e1and e2,associated with eigenvaluesλ1λ2,are parallel and perpendicular to the smoothed image gradient.We can now use these vectors as a new basis in our distance calculation.Furthermore,applying a larger weight to the component ofv parallel to e1than e2allows super-pixels to spread tangent to image edges.This ef fect can be seen in Fig.4(bottom left).In f lat or corner regions,where there is inadequate orientation information,we simply assign a default direction.This assessment is made by thresholding an orientation coherence estimate:

    Fig.4 Top left:original SLIC.Top right:scaling v y in Eq.(1)by α=3.Bottom left:scalingv·b1 in Eq.(3)byα=3.Bottom right:using random scaling in Eq.(3).

    where K is a constant chosen to avoid division by zero and to de-emphasize weak tensors.

    The f inal distance metric is

    whereα1andα2are scaling factors,controlling both the aspect ratio and the overall size of each cluster.The vectorsb1andb2correspond either to the local image orientation,if a strong local orientation exists,or a default direction. The decision is made by comparing C to a threshold Tcohas follows:

    The vectors d1and d2comprise a default orthonormal basis.In our examples we set Tcohto 0.5 and d1to the y-axis.

    The scaling factorsα1and α2are selected individually for each super-pixel guided by a random process,such that Through experimentation,we chose to compress the aspect ratio perpendicular to edges byφa1=3.The other terms are determined by two uniform random numbers r1,r2∈[0,1].We then setφa2=(φa1?1)r21+1 and set the scale termφs=r22+1.

    The local distance metric Dsis used in the SLIC process to oversegment the image. We refer to the resulting oversegmented image as P,and each segment,Pi∈P,is a pebble.

    3.2 Bound ary smoothing

    The pebbles constructed in Section 3.1 contain many irregularities that depart from the smooth pebble shapes that we wish to create.Hence,we apply a low-pass f ilter in the frequency domain[25]to each pebble’s outer contour co(k),for k=0,1,···,K?1.This process ef fectively reconstructs a contour from L Fourier coef ficients,where L

    Fig.5 Left to right:original contour,and reconstructed contours using L=37,17,and 7 Fourier coef ficients.

    Fig.6 High-resolution pebbles rendered at 5 times the input resolution.Left:pebble shapes.Right:3D rendered pebbles.

    3.3 Pebble geometry

    We construct a height field for each pebble by means of harmonic interpolation over the domain,?,that resides between two contours(Fig.7(left)).The outer contour,co,is described above.We obtain the inner contour,ci,by thresholding the normalized distance transform of Piby Tdist∈(0,1).We set a zero gradient at the inner contour,thus creating a small flat face to each pebble which then curves downwards to the image plane.In all examples,we set Tdist=0.85.

    Our height f ield is the solution to the Laplace equation[26]:

    with boundary value constraints Pi|co=0 and Pi|ci=1.Additionally,we set gradient constraints at the boundariessuch that|?Pi|=0 on ci.Thegradient on cois constructed as follows.Returning to the Fourier transform of Section 3.2,we note that the derivative co(k)of the sampled function co(k)can be computed in the Fourier domain.This process provides us with a sequence of vectors that are tangent to the curve,one for each sample point.Rotating each vector 90?inwards gives us a gradient orientation that is orthogonal to the boundary.The gradient magnitude is chosen as follows:

    where Dmaxis the maximum value of the distance transform.The parameterβdetermines the shape of the resulting pebble;various settings are illustrated in Fig.8.We chooseβ=2 to construct the pebble prof ile curving downward into the surrounding area in our examples.Notice that settingβtoo high results in the gradient overshooting its target at the inner contour resulting in a depression at the center as seen in the bottom row of Fig.8.

    Fig.7 Left:the domain,?,and boundaries(c o and c i)of P i.Right:the gradient orientation on c o(arrows)and zero-gradient on c i(dots).

    Fig.8 Constructing a height f ield at varying scales of gradient magnitude on c o.

    3.4 Rendering

    We apply Phong shading to the resulting height f ield.We use the average colour in I under Pias the pebble’s surface color.Optionally,we can apply a rock texture to the pebble as well.The texture image is randomly sampled for each pebble and combined with the luminosity channel using a multiply blend.Example mosaics produced using this scheme,with and without texture,are shown in Figs.9(above)and 9(below)respectively.

    Fig.9 Above:result without texture.Below:textured result.

    4 Results and discussion

    We demonstrate our method on photographs containing various subject matter in Fig.10,using 2000 pebbles in each example.The original source images are shown in Fig.20.Rendering time for a 1.5 megapixel image is 28 s using our unoptimized CPU implementation.The majority of this time(25 s)is spent solving 2000 N2isparse linear systems in order to construct the geometry of the pebbles.Increasing the pebble count leads to solving smaller matrices and thus faster execution time;for example,using 3000 pebbles reduces the solving time to 16 s.

    Notice that even at this coarse scale,most of the important image features are still recognizable.The elongated pebble shapes add an impression of motion to the results.This is most noticeable in the cat image at the top left where the pebbles follow the fur orientation.In the portrait image(second row,left)we see how random pebble scaling can add visual interest to otherwise f lat image regions.Thisbringsto mind the activity of a mosaicist using tiny pebbles to f ill the empty spaces left between larger stones.In the bottom row,adding texture supports the transition from the synthetic 3D shapes in the top rows to a more natural-looking material.

    Fig.10 Results.Top two rows:without texture.Bottom row:using marble texture.

    Inspired by historical mosaics,such as the one depicted in Fig.1,we demonstrate our method on the ornamental designs shown in Fig.11.Due to the high contrast in these images,the pebbles adhere well to the image content,creating a striking rerepresentation of the input.

    4.1 Degrees of freedom

    Our system has f ive notable degrees of freedom that can inf luencetheoutcomeof thef inal rendered mosaic:color,shape,texture,orientation,and size.Webrief ly discuss each here.

    Color.Following the tradition in tile mosaics[7,8,11,12]we render each pebble with the average color under the corresponding image region.Alternatively,we could allow color to vary over the pebble region,guided by the input image.

    Shape.Pebble shape can be inf luenced by the lowpass f ilter used in the smoothing process discussed in Section 3.2 and illustrated in Fig.5.We chose to retain seven Fourier coef ficients,resulting in smooth oval-like pebble shapes.However,less smoothing would provide more shape variety.

    Texture. We currently limit pebble texture to a single sample but there is potential for more development along this dimension.For example,a database of texture swatches could be employed to match pebble texture with the underlying image.This addition would provide further connection with the input image and increase recognizability.

    Fig.11 Results for ornamental motifs.Left:input images.Right:results.

    Orientation.Pebbles are oriented parallel to image edges,as is common in both traditional and digital mosaics[8,11,12].As explained in Section 3.1,we determineorientation through a structure tensor f ield,defaulting to a f ixed orientation where inadequate information is present.We could also ask the user to provide a vector f ield in place of a single default direction.

    Size. We discuss pebble size in the following subsections,f irst talking about local variation in pebble dimensions and then discussing size more generally,including the option of varying pebble size based on an importance map.

    4.1.1 Pebble dimensions

    In Section 3.1 and Eq.(5)we describe a random process that determines the aspect ratio and relative size of individual pebbles.We now show how varying these parameters can inf luence the resulting mosaic;the images in the top row of Fig.12 provide a visual example.In Fig.12(top left)we f ixφs=1 to maintain a constant scale and vary the aspect ratio using a random number.Here we increase φa1to 5 and calculateφa2as before. The long thin pebbles work well in this situation where we connect them with the cat’s fur. Compare this result to the cat in Fig.10.There,settingφa1to 3 shows less movement in the cat’s fur,but randomly changingφsbrings out more variation and liveliness.In Fig.12(top right),we f ix the aspect ratio to φa1=φa2=1 and allow the scale parameter to vary.We setφs=5r2+1,where r is a uniform random number in[0,1].Without orientation information it is more dif ficult to identify the image.Also,such extreme variability in pebble size is distracting since the sizes are chosen randomly rather than based on image content.In Fig.12(bottom,left and right)we demonstrate the impact of the random factors in the scaling parameters:note the dif ferent outcomes for two runs,using identical parameters.

    Fig.12 Top left:randomly varying pebble aspect ratio,f ixed scale.Top right:randomly varying pebble scale,f ixed aspect ratio.Bottom:rendering is nondeterministic due to random scale parameter.

    4.1.2 Pebble size

    In Fig.13 we vary the number of pebbles that make up a mosaic image.On the left we see a detailed result using 3000 pebbles.Many traditional mosaics,such as the one depicted in Fig.1,were constructed with this high level of detail.Next,we see a result using 1000 pebbles.Even at this larger size,much of the image remains clear owing to SLIC’s tendency to adhere to image boundaries.Finally,the pebble size on the right has probably been pushed too far,making it dif ficult to recognize the main f igure in the result.See Fig.15 for a rendering of this image using 2000 pebbles.

    We can also vary the pebble size by use of an importance map.The mask in the inset of Fig.14 indicates regions to be rendered with smaller,more numerous pebbles. This technique is useful for drawing attention to important regions and provides a more detailed representation of the content.

    Fig.13 Varying pebble size.Left to right:3000,1000,500 pebbles.

    Fig.14 Pebbles within the important area(inset)are rendered at a higher frequency.

    4.2 Comparison with related work

    Figure 15 shows a comparison between our method and Hausner’s[8]using 2000 pebbles.Here,we turn of fthe lighting ef fects and make the comparison based on tile shape alone.(The color shift between the two examples is due to using dif ferent source photographs of the painting).By using heterogeneous shapes,image content can be more accurately portrayed than when using an equal number of 2D homogeneous primitives.In our result,the pebble shapes cleanly outline the contours of the f igure and its drapery.Where smaller pebbles are needed to f ill an image region,our method is not restricted to a uniform pebble size.Both these properties stem from our use of SLIC as the initial segmentation method.Of course,both our method and Hausner’s can use smaller primitives in regions specif ied by users.

    Similarly,we compare our method with three previous tile mosaic algorithms on a common image in Fig.16. Our result is on the bottom right using 3000 pebbles.At the top left,Di Blasi and Gallo[12]obtain clean lines and uniform spacing by cutting tiles that overlap perceptual guidelines and neighbouring tiles.The edges in our rendering are obtained through SLIC which adhere well to step edges but fail when perceptual boundaries are not matched with a strong color discontinuity.An example can be seen in the thin strand of feathers above the brim of Lena’s hat where pebbles are not constrained to this narrow region.This is a case in which perceptual edge detection would benef it our segmentation.Schlechtweg et al.’s[27]Render Bots show f ine detail by using 9000 primitives but the placement is uneven and rendering took one hour to complete.

    Fig.15 Comparison.Left:Hausner’s method.Right:ours.Both results use 2000 tiles

    Fig.16 Comparison with previous tile mosaic algorithms.

    Recently,there has been much attention given to using convolutional neural networks for image stylization[28,29].In Fig.17(center)we show a result obtained from deepart.io,a popular online implementation of Gatys et al.’s method[28].The high-level semantic features used in neural style transfer preserve image features better than the lowlevel color features that we use;compare the detail images in Figs.17(bottom left)and 17(bottom right).The iguana’s eye clearly highlights the advantage of using semantic features:style transfer reproduced the eye using a single pebble,improving recognizability.Our method,in contrast,uses a number of pebbles dependent on the SLIC super-pixel size;it artif icially breaks the eye into three pebbles.The advantage of our method lies in explicitly modeling pebble shapes.The texture produced by neural style transfer in Fig.17(center)only roughly approximates that found in the style example in Fig.17(top left).For example,the def inition of individual pebbles is completely lost in parts of the background and the side of the iguana’s head.In contrast,our method explicitly models individual pebble geometry and can output well-def ined shapes at any resolution.

    4.3 Limitations

    Our method performs best on images with high contrast and clear distinctions between regions of dif fering semantic content.Due to the relatively large scale of the pebbles,some subtle image features or tiny details can be lost.Figure 18(top)shows an image dominated by high-frequency content.In our rendering in Fig.18(right),only a large-scale impression of the scene is captured. Reducing pebble size is only a limited option since,past a certain scale,the cement between the pebbles will feature as prominently as the pebbles themselves.In Fig.18(bottom)the facial features are poorly represented.SLIC does not ef fectively cope with lighting changes in the area of the man’s nose,for example.Either more sophisticated low-level processing or learning-based semantic segmentations could improve on our results,and both are promising directions for future work.

    Fig.17 Comparison with neural style.Top left:style example.Top right:input image.Center:pebble mosaic rendered with neural style[28]as implemented at deepart.io.Bottom left:detail.Bottom right:detail of Fig.9(bottom).

    Continuing our discussion on color,we also note that our resulting images would be dif ficult to recognize based on pebble layout only.See Fig.19 for an example of a black and white pebble layout.Without colorization,the orientation and pebble boundaries only hint at the underlying image.More work could be done to emphasize the structural content of the image by varying pebble shape and size,linking size and shape variation to image content instead of varying pebble dimensions with random factors.At the same time,it might be possible to improve our pebble colors.Because we add lighting ef fects to a base color derived from the image,the f inal pebble color distribution is not necessarily very close to the desired color.We could improve the mosaic by better integration of the lighting process and the selection of base color.

    Fig.18 Limitations of our method.Top:high-frequency features.Bottom:semantic content.

    Fig.19 Pebble layout without colorization.

    Processing time is also an issue. Our main bottleneck is determining the numerous matrices that construct the height f ield.Taking advantage of parallelization would help.Also,solving at a lower resolution and smoothing the results could improve timing.

    Fig.20 Input images used in Figs.9,10,13,14,and 15.

    Although we think that smooth river-worn pebbles are the most commonly type used for pebble mosaics,more varied rock types in principle could be used,and this paper did not attempt to treat these.

    5 Conclusions

    In thispaper wepresent a method to render 3D pebble mosaics.Digital mosaics have been presented in the NPR literature previously,but only in the context of tiling a 2D surface;here,we not only create a tiling representing pebbles,but also generate a height f ield for the pebbles so that they can be rendered.

    Our method starts by segmenting the image plane with SLIC,equipped with a modif ied distance metric.Theresulting super-pixels adhereto image boundaries and hence no further edge detection is required.By varying the size,orientation,and aspect ratio of the super-pixels,we obtain pebble shapes that are highly expressive in their depiction of image content.

    We construct the geometry of each pebble by solving a Laplace equation on the domain between two contours.The resulting height f ield can then be rendered using a variety of lighting techniques beyond the simple Phong shading model we use in this paper.In addition,since we have synthesized 3D geometry,our pebble mosaics can be used in novel applications,from 3D virtual environments to physical 3D printed objects.

    In the future we would like to use semantic segmentation to improve the initial super-pixel clustering. Important image regions,especially on the human face,could benef it by constraining clustering to regions of similar content.Better use of low-level image features could improve on the SLIC segmentation.Pebble texture could also be customized to suggest image details at a scale below the size of individual pebbles.This addition would bridge the gap between tile and multi-picture mosaics,as def ined by Battiato et al.[5],and strengthen the connection between the original image and its mosaic representation.

    Acknowledgements

    We would like to thank the anonymous reviewers for many insightful comments.Wealso thank membersof the Graphics,Imaging and Games Lab for productive comments and discussions.Funding for this work was provided by NSERC,OGS,and Carleton University.

    We used many images from Flickr under a Creative Commons license.Thanks to the numerous photographers who provided material:Douglas Scortegagna(landscape),bDom(b&w portrait),Julio Romero(iguana),Peat Bakke(t-rex),G′abor Lengyel(portrait),Tommie Hansen(canal),Theen Moy(cat),JB Banks(dark woods),Richard Messenger(Yemeni),Greg Myers(tomatoes),sicknotepix(toque).

    免费一级毛片在线播放高清视频 | 国产免费av片在线观看野外av| 老司机靠b影院| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 热99久久久久精品小说推荐| 在线天堂中文资源库| 男女之事视频高清在线观看| 交换朋友夫妻互换小说| 久久精品亚洲av国产电影网| 欧美精品一区二区免费开放| 大码成人一级视频| 久久久久久久久免费视频了| 在线观看免费高清a一片| 老司机亚洲免费影院| 日韩中文字幕欧美一区二区| 午夜视频精品福利| 精品亚洲乱码少妇综合久久| 在线永久观看黄色视频| 51午夜福利影视在线观看| 国产精品偷伦视频观看了| 两人在一起打扑克的视频| 精品一区在线观看国产| 一级毛片女人18水好多| 日日摸夜夜添夜夜添小说| 老司机在亚洲福利影院| 亚洲欧美激情在线| 国产亚洲av片在线观看秒播厂| 亚洲视频免费观看视频| 色94色欧美一区二区| 国产欧美日韩精品亚洲av| 亚洲成人免费av在线播放| 国产深夜福利视频在线观看| 国产成人精品久久二区二区免费| 啦啦啦在线免费观看视频4| 亚洲精品av麻豆狂野| 一级毛片精品| 亚洲欧美一区二区三区久久| 人妻人人澡人人爽人人| 精品卡一卡二卡四卡免费| 亚洲精品第二区| 亚洲少妇的诱惑av| 亚洲国产精品999| 久久女婷五月综合色啪小说| 亚洲精华国产精华精| 国产麻豆69| 久久热在线av| av不卡在线播放| 婷婷色av中文字幕| 欧美精品高潮呻吟av久久| 亚洲av美国av| videosex国产| 在线精品无人区一区二区三| 香蕉丝袜av| a级毛片在线看网站| 国产成人一区二区三区免费视频网站| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲欧美精品永久| 91精品国产国语对白视频| 国产成人精品久久二区二区免费| 黑人操中国人逼视频| www日本在线高清视频| 又紧又爽又黄一区二区| 韩国高清视频一区二区三区| 少妇粗大呻吟视频| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲专区国产一区二区| 亚洲精品中文字幕在线视频| avwww免费| 人人妻人人爽人人添夜夜欢视频| 亚洲av日韩精品久久久久久密| 大陆偷拍与自拍| 天天操日日干夜夜撸| 亚洲精品日韩在线中文字幕| 啪啪无遮挡十八禁网站| 欧美精品一区二区大全| 又大又爽又粗| 欧美日韩视频精品一区| 美女主播在线视频| 黄色片一级片一级黄色片| 国产97色在线日韩免费| 中文精品一卡2卡3卡4更新| www.精华液| 久久综合国产亚洲精品| 免费在线观看日本一区| 精品卡一卡二卡四卡免费| 亚洲国产精品成人久久小说| 亚洲精品成人av观看孕妇| 亚洲国产精品成人久久小说| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 国产亚洲一区二区精品| 亚洲av成人不卡在线观看播放网 | 日本a在线网址| 久久久久久久久久久久大奶| 久久免费观看电影| 免费不卡黄色视频| 中文字幕最新亚洲高清| 日韩免费高清中文字幕av| 好男人电影高清在线观看| 亚洲国产看品久久| 国产一区二区三区在线臀色熟女 | 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 一本久久精品| 在线观看人妻少妇| 亚洲精品国产精品久久久不卡| 大型av网站在线播放| 国产成人影院久久av| 亚洲精品久久久久久婷婷小说| 国产成人一区二区三区免费视频网站| av天堂久久9| 水蜜桃什么品种好| 波多野结衣av一区二区av| 十八禁网站网址无遮挡| 嫁个100分男人电影在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲自偷自拍图片 自拍| 成年av动漫网址| 亚洲av美国av| 91国产中文字幕| 国产一区二区 视频在线| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| 18在线观看网站| 夫妻午夜视频| 欧美国产精品va在线观看不卡| 在线观看人妻少妇| 叶爱在线成人免费视频播放| 亚洲伊人久久精品综合| 在线观看免费高清a一片| 狂野欧美激情性bbbbbb| 国产精品影院久久| 亚洲中文av在线| 免费高清在线观看视频在线观看| 老司机福利观看| 岛国在线观看网站| 欧美av亚洲av综合av国产av| 国内毛片毛片毛片毛片毛片| e午夜精品久久久久久久| 中文字幕高清在线视频| 欧美亚洲日本最大视频资源| 亚洲第一青青草原| 精品国产乱码久久久久久男人| 国产欧美日韩综合在线一区二区| 日日夜夜操网爽| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 日韩大码丰满熟妇| 青春草亚洲视频在线观看| 久久久久国产精品人妻一区二区| 日韩欧美一区视频在线观看| 俄罗斯特黄特色一大片| 精品国产一区二区久久| 成人18禁高潮啪啪吃奶动态图| 亚洲中文字幕日韩| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 午夜激情久久久久久久| 一本综合久久免费| 免费在线观看影片大全网站| 精品人妻一区二区三区麻豆| 久久久水蜜桃国产精品网| 久久精品成人免费网站| 欧美国产精品一级二级三级| 一本综合久久免费| 韩国精品一区二区三区| 亚洲精品一二三| 母亲3免费完整高清在线观看| 婷婷丁香在线五月| 亚洲欧美清纯卡通| 亚洲全国av大片| 欧美黑人欧美精品刺激| 亚洲精品日韩在线中文字幕| 久久久久精品国产欧美久久久 | 亚洲国产成人一精品久久久| 2018国产大陆天天弄谢| 成人18禁高潮啪啪吃奶动态图| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 老司机影院毛片| 久久精品久久久久久噜噜老黄| 男女高潮啪啪啪动态图| 国产亚洲精品一区二区www | 高潮久久久久久久久久久不卡| 热re99久久精品国产66热6| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 黑人操中国人逼视频| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯 | 欧美激情 高清一区二区三区| 美女大奶头黄色视频| 国产激情久久老熟女| 一级毛片精品| 亚洲 国产 在线| 久久天堂一区二区三区四区| 大型av网站在线播放| 日韩中文字幕视频在线看片| 国产精品久久久久久精品电影小说| 乱人伦中国视频| 欧美激情极品国产一区二区三区| 男女免费视频国产| 国产成人免费观看mmmm| 精品少妇内射三级| 国产一级毛片在线| 中文字幕人妻丝袜一区二区| 久久九九热精品免费| 亚洲精品久久午夜乱码| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 日韩大码丰满熟妇| 亚洲av电影在线观看一区二区三区| 动漫黄色视频在线观看| 男女床上黄色一级片免费看| 1024视频免费在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久精品电影小说| 免费少妇av软件| 交换朋友夫妻互换小说| 久久久国产一区二区| 丝袜脚勾引网站| 一区福利在线观看| 欧美精品人与动牲交sv欧美| 午夜激情久久久久久久| 在线 av 中文字幕| 久久久欧美国产精品| 日韩大码丰满熟妇| 丰满迷人的少妇在线观看| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 国产精品影院久久| 久久99一区二区三区| 欧美黄色淫秽网站| 下体分泌物呈黄色| 久久久欧美国产精品| 桃红色精品国产亚洲av| 中国国产av一级| 丰满饥渴人妻一区二区三| 日韩视频在线欧美| 99精品欧美一区二区三区四区| 亚洲七黄色美女视频| 美女主播在线视频| 中文字幕最新亚洲高清| 丝袜美足系列| 国产日韩欧美视频二区| 日本五十路高清| 久久久久精品人妻al黑| 久久久精品国产亚洲av高清涩受| 精品国内亚洲2022精品成人 | 亚洲欧美精品自产自拍| www.精华液| 国产无遮挡羞羞视频在线观看| 捣出白浆h1v1| 国产麻豆69| 久久久久网色| 国产一区有黄有色的免费视频| 日韩视频一区二区在线观看| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 国产亚洲av高清不卡| 人妻 亚洲 视频| 色精品久久人妻99蜜桃| 精品久久久久久电影网| 人人澡人人妻人| 国产精品国产三级国产专区5o| 91成人精品电影| 高清视频免费观看一区二区| 日韩人妻精品一区2区三区| 中文字幕色久视频| 99久久综合免费| 丝瓜视频免费看黄片| 在线精品无人区一区二区三| 电影成人av| 777米奇影视久久| 午夜福利视频精品| 一边摸一边做爽爽视频免费| 欧美av亚洲av综合av国产av| 国产三级黄色录像| 丝袜人妻中文字幕| 婷婷丁香在线五月| 亚洲欧美一区二区三区久久| av天堂在线播放| 国产亚洲欧美在线一区二区| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 免费高清在线观看视频在线观看| 日本撒尿小便嘘嘘汇集6| 人人澡人人妻人| 热99国产精品久久久久久7| 日本91视频免费播放| 国产在线视频一区二区| av超薄肉色丝袜交足视频| 可以免费在线观看a视频的电影网站| 动漫黄色视频在线观看| 亚洲欧美色中文字幕在线| 99国产精品免费福利视频| 欧美精品一区二区大全| 国产成人av教育| 亚洲av电影在线观看一区二区三区| 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 热99久久久久精品小说推荐| 久久国产精品大桥未久av| 欧美精品一区二区免费开放| av网站在线播放免费| 国产免费视频播放在线视频| 久久久久国产精品人妻一区二区| av在线老鸭窝| 在线精品无人区一区二区三| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| 欧美 日韩 精品 国产| 国产精品久久久人人做人人爽| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 国产精品 欧美亚洲| 少妇猛男粗大的猛烈进出视频| 亚洲中文字幕日韩| avwww免费| 久久女婷五月综合色啪小说| 午夜福利在线观看吧| 女人精品久久久久毛片| 看免费av毛片| 少妇 在线观看| 国产精品久久久av美女十八| 国产精品一区二区在线观看99| 亚洲精华国产精华精| 大型av网站在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩福利视频一区二区| 久久久久精品国产欧美久久久 | 老熟女久久久| 91麻豆精品激情在线观看国产 | 51午夜福利影视在线观看| 国产97色在线日韩免费| 啦啦啦在线免费观看视频4| 激情视频va一区二区三区| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 久久国产精品大桥未久av| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 在线天堂中文资源库| av片东京热男人的天堂| 无限看片的www在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲第一青青草原| 啪啪无遮挡十八禁网站| 久久久久视频综合| 国产99久久九九免费精品| 亚洲五月色婷婷综合| 蜜桃在线观看..| 纯流量卡能插随身wifi吗| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 淫妇啪啪啪对白视频 | 波多野结衣av一区二区av| 国产男女超爽视频在线观看| 欧美人与性动交α欧美精品济南到| 国产日韩一区二区三区精品不卡| 欧美日韩精品网址| 久久狼人影院| 电影成人av| 亚洲欧洲日产国产| 欧美日韩国产mv在线观看视频| 亚洲全国av大片| 国产精品九九99| 国产极品粉嫩免费观看在线| 一级毛片精品| 男女午夜视频在线观看| 人人妻人人澡人人爽人人夜夜| 香蕉国产在线看| 亚洲精品国产色婷婷电影| 一边摸一边抽搐一进一出视频| 巨乳人妻的诱惑在线观看| 狠狠婷婷综合久久久久久88av| 久久久国产成人免费| 成人18禁高潮啪啪吃奶动态图| 97人妻天天添夜夜摸| 久久国产精品男人的天堂亚洲| 午夜福利在线免费观看网站| 俄罗斯特黄特色一大片| 国产欧美日韩综合在线一区二区| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看 | 国产亚洲欧美精品永久| 亚洲专区字幕在线| 国产亚洲av片在线观看秒播厂| 免费观看人在逋| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 91成年电影在线观看| 三级毛片av免费| 91九色精品人成在线观看| 国产精品久久久av美女十八| 免费观看av网站的网址| 各种免费的搞黄视频| 我要看黄色一级片免费的| 欧美在线黄色| 满18在线观看网站| 国产男女内射视频| 一级黄色大片毛片| 人人妻人人爽人人添夜夜欢视频| 国产色视频综合| 亚洲精品av麻豆狂野| 久久久久久久国产电影| 国产亚洲欧美在线一区二区| 精品一区二区三区av网在线观看 | 99久久精品国产亚洲精品| 久久 成人 亚洲| 亚洲 国产 在线| 天天添夜夜摸| 首页视频小说图片口味搜索| 国产精品久久久久成人av| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 黑人欧美特级aaaaaa片| 18禁观看日本| 久久久国产精品麻豆| 大片电影免费在线观看免费| 黄色 视频免费看| 欧美在线一区亚洲| 亚洲欧美清纯卡通| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说| 欧美一级毛片孕妇| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 欧美日韩亚洲综合一区二区三区_| 国产精品免费大片| 欧美 日韩 精品 国产| 免费观看av网站的网址| 国产精品一区二区免费欧美 | 国产精品久久久久久人妻精品电影 | 欧美日本中文国产一区发布| 视频区图区小说| 欧美激情久久久久久爽电影 | 伦理电影免费视频| 久久人人97超碰香蕉20202| 亚洲黑人精品在线| 日本av手机在线免费观看| 亚洲成人免费av在线播放| 亚洲人成电影观看| 91精品国产国语对白视频| 波多野结衣av一区二区av| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| 成年人黄色毛片网站| 99久久综合免费| 另类亚洲欧美激情| 一进一出抽搐动态| 国产精品1区2区在线观看. | 国产黄色免费在线视频| 一级毛片精品| 一个人免费看片子| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 成人国产一区最新在线观看| 久久人妻熟女aⅴ| 青春草亚洲视频在线观看| 搡老岳熟女国产| 99热国产这里只有精品6| 超碰成人久久| 宅男免费午夜| 最黄视频免费看| 亚洲专区字幕在线| 日本黄色日本黄色录像| 精品国产一区二区久久| 日韩 亚洲 欧美在线| 男女之事视频高清在线观看| 国产一区二区 视频在线| 午夜福利视频在线观看免费| 麻豆国产av国片精品| 少妇 在线观看| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 考比视频在线观看| 波多野结衣一区麻豆| 丝袜脚勾引网站| 人妻一区二区av| 国产福利在线免费观看视频| 日日爽夜夜爽网站| 欧美在线黄色| 成人国产av品久久久| 精品一区二区三区四区五区乱码| 亚洲av片天天在线观看| 国产精品影院久久| 亚洲五月婷婷丁香| 一本综合久久免费| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 50天的宝宝边吃奶边哭怎么回事| 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 麻豆乱淫一区二区| 51午夜福利影视在线观看| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 性少妇av在线| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 丁香六月欧美| 亚洲久久久国产精品| 亚洲精品乱久久久久久| 国产高清视频在线播放一区 | 久久久久网色| 少妇裸体淫交视频免费看高清 | 韩国精品一区二区三区| 国产av又大| 婷婷色av中文字幕| 99香蕉大伊视频| 丝袜在线中文字幕| 国产精品偷伦视频观看了| 国产日韩欧美视频二区| 久久久久国内视频| 精品福利观看| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美一区二区综合| 中文字幕制服av| 午夜激情久久久久久久| 亚洲男人天堂网一区| 美国免费a级毛片| 在线观看免费日韩欧美大片| 97在线人人人人妻| 亚洲精品国产色婷婷电影| 国产成人精品在线电影| 久久国产精品影院| 日本vs欧美在线观看视频| 欧美黑人精品巨大| 日日爽夜夜爽网站| 久久免费观看电影| 又紧又爽又黄一区二区| 日本vs欧美在线观看视频| 一区二区日韩欧美中文字幕| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 欧美中文综合在线视频| 9191精品国产免费久久| 丝瓜视频免费看黄片| tocl精华| 超碰97精品在线观看| 免费观看a级毛片全部| 三上悠亚av全集在线观看| 免费在线观看黄色视频的| 日韩制服丝袜自拍偷拍| 日本vs欧美在线观看视频| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 91字幕亚洲| 精品久久久久久电影网| 亚洲 国产 在线| 国产国语露脸激情在线看| 自线自在国产av| 老司机午夜十八禁免费视频| 97在线人人人人妻| 女人精品久久久久毛片| 国产又爽黄色视频| 大片电影免费在线观看免费| 日本91视频免费播放| 中文字幕色久视频| h视频一区二区三区| www.熟女人妻精品国产| 亚洲精品美女久久久久99蜜臀| 男男h啪啪无遮挡| 国产精品av久久久久免费| 老司机亚洲免费影院| 汤姆久久久久久久影院中文字幕| 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 美女高潮到喷水免费观看| 国产精品熟女久久久久浪| 久久性视频一级片| 99国产极品粉嫩在线观看| 亚洲美女黄色视频免费看| 午夜精品国产一区二区电影| 精品欧美一区二区三区在线| av视频免费观看在线观看| 亚洲 欧美一区二区三区| 最近中文字幕2019免费版| 免费日韩欧美在线观看| 最近最新免费中文字幕在线| 国产亚洲一区二区精品| a级毛片在线看网站| 99热全是精品| 国产熟女午夜一区二区三区| 亚洲精品国产区一区二| 色婷婷av一区二区三区视频| 国产在线一区二区三区精| 国产成人欧美在线观看 | 90打野战视频偷拍视频| 啦啦啦视频在线资源免费观看| 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | 视频区欧美日本亚洲| 热99国产精品久久久久久7| 视频在线观看一区二区三区| 久久久久久人人人人人| 国产成人免费观看mmmm| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频|