• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi-Feature Weighting Based K-Means Algorithm for MOOC Learner Classification

    2019-05-10 03:59:52YuqingYangDequnZhouandXiaojiangYang
    Computers Materials&Continua 2019年5期

    Yuqing Yang ,Dequn Zhou and Xiaojiang Yang

    Abstract:Massive open online courses (MOOC) have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups.However,most current algorithms mainly focus on the final grade of the learners,which may result in an improper classification.To overcome the shortages of the existing algorithms,a novel multi-feature weighting based K-means (MFWK-means) algorithm is proposed in this paper.Correlations between the widely used feature grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results with the Canvas Network Person-Course (CNPC) dataset demonstrate the effectiveness of our method.Moreover,a comparison between the new MFWK-means and the traditional K-means clustering algorithm is implemented to show the superiority of the proposed method.

    Keywords:Multi-feature weighting,learner classification,MOOC,clustering.

    1 Introduction

    The development of massive open online courses (MOOC) has been recognized as one of the most significant innovations in the field of education [Jacoby (2014)].It provides new courses at an unprecedented scale,both in terms of learner numbers and in terms of global reach [Pursel,Zhang,Jablokow et al.(2016)].Many data mining techniques have been proposed to group learners based on their learning style,approach,profile,prior knowledge,and so on [Shahir and Husain (2015); Wang,Yang,Wen et al.(2015);Papamitsiou and Economides (2014); Romero and Ventura (2017)].

    Clustering techniques are the most popular techniques to group learners with similar categories allowing formulation of appropriate learning strategies for each group of learners [Dutt,Ismail and Herawan (2017); Cabedo,Tovar and Castro (2016); He,Ouyang,Wang et al.(2018); Zhang,Zheng and Xia (2018)].Using cluster analysis as a technical means can effectively identify and characterize the underlying features of MOOC learners [Cabedo,Tovar and Castro (2016)].Wang et al.[Wang and Fu (2018)]exploited the data mining tools to analyze learners’ behavior characteristics and then classify the learners into different groups.In [Gallén et al.[Gallén and Caro (2017)],a set of 26 questions was designed to investigate the learners’ motivation to study with MOOC,where the answer options of the questions were treated as cluster characteristic indexes.Yousef et al.[Yousef,Chatti,Wosnitza,et al.(2015)] adopted cluster analysis to analyze the different goals of users and establish a deeper understanding of their behavior.Gadhavi et al.[Gadhavi and Patel (2017)] utilized the data mining technology to group the MOOC learners and predict their final grade.Prabhakar et al.[Prabhakar and Zaiane (2017)] utilized a modified Particle Swarm Optimization technique to group the MOOC learners based on their grades and personal information,where the intra-group heterogeneity and inter-group homogeneity are both included to enhance the classification results.Harwati et al.[Harwati,Alfiani and Wulandari (2015)] exploited the k-means clustering algorithm to reveal the hidden pattern and classify students mainly based on their grade.

    As analyzed above,most current methods exploit the learner’s final grade to judge and classify them.Note that many factors will influence the learner’s final grade in practice,thus it is difficult to obtain a comprehensive view of the state of the learner’s performance and simultaneously classify them into proper groups with the single feature.To address this challenge,we design a novel multi-feature weighting based K-means(MFWK-means) algorithm.Correlations between the grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means.Experimental results with the Canvas Network Person-Course (CNPC) dataset demonstrate the effectiveness and superiority of our method.

    2 The proposed MFWK-means clustering algorithm

    2.1 Correlation analysis between the grade and other features

    In this paper,we classify the MOOC learners into different categories based on their final grades and other features,such as learning hours,interactions with the course,and so on.In practice,these features are not independent and they may influence the final grade of a MOOC learner.In this part,we first analyze the correlations between them.For a more clear explanation,a widely used MOOC dataset-CNPC dataset is adopted here and in the subsequent experimental parts.This dataset is collected from the Canvas Network open courses (running January 2014-September 2015).These data include over 325000 aggregate records,and each record represents one learner's activity with 26 different features,including course ID,discipline,user ID,and so on.Among these features,some are related to the course information,and others are related to the learners study information.In this paper,we focus on the relationship between the final grade and the features corresponding to the learners.Thus,four features are selected for the analysis,including “completed”,“nevents”,“ndays” and “nforum”,where the meanings of these features are described in Tab.1.Note that in the original CNPC dataset,some records of the features are missing.After removing the invalid records,the total number of the records in our experiment is 5280.First,we analyze the correlations between the final grade and the four features by drawing a scatter plot of the feature values versus the grades,where the results are shown in Fig.1.

    Table1:Feature attributes of the CNPC dataset

    Figure1:Scatter plots of the feature values versus the grades.(a) Completed versus grade,(b) nevents versus grade,(c) ndays versus grade,and (d) nforum versus grade

    From the scatter plots in Fig.1,we can summarize the following observations:(1) the feature “completed” greatly influence the learner’s final grade.In spite of some learners can obtain higher grade with doing less homework,but as a general trend the grade increases with a larger “complete” value.(2) The feature “nevents” slightly influence the learner’s final grade.From Fig.1(b) we can see that with the increase of the “nevents”value,the learner’s grade increase slightly.(3) The features “ndays” and “nforum” have the similar degrees of impact to the final grade.As shown in Figs.1(c) and 1(d),when the values of “ndays” and “nforum” increase,the final grade increases analogously.

    By using the scatter plots,we analyze the relationship between the grade and the other features roughly.In order to quantitatively evaluate the correlations between these features,we adopt the Pearson Correlation Coefficient (PCC) measure [Zou,Zeng,Cao et al.(2016)],which can be written as:

    whereXandYrepresent two vectors andndenotes the number of the variables in each vector.We calculate the PCCs between the grade and the other four features by using Eq.(1),where the results are recorded in Tab.2.From the experimental results in Tab.2 we can find that the feature “completed” is more relevant to the final grade,while the feature“nevents” is less relevant to the grade,and the features “ndays” and “nforum” obtain similar PCC values.The conclusion is consistent with the scatter plot analysis.

    Table2:Pearson Correlation Coefficient between the grade and other four features

    2.2 The multi-feature weighting based K-means algorithm

    K-means is a widely used clustering algorithm,which partitions a data set into K clusters by minimizing the sum of squared distance in each cluster.In traditional methods,the MOOC learners are usually classified based on their final grade.The using of a single feature in clustering algorithm may limit the objectivity and comprehensiveness of the classification process.To cover the shortage of the traditional clustering manner,we propose a novel multi-feature weighting based K-means algorithm in this paper.Based on the correlation analysis between the grade and other features,the proposed MFWK-means clustering algorithm can be implemented with the following four steps:

    MFWK-means clustering algorithm

    Step 1:initialization

    Randomly select K points as initial cluster centers.

    Step 2:assignment

    Calculate the multi-feature weighting distance between each data point and each cluster center based on Eqs.(2) and (3),and then assign each point to the closest cluster center.

    Step 3:update

    Calculate the mean value of the data points for each cluster and update the cluster center,and then repeat Step 2 and Step 3.

    Step 4:convergence

    Stop when there is no change of the cluster centers or reaching a predefined number of iterations

    In the proposed MFWK-means clustering algorithm,the multi-feature weighting distance can be formulated as:

    wherec(k)represents the cluster centerk;gi(k)represents theith multi-feature weighting data point in the clusterk,which is composed of the learner’s final grade and other related features.In the proposed method,the multi-feature weighting data vectorGcan be defined as:

    in whichF0represents the value of the grade,andFtdenotes the utilized related features,andTis the number of the related features.In Eq.(3),the weightwtis defined by measuring the correlation between the selected featureFtand the final gradeF0.In our method,we use the PCC defined in Eq.(1) to calculate the weights.

    3 Experimental results

    Equations and mathematical expressions must be inserted into the main text.Two different types of styles can be used for equations and mathematical expressions.They are:in-line style,and display style.In order to verify the effectiveness of the proposed MFWK-means clustering algorithm,the widely used CNPC dataset is utilized in our experiment.First,the MFWK-means clustering algorithm is adopted to classify the MOOC learners in to different groups.Besides the feature “grade”,another four features“completed”,“nevents”,“ndays”,and “nforum” are also used in the proposed algorithm.The weight of each feature is calculated according to Eq.(1),and the MFWK-means algorithm is implemented based on the steps described in Section 2.2.Note that due to the various scales of the utilized features,we normalize each feature to the range [0 ,1]

    based on the Eq.(4):

    Figure2:MOOC learner classification results with different clustering algorithms.(a) K-means,(b) MFWK-means

    In Figs.2(a) and 2(b),the blue points represent the “Good Learner” group,the green points corresponding to the “Ordinary Learner” group,and the red points denote the“Poor Learner” group.As shown in Fig.2(a),the traditional K-means algorithm classifies learners strictly according to their final grade.From Fig.2(b) we can see that the classification results of our algorithm is similar to Fig.2(a) in general,but some learners are classified into different groups with the following 4 cases:(1) a learner is classified into a “Ordinary Learner” group with high grade; (2) a learner is classified into a “Good Learner” group with medium grade; (3) a learner is classified into a “Poor Learner” group with medium grade; (4) a learner is classified into a “Ordinary Learner” group with low grade.This is mainly because in the proposed MFWK-means clustering algorithm,we utilize various features besides the learner’s grade,and meanwhile,each feature is assigned with a weight factor based on the correlation between the feature and the grade.To better analyze the classification results with the proposed MFWK-means algorithm,we choose two typical points in Fig.2(b) for a detailed analysis.As shown in Fig.2(b),the points 1 and 2 are denoted with green pentagon,in which point 1 is corresponding to the case (1),and point 2 is corresponding to the case (4).For a better explanation,we plot the scatter plots to show the various aspects of learner’s conditions,which are shown in Figs.3 and 4.From Fig.3 we can observe that although the learner got a high grade(0.918),the values of the related features are extremely low compared to other learners.Taking into consideration of various aspects of the learner’s study process,it is more proper to classify the learner into “Ordinary Learner” class.For the point 2 in Fig.4,the opposite is happened.In spite of the learner obtained a low grade (0.042),the other aspects of this learner are excellent,thus the learner is also classified into “Ordinary Learner” class.As analyzed above,the proposed MFWK-means clustering algorithm can obtain a more comprehensive view of the state of the MOOC learners,and further result in a more correct classification.

    Figure3:Various aspects of learner’s conditions with point 1.(a) Completed,(b)nevents,(c) ndays,and (d) nforum

    Figure4:Various aspects of learner’ conditions with point 2.(a) Completed,(b)nevents,(c) ndays,and (d) nforum

    4 Conclusion

    In this paper,we propose a novel multi-feature weighting based K-means algorithm to classify the MOOC learners into different groups.In order to comprehensively exploit the final grade and other various features of the learners,correlations between the grade and different features are first investigated.Then,the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results demonstrate the effectiveness and superiority of our method.In future works,more advanced data miming technologies can be investigated to analyze the learner’s characteristics,such as deep learning networks,which may further improve the MOOC learner classification accuracy.

    夜夜夜夜夜久久久久| 国产精品久久视频播放| 99久久综合精品五月天人人| 美国免费a级毛片| 777久久人妻少妇嫩草av网站| 999久久久国产精品视频| 日韩欧美一区二区三区在线观看| 亚洲精品久久国产高清桃花| 校园春色视频在线观看| 手机成人av网站| 波多野结衣高清无吗| 长腿黑丝高跟| 欧美成人一区二区免费高清观看 | 男女床上黄色一级片免费看| 欧美性猛交黑人性爽| 女生性感内裤真人,穿戴方法视频| 色哟哟哟哟哟哟| 婷婷亚洲欧美| 亚洲五月色婷婷综合| 成年版毛片免费区| 国产高清视频在线播放一区| 欧美黑人精品巨大| 国产精品99久久99久久久不卡| 一本综合久久免费| 日本熟妇午夜| 国产精品免费视频内射| 亚洲精品在线美女| www.自偷自拍.com| 日韩 欧美 亚洲 中文字幕| 婷婷六月久久综合丁香| 国产成年人精品一区二区| 视频区欧美日本亚洲| 制服丝袜大香蕉在线| 精品久久久久久久末码| 国产欧美日韩一区二区精品| 久久这里只有精品19| 亚洲avbb在线观看| xxx96com| 国产高清视频在线播放一区| 成在线人永久免费视频| 亚洲成a人片在线一区二区| 看片在线看免费视频| 妹子高潮喷水视频| 国产三级黄色录像| 两人在一起打扑克的视频| 国产成人精品久久二区二区免费| 村上凉子中文字幕在线| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 国产成人影院久久av| 日本在线视频免费播放| 亚洲国产高清在线一区二区三 | 亚洲成av人片免费观看| 国产精品电影一区二区三区| 午夜福利在线在线| 搡老妇女老女人老熟妇| www国产在线视频色| 日韩国内少妇激情av| 天天躁狠狠躁夜夜躁狠狠躁| 一个人观看的视频www高清免费观看 | 桃红色精品国产亚洲av| 制服人妻中文乱码| 黄网站色视频无遮挡免费观看| 精品国产美女av久久久久小说| 中亚洲国语对白在线视频| 午夜久久久在线观看| 欧美不卡视频在线免费观看 | 久久久久久久精品吃奶| 中文在线观看免费www的网站 | 亚洲成人国产一区在线观看| 国产真实乱freesex| 亚洲 欧美一区二区三区| 桃色一区二区三区在线观看| 制服人妻中文乱码| 久久精品人妻少妇| 国产成人精品久久二区二区91| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 黄频高清免费视频| 国产片内射在线| 熟女电影av网| 久久久久久久午夜电影| 成年女人毛片免费观看观看9| 超碰成人久久| 免费电影在线观看免费观看| 日本一区二区免费在线视频| 精品国产国语对白av| 亚洲真实伦在线观看| 久久中文字幕人妻熟女| 国产精品久久电影中文字幕| 妹子高潮喷水视频| 国产午夜精品久久久久久| 久99久视频精品免费| 久久 成人 亚洲| 18禁观看日本| 亚洲一码二码三码区别大吗| 日韩欧美国产在线观看| 亚洲专区中文字幕在线| 18禁美女被吸乳视频| 成人三级做爰电影| 亚洲中文字幕一区二区三区有码在线看 | 国语自产精品视频在线第100页| 草草在线视频免费看| 1024视频免费在线观看| 丁香六月欧美| 亚洲成人精品中文字幕电影| 免费看十八禁软件| 亚洲av中文字字幕乱码综合 | 欧美另类亚洲清纯唯美| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| 亚洲三区欧美一区| 久久久精品欧美日韩精品| 久久久久久亚洲精品国产蜜桃av| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 午夜精品在线福利| 欧美日本视频| 久久国产精品男人的天堂亚洲| 国产成人精品无人区| 黄色丝袜av网址大全| 欧美三级亚洲精品| av在线天堂中文字幕| 久久草成人影院| 一二三四在线观看免费中文在| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 手机成人av网站| 国产精品免费一区二区三区在线| 热99re8久久精品国产| 好看av亚洲va欧美ⅴa在| 美女免费视频网站| 后天国语完整版免费观看| 一区二区三区国产精品乱码| 午夜福利18| 99国产精品一区二区蜜桃av| 两个人看的免费小视频| 欧美又色又爽又黄视频| 大型av网站在线播放| 中文在线观看免费www的网站 | 亚洲无线在线观看| 亚洲国产精品久久男人天堂| 自线自在国产av| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 男男h啪啪无遮挡| 97人妻精品一区二区三区麻豆 | 亚洲自偷自拍图片 自拍| 日本 av在线| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影 | 一级a爱片免费观看的视频| 1024视频免费在线观看| 成人一区二区视频在线观看| 亚洲精品一区av在线观看| 人成视频在线观看免费观看| 久久久久久久久中文| 国产又色又爽无遮挡免费看| 麻豆成人午夜福利视频| 色婷婷久久久亚洲欧美| 女生性感内裤真人,穿戴方法视频| 亚洲成国产人片在线观看| 国产精品一区二区精品视频观看| 哪里可以看免费的av片| 熟女少妇亚洲综合色aaa.| 精品国产亚洲在线| 制服丝袜大香蕉在线| 高清在线国产一区| 亚洲自拍偷在线| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 国产三级在线视频| 视频在线观看一区二区三区| 欧美日本视频| 亚洲国产欧洲综合997久久, | 国产精品久久久人人做人人爽| 欧美人与性动交α欧美精品济南到| 久久精品国产综合久久久| 日韩欧美一区视频在线观看| 亚洲人成电影免费在线| 久久久久国产精品人妻aⅴ院| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区| 精品日产1卡2卡| 精品一区二区三区视频在线观看免费| 免费女性裸体啪啪无遮挡网站| 久久国产精品人妻蜜桃| 美女免费视频网站| 国产成人av教育| 亚洲一区中文字幕在线| 天堂动漫精品| 91麻豆av在线| 男人舔女人的私密视频| 欧美成人一区二区免费高清观看 | 久久热在线av| 搡老岳熟女国产| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| 亚洲国产欧洲综合997久久, | 黄片小视频在线播放| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费| 啪啪无遮挡十八禁网站| 国产熟女xx| 国产欧美日韩一区二区三| 99热6这里只有精品| 国产精品98久久久久久宅男小说| 俄罗斯特黄特色一大片| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品一区av在线观看| www.www免费av| 搡老熟女国产l中国老女人| 亚洲,欧美精品.| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 极品教师在线免费播放| 黄色毛片三级朝国网站| 国产精品,欧美在线| 亚洲成a人片在线一区二区| 欧美成人午夜精品| 国产成人精品无人区| 国产精品野战在线观看| 99热只有精品国产| www.精华液| 自线自在国产av| 久久久久国内视频| 欧美日韩精品网址| 制服丝袜大香蕉在线| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 中文字幕精品亚洲无线码一区 | av视频在线观看入口| 国产激情欧美一区二区| 在线免费观看的www视频| 亚洲第一欧美日韩一区二区三区| 欧美又色又爽又黄视频| 中文字幕人妻熟女乱码| 国产精品免费视频内射| 69av精品久久久久久| 亚洲av中文字字幕乱码综合 | 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 成人亚洲精品av一区二区| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 欧美激情 高清一区二区三区| 99久久综合精品五月天人人| 亚洲成人精品中文字幕电影| 亚洲欧美激情综合另类| 999久久久国产精品视频| 日韩高清综合在线| 白带黄色成豆腐渣| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 1024香蕉在线观看| 欧美中文综合在线视频| 久久狼人影院| 久久精品国产99精品国产亚洲性色| 丝袜在线中文字幕| 91国产中文字幕| 曰老女人黄片| 成人午夜高清在线视频 | 99久久无色码亚洲精品果冻| 窝窝影院91人妻| 香蕉av资源在线| 91麻豆av在线| 国产精品久久久av美女十八| 在线看三级毛片| 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 不卡av一区二区三区| 国产亚洲欧美在线一区二区| 日韩大尺度精品在线看网址| 免费在线观看完整版高清| 午夜福利成人在线免费观看| 国产又爽黄色视频| 国产v大片淫在线免费观看| 精品电影一区二区在线| 好男人在线观看高清免费视频 | 女警被强在线播放| 老司机靠b影院| 久久久久国内视频| 麻豆成人av在线观看| 成人午夜高清在线视频 | 99riav亚洲国产免费| 美女国产高潮福利片在线看| 听说在线观看完整版免费高清| 一级毛片女人18水好多| 国产精品,欧美在线| 国产成人啪精品午夜网站| 91成人精品电影| 女警被强在线播放| 男人舔女人的私密视频| bbb黄色大片| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 超碰成人久久| 日日干狠狠操夜夜爽| 亚洲av成人一区二区三| 色综合站精品国产| 国产精品野战在线观看| 欧美日韩中文字幕国产精品一区二区三区| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| 在线播放国产精品三级| 国产欧美日韩一区二区三| 国产精品久久电影中文字幕| 久久精品aⅴ一区二区三区四区| 久久草成人影院| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 一区二区三区高清视频在线| 日韩有码中文字幕| 黄色 视频免费看| 国产色视频综合| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 国产精品一区二区精品视频观看| 久久精品91无色码中文字幕| 一级a爱视频在线免费观看| av视频在线观看入口| 欧美乱色亚洲激情| 欧美日韩乱码在线| 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 欧美日韩精品网址| 1024视频免费在线观看| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 身体一侧抽搐| 禁无遮挡网站| 国产一级毛片七仙女欲春2 | 人人妻,人人澡人人爽秒播| 欧美日韩福利视频一区二区| 麻豆久久精品国产亚洲av| 亚洲成av人片免费观看| 12—13女人毛片做爰片一| 久9热在线精品视频| 色哟哟哟哟哟哟| 一本一本综合久久| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频| 妹子高潮喷水视频| av福利片在线| 男人舔奶头视频| 久久久精品国产亚洲av高清涩受| 国产三级在线视频| 久久久久国产一级毛片高清牌| 丁香欧美五月| 十分钟在线观看高清视频www| 日本五十路高清| 国产成人一区二区三区免费视频网站| 神马国产精品三级电影在线观看 | 精品卡一卡二卡四卡免费| 久久久久久大精品| 精品国产国语对白av| 天天添夜夜摸| 欧美国产精品va在线观看不卡| 18禁美女被吸乳视频| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 在线十欧美十亚洲十日本专区| 51午夜福利影视在线观看| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| 搞女人的毛片| 母亲3免费完整高清在线观看| 白带黄色成豆腐渣| 久久久久九九精品影院| 不卡一级毛片| 热99re8久久精品国产| 国产精品影院久久| 十分钟在线观看高清视频www| 亚洲国产精品999在线| 亚洲第一欧美日韩一区二区三区| 久久亚洲精品不卡| 九色国产91popny在线| 88av欧美| 窝窝影院91人妻| 国产亚洲欧美在线一区二区| av电影中文网址| 国产99久久九九免费精品| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月| 亚洲第一欧美日韩一区二区三区| 2021天堂中文幕一二区在线观 | 日本熟妇午夜| 午夜免费观看网址| 成年免费大片在线观看| 亚洲电影在线观看av| 久久久久久久精品吃奶| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久av美女十八| 日韩有码中文字幕| 亚洲三区欧美一区| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 黄片小视频在线播放| 精品久久久久久成人av| 韩国精品一区二区三区| 99riav亚洲国产免费| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 国产私拍福利视频在线观看| 国产精品1区2区在线观看.| 99国产综合亚洲精品| 一本综合久久免费| 欧美黑人巨大hd| 亚洲中文字幕日韩| 18禁黄网站禁片午夜丰满| 男女午夜视频在线观看| 99热这里只有精品一区 | 在线观看免费视频日本深夜| 一级作爱视频免费观看| 国产亚洲精品第一综合不卡| 国产激情久久老熟女| 他把我摸到了高潮在线观看| 99精品在免费线老司机午夜| 亚洲无线在线观看| 色婷婷久久久亚洲欧美| 午夜免费激情av| 丝袜在线中文字幕| 国产亚洲欧美98| 国产又爽黄色视频| 最近最新中文字幕大全电影3 | 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀| 一区二区三区国产精品乱码| 久久精品国产亚洲av高清一级| 黄色成人免费大全| 麻豆国产av国片精品| 国产精品影院久久| 亚洲男人的天堂狠狠| 欧美午夜高清在线| 国产99久久九九免费精品| 日韩视频一区二区在线观看| 日韩精品中文字幕看吧| a在线观看视频网站| 国产精品综合久久久久久久免费| 国产亚洲欧美98| 国内揄拍国产精品人妻在线 | 亚洲片人在线观看| 黄色a级毛片大全视频| 亚洲中文av在线| 国产免费男女视频| 麻豆av在线久日| 亚洲成人久久性| e午夜精品久久久久久久| 国产一区在线观看成人免费| 亚洲天堂国产精品一区在线| 成人免费观看视频高清| 又黄又爽又免费观看的视频| 欧美乱妇无乱码| 欧美又色又爽又黄视频| 欧美中文综合在线视频| 十八禁网站免费在线| 91在线观看av| 中亚洲国语对白在线视频| 老司机靠b影院| 国产97色在线日韩免费| 男女做爰动态图高潮gif福利片| 夜夜躁狠狠躁天天躁| videosex国产| 老司机在亚洲福利影院| 一级作爱视频免费观看| 亚洲国产精品999在线| 级片在线观看| 一个人免费在线观看的高清视频| 国产乱人伦免费视频| 后天国语完整版免费观看| 男女午夜视频在线观看| 精品久久久久久久久久久久久 | 亚洲天堂国产精品一区在线| 成人亚洲精品一区在线观看| 国产乱人伦免费视频| 国产熟女午夜一区二区三区| 搡老岳熟女国产| 久久热在线av| 欧美日韩亚洲综合一区二区三区_| 国产精品99久久99久久久不卡| 久久久国产成人免费| 在线视频色国产色| 观看免费一级毛片| 国产精品精品国产色婷婷| 亚洲精品一卡2卡三卡4卡5卡| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 精品第一国产精品| 日韩视频一区二区在线观看| 亚洲五月色婷婷综合| 99久久国产精品久久久| 一个人免费在线观看的高清视频| 精品高清国产在线一区| 亚洲av电影在线进入| 美国免费a级毛片| 国产成人精品无人区| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| www日本在线高清视频| 亚洲狠狠婷婷综合久久图片| 成人一区二区视频在线观看| 波多野结衣高清作品| 久久久久久久久免费视频了| 香蕉av资源在线| 日韩欧美国产在线观看| 免费av毛片视频| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 亚洲免费av在线视频| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 人成视频在线观看免费观看| 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 欧美不卡视频在线免费观看 | 欧美中文日本在线观看视频| 亚洲av美国av| 欧美 亚洲 国产 日韩一| 成年人黄色毛片网站| 午夜影院日韩av| 男女那种视频在线观看| 午夜亚洲福利在线播放| 欧美三级亚洲精品| 精品久久蜜臀av无| 哪里可以看免费的av片| 欧美不卡视频在线免费观看 | 国产亚洲精品综合一区在线观看 | 男女那种视频在线观看| 日本免费a在线| 妹子高潮喷水视频| 精品久久蜜臀av无| 国产成年人精品一区二区| 成人永久免费在线观看视频| 桃红色精品国产亚洲av| 91成人精品电影| 欧美久久黑人一区二区| 精品免费久久久久久久清纯| 不卡一级毛片| 欧美日韩亚洲国产一区二区在线观看| 国产午夜精品久久久久久| 午夜激情av网站| 国产国语露脸激情在线看| 国产免费av片在线观看野外av| 波多野结衣巨乳人妻| 18美女黄网站色大片免费观看| 99国产极品粉嫩在线观看| 精品久久久久久久久久久久久 | 一级毛片精品| 中亚洲国语对白在线视频| 国产av在哪里看| 亚洲人成网站高清观看| 搡老妇女老女人老熟妇| 久久久久久人人人人人| 色尼玛亚洲综合影院| 欧美性猛交╳xxx乱大交人| 午夜两性在线视频| 少妇的丰满在线观看| 国产黄a三级三级三级人| 国产精品一区二区精品视频观看| 亚洲欧美激情综合另类| 88av欧美| 欧美不卡视频在线免费观看 | 搡老熟女国产l中国老女人| 国产色视频综合| 国产不卡一卡二| 真人做人爱边吃奶动态| a在线观看视频网站| 亚洲国产精品999在线| 日日爽夜夜爽网站| 久久久久国内视频| 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 免费看十八禁软件| 在线视频色国产色| 日日摸夜夜添夜夜添小说| 亚洲精品久久国产高清桃花| 在线视频色国产色| 久久 成人 亚洲| 高清毛片免费观看视频网站| 国产精品久久久av美女十八| 看片在线看免费视频| 桃红色精品国产亚洲av| 欧美在线黄色| 99久久99久久久精品蜜桃| 18美女黄网站色大片免费观看| 无遮挡黄片免费观看| 久久 成人 亚洲| 一本久久中文字幕| 一级a爱片免费观看的视频| 99国产精品99久久久久| 91国产中文字幕| 日本 av在线| 成人永久免费在线观看视频| 久99久视频精品免费| 亚洲,欧美精品.| 白带黄色成豆腐渣|