• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A HEVC Video Steganalysis Algorithm Based on PU Partition Modes

    2019-05-10 03:59:44ZhonghaoLiLaijingMengShutongXuZhaohongLiYunqingShiandYuanchangLiang
    Computers Materials&Continua 2019年5期

    ZhonghaoLi,LaijingMeng,ShutongXu,ZhaohongLi,,YunqingShiandYuanchangLiang

    Abstract:Steganalysis is a technique used for detecting the existence of secret information embedded into cover media such as images and videos.Currently,with the higher speed of the Internet,videos have become a kind of main methods for transferring information.The latest video coding standard High Efficiency Video Coding (HEVC)shows better coding performance compared with the H.264/AVC standard published in the previous time.Therefore,since the HEVC was published,HEVC videos have been widely used as carriers of hidden information.

    Keywords:Video steganalysis,PU partition modes,data hiding,HEVC videos.

    1 Introduction

    With the development of digitization,the digital video has gradually become the mainstream video.However,it brings security problems including copyright protection,identity information authentication and so on.Therefore,the information hiding technology has been developed.Information hiding is a method of hiding confidential information into an innocent looking carrier without evoking any suspicion.The message carrying and clean objects are called stego and cover respectively.Among existent carriers such as music,pictures,documents and videos,videos have been more and more frequently used because a large amount of information is contained in videos which makes it uneasy to detect stego videos after information hiding.

    As a new generation of coding standard,High Efficiency Video Coding (HEVC) videos have drawn much more attention since it was put forward.Compared with the previous generation of coding standard H.264/AVC,HEVC is more complex and has been widely used in not only high-definition (HD) digital videos but also ultra high-definition (Ultra HD) digital videos.The common method of modifying DCT/DST coefficients [Lin,Chung,Chang et al.(2013)] was applied to HEVC videos by Chang et al.[Chang,Chung,Chen et al.(2014)] firstly,which had a high embedding capacity at low bit rate.Xu et al.[Xu,Wang and Wang (2012)] took measures to modify the intra prediction modes,which could ensure a certain embedding capacity as well as improve the visual quality of the video.In the aspect of modifying inter prediction modes,Li et al.[Li,Wang,Liu et al.(2016)] proposed a new information hiding algorithm based on motion vector space encoding.Xie et al.[Xie,Yang,Li et al.(2018)] modified the PU partition modes of HEVC to ensure high visual quality.What’s more,the embedding capacity of Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] was greatly improved at the same time.

    In order to avoid embedded information obtained by other people,the security of information hiding is very significant.Steganalysis is a technique for detecting stego media,which has become a hot topic of information security in recent years.However,most of the steganalysis algorithms only focus on images,hence it is very urgent and important to develop steganalysis method for videos.Among the existing steganalysis techniques for videos,Jainsky et al.[Jainsky,Kundur and Halversion (2007)] developed an algorithm for digital video steganalysis,named MoViSteg for Motion-based Video Steganalysis that exploited the temporal correlation among individual image frames to enhance steganalysis performance.Wu et al.[Wu,Liu,Huang et al.(2014)] took the joint distribution of motion vector (MV) differences as features.Kong et al.[Kong,Wang and Wang (2014)] constructed the transition probability matrix of intra prediction mode for original videos and recompressed videos and used it as a steganalysis feature,which had a high detection rate of different types of carrier videos with low embedding rate.Nie et al.[Nie,Xu,Feng et al.(2018)] presented a novel intra prediction mode-based video steganography by minimizing the embedding distortion defined according to SAD.Sheng et al.[Sheng,Wang and Huang (2017)] proposed a steganalysis algorithm based on the change of PU partition modes of cover videos and stego videos.The prediction modes vector of I pictures was extracted,and the transition probability matrix of the prediction modes was calculated.Then,the new vector was composed of raster scan sequence as the classification feature.

    Inspired by the steganalysis method of Sheng et al.’s [Sheng,Wang and Huang (2017)],we noticed that Xie et al.’s information hiding algorithm [Xie,Yang,Li et al.(2018)]took measures to hide information by modifying PU partition modes and different PU partition modes are used to represent different binary information.So,we suppose that the quantity of PU partition modes would be changed after data hiding.Thus,an information steganalysis algorithm based on the probability of each PU partition mode in P pictures (PoPUPM) is proposed in this paper.After feature optimization,the 25-dimensional steganalysis feature is further reduced to be 3-dimensional.And the detection accuracy of stego videos generated by Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] is over 96% using the steganalysis algorithm proposed in this paper,which is much higher than that of Sheng et al.’s algorithm [Sheng,Wang and Huang (2017)].

    The rest of this paper is organized as follows.Section 2 introduces the structure of PU partition modes in HEVC.Section 3 discusses the steganalysis feature based on PU partition modes of P pictures.Section 4 gives the proposed method in detail.Section 5 gives the experimental results.Finally,a summary is given in Section 6.

    2 Basics of PU partition in HEVC

    HEVC is the latest video coding standard published by Video Code Expert Group(VCEG) and Moving Pictures Expert Group (MPEG).Compared with H.264/AVC,HEVC has the same coding structure that contains Video Coding Layer (VCL) and Network Abstraction Layer (NAL) [Sheng,Wang and Huang (2017)].But it is the innovative point of HEVC that the quadtree structure to partition aim images are used for prediction and transform coding.

    HEVC divides the video into many groups of pictures (GOPs),and every group includes the same quantity of continuous frames.Based on quadtree algorithm,every picture will be subdivided into a quantity of square code tree unit (CTU) with the same size.CTU can also be partitioned iteratively into smaller code unit (CU).Each CU has its further partitioned into transform unit (TU) and prediction unit (PU).

    How a CU is divided into different PU modes is based on the CU prediction mode.As shown in Fig.1,PU partition modes for intra prediction and inter prediction are different,whereNdepends on the size of CU.For intra prediction,a coding block (CB) of size 2N×2Ncan be split into one or four prediction blocks (PBs).And for another prediction mode,inter prediction,a CB can be split into two PBs symmetrically or asymmetrically.There are totally 25 possible PU partition modes listed in Tab.1,which are marked as indexes 1-25 respectively.

    Figure1:The partition of PU in intra and inter prediction mode

    Table1:Indexes of PU Partition Modes in P-picture

    3 Feature analysis of stego videos

    As illustrated in Section 2,for a specific CU of 16×16 or larger size,it has only two kinds of PU partition modes for intra prediction,but there are eight PU partition modes for inter prediction in P-pictures.Consequently,Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)]hides information by changing the PU partition modes for inter prediction in P pictures.

    3.1 Xie et al.’s steganography method

    The main steps of Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] are as follows.

    At first,the division depth and the optimum PU partition modes of each CU structure are recorded during the HEVC encoding process by default.Afterwards if a CTU includes 16×16 or 32×32 CUs,and the PU partition modes of these CUs are classified to the three groups shown in Fig.2,then the PU partition modes are supposed to be modified according to the to-be-embedded binary information.

    Figure2:Three groups of different PU Partition Modes for 16×16 and 32×32 CU sizes

    An example can be used to make the process more specific.It can be assumed that the Group 1,Group 2 and Group 3 represent binary bits 00,10 and 11,respectively,and in the HEVC encoding process,the achieved PU partition mode for a 32×32 CU is the horizontally symmetrical type in Group 1.If the to-be embedded bits are 10 or 11,the PU partition mode will be modified to be the horizontal partition mode in Group 2 or Group 3.Otherwise,the PU partition mode will keep itself.

    As demonstrated in Fig.3,Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] almost has no impact on visual quality of stego videos,and the PSNR decreases no more than 1%even though the bit rate is approximately 15 Mbps.

    Even if Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] has great advantages on visual quality and bit rate compared to other data hiding algorithms,it is the security issue that data hiding algorithms should also take into consideration.However,the security issue has not been discussed in Xie et al.’s paper [Xie,Yang,Li et al.(2018)].

    What’s more,since the optimal PU partition modes are modified to be other specified PU partition modes in Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)],the statistical distribution of the PU partition modes is supposed to be changed in stego videos.Hence in the following section,the PU partition modes of stego videos generated by Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] will be analyzed,and we have conducted a more in-depth study of the security of the algorithm.

    3.2 Target feature analysis and selection

    To figure out the statistical feature in stego videos,the quantity of 25 different PU modes in P pictures of stego videos and cover videos has been extracted respectively.Based on the data extracted,the rate of change of PU modes in the cover videos before and after embedding information has been calculated from Eq.(1).

    Where in Eq.(1),Ncand Nsare the quantity of each PU partition mode in P pictures of a cover video and a stego video respectively.For illustration,the two videos ‘Ducks’ and‘Basketball Drive’ are used as sample sequences.The sample sequence ‘Ducks’ is in resolution 720P and has 80 frames,and ‘Basketball Drive’ is in 1080P and has 50 frames.For experimental setting,HM 16.15 is used to encode sample sequences to cover videos,and Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] is used to generate stego videos.The GOP size is 4(IPPP).

    It can be seen from Fig.4 that the quantity of each of the 25 PU modes has changed after information hiding.However,the ROC of 18 in 25 PU partition modes are smaller than 20%.It is only ROC of the typical 3 PU partition modes (8×4,4×8,8×16) that has decreased by more than 50% in various resolutions (720P,1080P) as well as various bit rates (4 M,8 M,10 M,12 M,30 M,50 M).

    Figure4:ROC of PU Partition Modes at different video resolutions

    To illustrate this statistical phenomenon of PU modes demonstrated above,the reason can be explained according to the HEVC encoding algorithms and architectures.

    A CU block can be taken as an example.When a CU is subdivided into multiple PU modes,it is after extending all the possible PU partition modes that the optimal prediction parameters for each PU partition mode are determined.As a result,we typically increase the bit rate required for signaling the selected PU modes,but decrease the resulting ratedistortion cost (RD cost).In summary,different subdivisions into PUs used for interprediction are closely related to trade-offs between distortion and bit rate.

    In the HEVC encoding process by default,the CUs are subdivided into smaller PUs such as 8×4 and 4×8,which can minimize the RD cost as well as make full use of the bit rate.However,in Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)],the encoding parameter bitrate is fixed,and no other encoding parameters and configurations have been modified,except for the PU partition modes for CUs in size of 16×16 and 32×32.In other words,the optimal PU partition modes have been modified to be other modes in Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)],which results in more prediction redundancy.Hence the fixed bit rate required for transmitting the prediction redundancy is not enough.To compensate for the contradiction between distortion and bit rate generated from Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)],the quantity of PU modes in small sizes such as 8×4 and 4×8 in P pictures will be converted to be larger PU modes.It is only in this way that the prediction redundancy can be reduced to an acceptable level which the fixed bit rate can transmit.Therefore,we suppose that the distribution of 25 PU partition modes in P pictures can be used as a classification feature to detect stego videos from cover videos.What’s more,it is demonstrated in Fig.4 that in various resolutions (720P,1080P) and various bit rates (4 M,8 M,10 M,12 M,30 M,50 M),it is just the ROC of PU modes in size of 8×4 and 4×8 that are larger than 75%,and ROC of PU modes in size of 8×16 that is larger than 50%.To transform the feature data in the high-dimensional (25 dimensions)space to a space of fewer dimensions,how the distribution of small PU partition modes in size of 8×4,4×8 and 8×16 are selected as the target feature will be introduced in the following section.

    4 Proposed method

    In general,embedding information into a cover video will cause some modification of components in it.Based on the analysis in Section 3,it has been found that PU partition modes in P pictures have been changed in stego videos generated by Xie et al.’s stegonagraphy algorithm [Xie,Yang,Li et al.(2018)].Hence,the proposed method adopts statistical distribution of PU partition modes in P pictures as the classification feature.Fig.5 shows the detailed diagram of the proposed method.

    Figure5:Detailed diagram of the proposed method

    Firstly,extract all the PU partition modes from P-pictures of cover videos and stego videos.Secondly,the probability statistical distribution is chosen as the proposed feature according to Eq.(2).

    Where i ranges from 1 to 25 as there are 25 modes of PU partition modes in P pictures.Nirepresents the total quantity of the ith PU partition mode in a video sequence,afterwards we can get the 25-dimensional classification feature Piwhich is the probability of PU partition modes (PoPUPM-25D for abbreviation).Furthermore,it is indicated in Section 3 that the outstanding PU partition modes (8×4,4×8,8×16) can be adopted as a 3-dimensional feature (PoPUPM-3D).

    After feature extraction,the Support Vector Machine (SVM) is trained using the PoPUPM data.Finally,the trained SVM classifier can be applied to detect stego videos.

    5 Experimental results

    For sample sequences,following videos shown in Tab.2 are used as test sequences.Videos in resolution of 720P are divided into several parts,and each part has 80 frames.For 1080P videos,each sequence is divided into 10 parts,and each part has 50 frames.In total,we get 33 videos in 720P and 30 videos in 1080P.

    For experimental setting,HM 16.15 is used to encode sample sequences to cover videos,and Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] is used to generate stego videos.The configuration of encoding is shown in Tab.3.

    Table2:Sample sequences in experiments

    Table3:The main configuration parameters of HM

    In many fields,SVM is an excellent and convenient tool to classify a large amount of information.Here,all the features extracted from cover videos and stego videos are sent to SVM classifier.For each experimental procedure,random 5 6/ of all the sample sequences are selected as training sequences,while the rest are testing sequences.As for SVM classifier,polynomial is adopted as the kernel function,validation function is used to calculate the optimal Gamma and Cost for the kernel.This experimental procedure will be repeated for 20 times,and the average accuracy is adopted as classification accuracy.Tabs.4(a)-(b) are the classification accuracy of PoPUPM-25D,and it shows that stego videos can be identified with an extremely high accuracy approaching 100% for both 720P and 1080P videos.Tabs.5(a)-(b) are the classification accuracy of PoPUPM-3D.Even though it decreases a little bit compared to that using PoPUPM-25D,it remains a high level which is above 96%.It is demonstrated in Tabs.4-5 that in various resolutions and bitrates,the selected feature is always quite effective regardless of PoPUPM-25D or PoPUPM-3D.

    Table4:The classification accuracy with PoPUPM-25D

    Table5:The classification accuracy with PoPUPM-3D

    Moreover,we built three types of mix-bitrate video groups to simulate conditions of detecting stego videos in practical applications.The first video set is mixed by all the 720P videos with different bitrates (4 M,8 M,12 M).The second video set is mixed by all the 1080P videos (10 M,30 M,50 M).The third video set is mixed by both the 720P and 1080P videos.

    Table6:The classification accuracy of mix-bitrate video sets with PoPUPM-25D

    Table7:The classification accuracy of mix-bitrate video sets with PoPUPM-3D

    Then the three mixed videos sets are sent to SVM classifier respectively using the same experimental setting above.The results are shown in Tabs.6-7.As demonstrated in Tab.6,the classification accuracy with PoPUPM-25D remains approximately 100%.For classification accuracy with PoPUPM-3D in Tab.7,every classification accuracy decreases by only a few proportions of 3 or 4 percentages.On the other hand,it can be seen in Fig.4 that the ROC of PoPUPM-3D feature of 720P videos is higher than that of 1080P videos,and that is why the classification accuracy of PoPUPM-3D for 1080P mix-bitrate videos decreases 3.4% more than that for fixed-bitrate 720P videos.In conclusion,the proposed method can identify unknown-bitrate videos with high classification accuracy.

    Furthermore,the latest HEVC video steganalysis algorithm [Sheng,Wang and Huang(2017)] for prediction patterns is adopted to detect Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] and compared with the proposed algorithm.In Sheng et al.[Sheng,Wang and Huang (2017)],the rate of change in quantityRMis defined by Eq.(3),

    WhereMandM’are the numbers of different sizes of PU before and after recompression respectively.Similarly,the rate of change in occupancy ratioRPis defined by Eq.(4),

    WherePandP’are the occupancy ratios of different sizes of PU before and after recompression respectively.ThenRMandRPof PU partition modes in sizes of 4×4,8×8,16×16 for are used as the classification feature.With the help of the source code from the author Sheng et al.[Sheng,Wang and Huang (2017)],we reproduce Sheng et al.’s algorithm [Sheng,Wang and Huang (2017)] to detect Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)].The experimental configuration is the same as the proposed algorithm.Then the detection accuracy results are shown in Tab.8.

    Table8:The classification accuracy of Sheng et al.’s algorithm

    It can be seen in Tab.8 that the classification accuracy of Sheng et al.’s algorithm is about 50%,which indicates that Sheng et al.’s steganalysis algorithm [Sheng,Wang and Huang (2017)] is no longer effective as in detecting video stegonagraphy algorithms.[Xu,Wang and Wang (2012); Xu,Wang and Xu (2015)] Compared with Sheng et al.’s algorithm,the classification accuracy of the proposed algorithm is much higher and the dimensions of the proposed feature are lower.

    6 Conclusion

    In this paper,a HEVC video steganalysis algorithm based on the statistical distribution of PU partition modes in P pictures is proposed.And the SVM classifier is used to discriminate the cover videos and stego videos.After feature optimization,the 25-dimensional feature is transformed to be 3 dimensional.Experiments are carried out on video sequences with various resolutions and bitrates.The results demonstrate that the detection accuracy to Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)] is over 96% for the videos in fixed bitrate.After mixing videos with different bitrates,the detection accuracy is still over 93%.In the future,more information data hiding algorithms will be introduced to test the proposed steganalysis algorithm.Besides,in view of the security problem of Xie et al.’s algorithm [Xie,Yang,Li et al.(2018)],an improved information hiding algorithm could be developed to avoid the steganalysis algorithm proposed in this paper.

    黄色丝袜av网址大全| av天堂久久9| 亚洲国产欧美网| 一区二区三区激情视频| 日韩欧美三级三区| 亚洲精品久久国产高清桃花| 国产成人欧美在线观看| 亚洲最大成人中文| 国产成人系列免费观看| 精品久久久久久久毛片微露脸| 亚洲精品久久国产高清桃花| 9色porny在线观看| 女同久久另类99精品国产91| 97人妻精品一区二区三区麻豆 | 91成年电影在线观看| 制服诱惑二区| 午夜免费鲁丝| 黄色 视频免费看| 亚洲成人国产一区在线观看| 成人手机av| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 欧美黑人精品巨大| 禁无遮挡网站| 精品国内亚洲2022精品成人| 女人被躁到高潮嗷嗷叫费观| 黄色视频不卡| 三级毛片av免费| 久久 成人 亚洲| 身体一侧抽搐| 国产精品二区激情视频| 禁无遮挡网站| 久久 成人 亚洲| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美在线一区二区| 性少妇av在线| 女人爽到高潮嗷嗷叫在线视频| 久久人人97超碰香蕉20202| 黄色视频不卡| 日本一区二区免费在线视频| 91九色精品人成在线观看| 自线自在国产av| 19禁男女啪啪无遮挡网站| 男人的好看免费观看在线视频 | 国产单亲对白刺激| 久久精品亚洲熟妇少妇任你| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 久久草成人影院| 一本大道久久a久久精品| 国产男靠女视频免费网站| 亚洲无线在线观看| 少妇的丰满在线观看| 亚洲专区字幕在线| 在线观看免费视频网站a站| 最近最新中文字幕大全免费视频| 成人三级做爰电影| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av香蕉五月| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| av欧美777| 夜夜爽天天搞| 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 黄色女人牲交| 欧美乱妇无乱码| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 精品国产乱码久久久久久男人| 国产亚洲欧美98| 美国免费a级毛片| 午夜影院日韩av| 久久中文字幕人妻熟女| 色综合欧美亚洲国产小说| 国产精品乱码一区二三区的特点 | 精品第一国产精品| 999久久久国产精品视频| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 亚洲一区二区三区不卡视频| 午夜a级毛片| 国产精品 国内视频| 欧洲精品卡2卡3卡4卡5卡区| 不卡一级毛片| 黄色视频,在线免费观看| 桃色一区二区三区在线观看| 美女国产高潮福利片在线看| 午夜老司机福利片| 亚洲精品国产一区二区精华液| 91老司机精品| 久久精品亚洲精品国产色婷小说| 国产精品亚洲一级av第二区| 神马国产精品三级电影在线观看 | 国产精品一区二区免费欧美| 视频在线观看一区二区三区| 欧美日韩一级在线毛片| 人人妻人人澡人人看| 亚洲精品国产色婷婷电影| 精品国内亚洲2022精品成人| 亚洲最大成人中文| 亚洲 欧美 日韩 在线 免费| 成人三级黄色视频| 亚洲av美国av| 久久久久久久精品吃奶| 别揉我奶头~嗯~啊~动态视频| 国产成人啪精品午夜网站| 99久久99久久久精品蜜桃| 精品国产超薄肉色丝袜足j| 欧美在线黄色| 午夜福利免费观看在线| 大香蕉久久成人网| 熟女少妇亚洲综合色aaa.| 亚洲国产日韩欧美精品在线观看 | 欧美中文综合在线视频| 99久久久亚洲精品蜜臀av| 久久精品人人爽人人爽视色| 亚洲国产中文字幕在线视频| 午夜两性在线视频| videosex国产| 午夜久久久在线观看| 亚洲人成网站在线播放欧美日韩| 日韩三级视频一区二区三区| 久久久国产成人精品二区| 国产精品国产高清国产av| 精品国产美女av久久久久小说| 嫁个100分男人电影在线观看| 日韩大尺度精品在线看网址 | 人妻久久中文字幕网| 亚洲色图av天堂| 18禁国产床啪视频网站| aaaaa片日本免费| 亚洲专区字幕在线| 亚洲男人天堂网一区| 日韩有码中文字幕| 91九色精品人成在线观看| 久久狼人影院| 大香蕉久久成人网| 亚洲专区字幕在线| 国产精品二区激情视频| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡| 国产精品一区二区三区四区久久 | √禁漫天堂资源中文www| 欧美成人午夜精品| 欧美日韩亚洲综合一区二区三区_| 免费久久久久久久精品成人欧美视频| 欧美日韩黄片免| 久久久久久大精品| 精品久久久久久成人av| 免费在线观看影片大全网站| 日本免费a在线| 多毛熟女@视频| 色哟哟哟哟哟哟| 成在线人永久免费视频| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 日韩视频一区二区在线观看| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 日日干狠狠操夜夜爽| 中文字幕最新亚洲高清| 日韩免费av在线播放| 国产精品爽爽va在线观看网站 | 亚洲第一电影网av| 超碰成人久久| 国产成年人精品一区二区| 日本vs欧美在线观看视频| 国语自产精品视频在线第100页| 男女床上黄色一级片免费看| 国产亚洲欧美精品永久| 亚洲全国av大片| 大型av网站在线播放| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 男人的好看免费观看在线视频 | 国产精品电影一区二区三区| 一区福利在线观看| 亚洲人成电影免费在线| 757午夜福利合集在线观看| 99热只有精品国产| 成人三级做爰电影| 国产精品久久久久久亚洲av鲁大| 一区二区三区精品91| 久久 成人 亚洲| 一a级毛片在线观看| 制服诱惑二区| 国产精品一区二区精品视频观看| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| 美女大奶头视频| a在线观看视频网站| 久久精品国产综合久久久| 在线永久观看黄色视频| 女人精品久久久久毛片| 久久精品91蜜桃| 嫩草影院精品99| 丰满人妻熟妇乱又伦精品不卡| 日本免费一区二区三区高清不卡 | 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 国产成人免费无遮挡视频| 国产一区在线观看成人免费| 非洲黑人性xxxx精品又粗又长| 手机成人av网站| 在线天堂中文资源库| 熟女少妇亚洲综合色aaa.| 午夜视频精品福利| 国产精品 国内视频| 精品高清国产在线一区| 欧美黄色片欧美黄色片| 国产精品久久电影中文字幕| 午夜影院日韩av| 大香蕉久久成人网| 免费无遮挡裸体视频| 欧美激情极品国产一区二区三区| 亚洲精品国产一区二区精华液| 午夜精品国产一区二区电影| www.www免费av| 91九色精品人成在线观看| 亚洲,欧美精品.| 十分钟在线观看高清视频www| 亚洲成人免费电影在线观看| 看黄色毛片网站| 美女免费视频网站| 亚洲人成伊人成综合网2020| 久久婷婷成人综合色麻豆| 亚洲av熟女| 国产精品电影一区二区三区| 亚洲片人在线观看| 日本撒尿小便嘘嘘汇集6| 精品不卡国产一区二区三区| а√天堂www在线а√下载| 国产99久久九九免费精品| 一a级毛片在线观看| 国产色视频综合| 久久人妻av系列| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 亚洲成av人片免费观看| 国产精品一区二区在线不卡| 久久婷婷成人综合色麻豆| 亚洲久久久国产精品| 91国产中文字幕| 国产aⅴ精品一区二区三区波| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 欧美一级毛片孕妇| 欧美成人午夜精品| 女生性感内裤真人,穿戴方法视频| 久久精品成人免费网站| 亚洲情色 制服丝袜| 午夜两性在线视频| 美女高潮到喷水免费观看| 免费在线观看黄色视频的| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 日本免费a在线| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲| 在线观看免费视频网站a站| 亚洲精华国产精华精| 亚洲午夜理论影院| 国产一区二区三区综合在线观看| 国产在线精品亚洲第一网站| 久久狼人影院| 婷婷丁香在线五月| 午夜福利18| 一区在线观看完整版| 97人妻天天添夜夜摸| 叶爱在线成人免费视频播放| 在线国产一区二区在线| 久久久水蜜桃国产精品网| 国产高清videossex| 亚洲国产毛片av蜜桃av| 女警被强在线播放| 丝袜在线中文字幕| 黄片大片在线免费观看| 国产精品一区二区精品视频观看| 99国产精品一区二区蜜桃av| 在线国产一区二区在线| 色综合站精品国产| 国产精品野战在线观看| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 亚洲国产精品999在线| 国产成人av教育| 免费无遮挡裸体视频| 叶爱在线成人免费视频播放| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 在线播放国产精品三级| 午夜福利一区二区在线看| 久久精品国产99精品国产亚洲性色 | 熟妇人妻久久中文字幕3abv| 亚洲av成人av| 国产在线精品亚洲第一网站| 国产高清激情床上av| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 欧美色视频一区免费| 亚洲精品一卡2卡三卡4卡5卡| 大陆偷拍与自拍| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 88av欧美| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 国产高清videossex| 国产精品香港三级国产av潘金莲| 欧美成人免费av一区二区三区| 波多野结衣高清无吗| 久9热在线精品视频| 亚洲中文字幕日韩| 1024视频免费在线观看| 亚洲专区国产一区二区| 免费看十八禁软件| 少妇 在线观看| 69av精品久久久久久| 一本大道久久a久久精品| 成人免费观看视频高清| 国产成人免费无遮挡视频| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频| 国产精品久久久久久精品电影 | 亚洲va日本ⅴa欧美va伊人久久| 日韩视频一区二区在线观看| 欧美乱码精品一区二区三区| 香蕉丝袜av| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 一区二区三区国产精品乱码| 国产精品九九99| 高潮久久久久久久久久久不卡| 国产精品,欧美在线| 欧美国产日韩亚洲一区| 国产欧美日韩一区二区三| √禁漫天堂资源中文www| 国产不卡一卡二| www国产在线视频色| 久久人人精品亚洲av| 午夜老司机福利片| 国产av在哪里看| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网| 亚洲欧美激情综合另类| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区蜜桃| 69精品国产乱码久久久| 午夜福利高清视频| x7x7x7水蜜桃| 色在线成人网| 大码成人一级视频| 一a级毛片在线观看| 欧美成人免费av一区二区三区| 美女大奶头视频| 久久久国产成人精品二区| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| av欧美777| 亚洲精品国产一区二区精华液| 一a级毛片在线观看| 精品久久蜜臀av无| 精品一品国产午夜福利视频| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 国产高清videossex| 一区二区日韩欧美中文字幕| av天堂久久9| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 黄色视频不卡| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 真人做人爱边吃奶动态| 亚洲,欧美精品.| 国产成人欧美在线观看| 亚洲 国产 在线| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 身体一侧抽搐| 丝袜人妻中文字幕| 欧美 亚洲 国产 日韩一| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 好男人电影高清在线观看| 视频在线观看一区二区三区| 岛国在线观看网站| 日韩欧美免费精品| 看黄色毛片网站| 日韩欧美三级三区| 日本在线视频免费播放| 亚洲国产精品999在线| 在线av久久热| 精品一品国产午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 国产精品二区激情视频| 丝袜美足系列| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| av视频在线观看入口| 国产精品一区二区精品视频观看| 成人手机av| 国产欧美日韩一区二区三区在线| 很黄的视频免费| 国产三级在线视频| 国产成人啪精品午夜网站| 91麻豆精品激情在线观看国产| xxx96com| 久久久久久大精品| 亚洲最大成人中文| 日韩高清综合在线| 999久久久国产精品视频| 99久久精品国产亚洲精品| 国产在线观看jvid| 日韩欧美国产在线观看| 欧美激情极品国产一区二区三区| 一本综合久久免费| 电影成人av| 亚洲国产高清在线一区二区三 | 99久久综合精品五月天人人| 在线永久观看黄色视频| 国产激情欧美一区二区| 制服丝袜大香蕉在线| 精品福利观看| 久久午夜亚洲精品久久| 日本五十路高清| 大码成人一级视频| 欧美激情 高清一区二区三区| 精品国产乱子伦一区二区三区| 色综合站精品国产| 欧美精品啪啪一区二区三区| 久久久久九九精品影院| 精品电影一区二区在线| 亚洲欧美精品综合久久99| 免费av毛片视频| 久久久久久久久免费视频了| 嫩草影院精品99| 又黄又爽又免费观看的视频| 两性夫妻黄色片| 中亚洲国语对白在线视频| www日本在线高清视频| 一级片免费观看大全| 国产99白浆流出| 欧美成狂野欧美在线观看| 日韩欧美国产一区二区入口| 欧美一级毛片孕妇| 岛国视频午夜一区免费看| 中文字幕高清在线视频| 日韩av在线大香蕉| 999精品在线视频| 中文字幕人妻熟女乱码| 欧美av亚洲av综合av国产av| 欧美大码av| 成人免费观看视频高清| 色老头精品视频在线观看| 一区二区三区精品91| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 久久天堂一区二区三区四区| 亚洲中文日韩欧美视频| 色播亚洲综合网| 国产一区二区三区视频了| 很黄的视频免费| 日韩精品免费视频一区二区三区| 怎么达到女性高潮| 久久中文字幕一级| 国产精品亚洲一级av第二区| 美女 人体艺术 gogo| 国产精品久久久久久亚洲av鲁大| 黄色片一级片一级黄色片| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品999在线| 久久精品成人免费网站| 美国免费a级毛片| 成在线人永久免费视频| 可以在线观看毛片的网站| 亚洲av成人不卡在线观看播放网| 91成年电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女黄片视频| 午夜精品久久久久久毛片777| 久久精品91蜜桃| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 丝袜人妻中文字幕| 一级黄色大片毛片| 日本 欧美在线| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 成人国产综合亚洲| а√天堂www在线а√下载| 不卡av一区二区三区| 国内毛片毛片毛片毛片毛片| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 不卡av一区二区三区| а√天堂www在线а√下载| 亚洲国产精品合色在线| 啪啪无遮挡十八禁网站| 国产精品免费视频内射| 日韩大码丰满熟妇| 精品一区二区三区视频在线观看免费| 男人的好看免费观看在线视频 | 国产色视频综合| 国产一级毛片七仙女欲春2 | 操出白浆在线播放| 亚洲全国av大片| 欧美色欧美亚洲另类二区 | 中出人妻视频一区二区| 深夜精品福利| 欧美性长视频在线观看| 一区在线观看完整版| 亚洲第一av免费看| 精品国产乱子伦一区二区三区| 日本免费a在线| 激情视频va一区二区三区| 夜夜夜夜夜久久久久| 久久中文看片网| 午夜福利影视在线免费观看| 给我免费播放毛片高清在线观看| 欧美av亚洲av综合av国产av| 亚洲欧美日韩高清在线视频| 满18在线观看网站| 精品电影一区二区在线| 国产精品 欧美亚洲| 淫秽高清视频在线观看| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 国产私拍福利视频在线观看| 欧美乱码精品一区二区三区| 国产色视频综合| 一级a爱片免费观看的视频| 淫妇啪啪啪对白视频| 国产伦人伦偷精品视频| 亚洲成人久久性| 亚洲avbb在线观看| 美女高潮到喷水免费观看| 国产精品98久久久久久宅男小说| 免费在线观看亚洲国产| 黄片小视频在线播放| 老司机深夜福利视频在线观看| 真人一进一出gif抽搐免费| 精品国产一区二区三区四区第35| 日日摸夜夜添夜夜添小说| 亚洲五月天丁香| 此物有八面人人有两片| 欧美大码av| 日本免费a在线| 亚洲中文字幕日韩| av福利片在线| 波多野结衣高清无吗| 嫁个100分男人电影在线观看| 免费久久久久久久精品成人欧美视频| 亚洲精品久久成人aⅴ小说| 人妻久久中文字幕网| 99热只有精品国产| 一区二区三区国产精品乱码| 叶爱在线成人免费视频播放| 午夜老司机福利片| 电影成人av| 在线av久久热| 久久国产乱子伦精品免费另类| 91麻豆av在线| 国产精品久久久久久精品电影 | svipshipincom国产片| 午夜福利,免费看| 一级毛片高清免费大全| 日韩欧美免费精品| 九色亚洲精品在线播放| 真人一进一出gif抽搐免费| 久久欧美精品欧美久久欧美| 成年女人毛片免费观看观看9| 黄色女人牲交| 99精品在免费线老司机午夜| 大陆偷拍与自拍| 亚洲色图av天堂| 制服诱惑二区| 日本五十路高清| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 亚洲中文日韩欧美视频| cao死你这个sao货| 亚洲中文字幕一区二区三区有码在线看 | 亚洲五月婷婷丁香| 久久人人97超碰香蕉20202| 十分钟在线观看高清视频www| 久久精品影院6| 久久国产精品影院| 精品久久蜜臀av无| 国产精品,欧美在线| 精品不卡国产一区二区三区| 亚洲 欧美 日韩 在线 免费| 女警被强在线播放| 国产亚洲av高清不卡| 国产成人av教育| 99re在线观看精品视频| 国产成人av激情在线播放| 久久精品国产亚洲av香蕉五月| 九色国产91popny在线| 国产精品爽爽va在线观看网站 | 亚洲一卡2卡3卡4卡5卡精品中文|