• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Influence Maximization Algorithm Based on the Mixed Importance of Nodes

    2019-05-10 03:59:42YongHuaBolunChenYanYuanGuochangZhuandJialinMa
    Computers Materials&Continua 2019年5期

    Yong HuaBolun Chen ? Yan YuanGuochang Zhuand Jialin Ma

    Abstract:The influence maximization is the problem of finding k seed nodes that maximize the scope of influence in a social network.Therefore,the comprehensive influence of node needs to be considered,when we choose the most influential node set consisted of k seed nodes.On account of the traditional methods used to measure the influence of nodes,such as degree centrality,betweenness centrality and closeness centrality,consider only a single aspect of the influence of node,so the influence measured by traditional methods mentioned above of node is not accurate.In this paper,we obtain the following result through experimental analysis:the influence of a node is relevant not only to its degree and coreness,but also to the degree and coreness of the n-order neighbor nodes.Hence,we propose a algorithm based on the mixed importance of nodes to measure the comprehensive influence of node, and the algorithm we proposed is simple and efficient.In addition,the performance of the algorithm we proposed is better than that of traditional influence maximization algorithms.

    Keywords:Influence Maximization,social network,mixed importance,coreness.

    1 Introduction

    With the prosperous development of social network in recent years,the research on social network has attracted attention of many scholars.The social network,such as facebook,twitter and blogs,is composed of social relationships among individuals,as a result the potential business value of social network is enormous.One of the classical applications in social network is viral marketing,in generally,using the ‘word of mouth’effect[Guille(2013);Goldenberg,Libai and Muller(2001)]to market products online.For instance,a software company plans to sell a software through network.The salesman of the software company will look forkinfluential initial users and pay thekinitial users rewards in the social network.Then,thekinitial users promote the software to their acquaintances.The social relationships among acquaintances become the key of viral marketing,because acquaintances are more convinced than strangers[Hill,Provost and Volinsky(2006);Sadovykh,Sundaram and Piramuthu(2015);Schmitt,Skiera and Den Bulte(2011);Verbraken,Goethals,Verbeke et al.(2014);Iyengar,Den Bulte and Valente(2011)].Therefore,the scope of promotion of the software will be expanded through the ’word of mouth’effect.As described in the previous example,the problem above is called the influence maximization problem[Domingos and Richardson(2001)],whose essential problem is how to find the most influential initialkusers.

    The problem of influence maximization was first proposed by Kempe et al.[Kempe,Kleinberg and Tardos(2003)].They demonstrated that finding the subset of nodes with optimal influence in social network is an NP-hard problem and a approximate guarantee of optimal solution is obtained by using the simple greedy algorithm.In addition,they put forward using independent cascading model or linear threshold model to simulate the propagation of information in discrete time in social network.The key of selecting influential initialkusers in the influence maximization is how to measure the ability of spreading influence of node.A variety of central methods,such as degree centrality,betweenness centrality and closeness centrality,were proposed in the original study of the problem of influence maximization.The ability of node to spread the influence in a social network can be measured directly through the methods above.In the subsequent research in the problem of influence maximization,the property of the submodular function[Nemhauser,Wolsey and Fisher(1978)]was used in many greedy algorithms to approximate the optimal solution through extensive iterations.Chen et al.[Chen,Wang and Yang(2009)]proposed a degree discount heuristic algorithm,compared with CELF algorithm proposed in Leskovec et al.[Leskovec,Krause,Guestrin et al.(2007)],which greatly reduces the time complexity and makes the seed set choosed by this algorithm having more influence.Lee et al.[Lee and Chung(2014)]proposed a 2-hop greedy algorithm based on the phenomenon that the influence of node reach most nodes needing only 2-hop,whose time complexity is less than CELF++and achieves a more influential seed set[Goyal,Lu and Lakshmanan(2011)].Chen et al.[Chen,Wang and Wang(2010)]proposed PMIA algorithm,which uses MIIA(maximum influence in-arborescence)and MIOA(maximum influence out-arborescence)to model the influence of node.The PMIA algorithm has a lower time complexity than the simple greedy algorithm,but the space complexity of PMIA is higher than the simple greedy algorithm,because PMIA needs to build influence propagation tree for each node.Jung et al.[Jung,Heo and Chen(2012)]proposed a novel algorithm IRIE,which combines the influence ranking algorithm and the influence estimation algorithm,andachieved lower timecomplexity and moreefficient than PMIA.Many novel algorithms with excellent results in measuring the influence of node have been proposed in recent studies.Kitsak et al.[Kitsak,Gallos,Havlin et al.(2010)]found that the most effective influence spreaders are often not the nodes with large degrees,but the nodes are in the core location of the social network.The correlation between the coreness and the propagation ability of node in the social network was analyzed by k-shell decomposition[Carmi,Havlin,Kirkpatrick et al.(2007)],which provided a new solution to the problem of influence maximization.Gao et al.[Gao,Ma,Chen et al.(2014)]presented that the influence of node is related to their local structure.A algorithm based on local structure centrality,which uses the topology and centrality of node and its neighbors to measure the ability of spreading influence of node,was proposed.This algorithm is more accurate than the previous algorithm when evaluating the influence of node.Xia et al.[Xia,Song,Jing et al.(2018)]construct double-layer network and use markov chains theory to study disease spreading,who proposed that the scale of disease spreading can be reduced by increasing the rate of spreading.

    In real social network,the larger degrees a node has,the more likely it is to be chosen as a initial node.However,the ability of a node to spread influence is related not only to the degree of node and its neighbors,but also the coreness of node and its neighbors.In other words,the ability of a node to spread influence is also related to the degree and coreness of its neighbors.In this paper,we study the correlation between the mixed importance and the ability of node to spread influence,and we propose an influence maximization algorithm based on the mixed importance of nodes.In contrast to the traditional algorithms,we consider the cost of selecting initial nodes in social network.Moreover,our algorithm is more adaptive[Zhang,Zheng and Xia(2018)]and achieves good performance.

    2 Description of the problem

    2.1 Influence maximization problem

    We define a undirected social networkG=(V,E),whereVrepresents the node set in social networkG,andErepresents the collection of edges between nodes.Moreover,n=|V|,wherenis the total number of nodes in social networkG.If nodeuandvexist in the social networkG,we use(u,v)∈Eto represent an edge between theuandv,and usepto represent a propagation probability.We usemto represent the total number of edges in social networkG.The influence maximization problem is to find the subset of node set in the graphG,which is a set composed of seed nodes.We useSto represent seed set,k=|S|.In addition,the influence of thekseed nodes is maximum.

    2.2 Independent cascade model

    We use the independent cascade model to simulate the influence of node and measure the ability of node to spread influence[Chen,Fan,Li et al.(2015);Liu,Cong,Xu et al.(2012)].The principle of the independent cascade model is as follows:in the networkG,all nodes have only two states:active or inactive.Aiis the set of nodes activated at timei.The initial phase is the timet=0.A0=Srepresents that the nodes in the seed setSare active and other nodes are inactive at timet=0.At timet=i,u∈Ai-1and the nodevis in the inactive state.uattempts to activate nodevwith propagation probabilitypfor edge(u,v)∈E.Ifvis successfully activated,vmaintains activated state fromt=i+1.Ifvfails to be activated byu,vcan not be activated byuat a later time.If nodevhas multiple neighbors that have already been activated,the neighbors ofvwill activatevwith a probability of1-(1-p)l,wherelis the number of neighbors that have been activated.WhenAiis empty,that is,at timet=i,no nodes are activated,the propagation process ends,and the number of activated nodes in the whole process represents the influence of the seed setS[Kim,Kim,Oh et al.(2017);Kimura,Saito,Nakano et al.(2010)].

    2.3 Influence function

    We denote the influence function asinfluence(·),where the functioninfluence(·)maps a subset of the node setVto a nonnegative integer.For example,influence(u)is the number of node activated by nodeu,andinfluence(S)is the number of node activated by seed set S.We calculate the value of functioninfluence(·)through the independent cascade model.

    2.4 Cost

    In the initial phase of the influence maximization problem,the initial users need to be selected as seeds,but we need to give the seeds certain rewards.In a real social network,a node with a greater degree has a wider social range.Therefore,a node with large degrees will be given more rewards than a node with small degrees.In this paper,we define the initial cost by Eq.(1),wheredegreeuis the degree of nodeuand the functionmean(·)is the average function.

    3 Detailed process of the algorithm

    In this paper,we use the mixed importance to measure the influence of node.In the mixed importance algorithm,we consider that the influence of node affected by its norder neighbors.The obvious representation of a node affected by its neighbors is the degree of node,but only using the degree of node to measure the influence of node results in incomprehensive measurement.If nodeuandvhave the same degrees,the influence of the nodeuis better than nodev,when the number of 2-order neighbors of nodeuis more than nodev.Furthermore,if nodeuand nodevhave the same degrees,but nodeuand its neighbors are in the core location of social network,the ability of the nodeuto spread influence may be better.Many scholars have put forward that the influence of node is limited.Therefore,we limit the propagation scope of node to the 2-order neighbors,ignoring the rest of neighbors,that is,we measure the influence of node by using the mixed importance of the degree and the coreness of the node’s 1-order and 2-order neighbors.The mixed importance algorithm show in Tab.1.

    The input of the mixed importance algorithm is social networkG=(V,E)and the number of seed nodesk.The output of this algorithm is the seed setS.By traversing the values ofαandβ,the mixed importance algorithm calculates the mixed importance of node in differentαandβ.The optimal values ofαandβ,that isαbestandβbest,are obtained and put into Eq.(2)by calculating the kendall correaltion coefficients.Then,the mixed importance values of all nodes are calculated,andknodes with the maximum mixed importance values are selected as the seed nodes.Among the mixed importance algorithm,Step 1 is the input of algorithm:the number of social networkG=(V,E)and the number of seed nodesk.In Steps 2 and 3,letαandβcycle from 0.1 to 0.9 with an increase of 0.1 per iteration.The key steps are described detailedly in the following subsections.

    Table1:Mixed importance algorithm

    3.1 Mixed importance

    Step 5 calculates the mixed importance valueMI(v)of the nodev.In the social networkG,we set the 1-order neighbor node set of the nodeuto Γ1,wheredu=|Γ1|andduare the number of the 1-order neighbors of the nodeu,which is also the degree of nodeu.We set the set of 2-order neighbor node set of nodeutoΓ2.Thus,the total number of 1-order and 2-order neighbors of nodeuisNe(u)=|Γ1∪Γ2|.We set the coreness of nodeutoCore(u).The coreness of nodeuis small,when nodeuis at the edge of network.The coreness of nodeuis high,when nodeuis at the core location of network.We define the mixed importance of node as shown in Eq.(2).

    whereMI(u)is the mixed importance of nodeu,w?|Γ1∪Γ2|dw-Ne(u)is the total degrees of the 1-order neighbors and the 2-order neighbors of nodeuafter nodeuis removed,andΣw?|Γ1∪Γ2|Core(w)is the sum of the coreness of the 1-order neighbors and the 2-order neighbors of nodeu.αis a parameter used to balance the degree and the coreness.βis a parameter used to balance the relationship between a node and its neighbors.Bothαandβare both between 0.1 and 0.9.

    In Eq.(2),if the value ofαis large,it indicates that the degrees of node and its neighbors in the 2-order scope play a greater role in the influence of node.If theαvalue is small,it indicates that the coreness of node and its neighbors in the 2-order scope play a greater role in the influence of node.If the value ofβis large,it indicates that the degree and coreness of node play a greater role in the influence of node.If the value ofβis small,the degrees and coreness of neighbors in the 2-order scope of node play a greater role.

    Step 6 is to simulate the influence of nodevby using the independent cascade model,and obtain the influence of nodev,influence(v).

    3.2 Kendall correaltion coefficient

    Step 8 is to calculate the kendall correlation coefficient under the current value ofαandβ.The kendall correlation coefficientταβ[Kendall(1938)]is described as follows:consider the joint observation pairing of two sets of random variablesXandY.Ifxi>xjandyi>yjorxi<xjandyi<yjfor the observation pairs(xi,yi)and(xj,yj),we say that the pairs are consistent.Ifxi>xjandyi<yjorxi<xjandyi>yj,we say that the pairs are inconsistent.Ifxi=xjandyi=yj,we say that the pairs are neither consistent nor inconsistent.The kendall correlation coefficient is defined by Eq.(3).

    In Eq.(3),ηcandηdrepresents consistent pairs and inconsistent pairs respectively.BecauseXandYhave the same number of elements,ηrepresents the number of elements inXorY.In this paper,we calculate the mixed importanceMI(u)of every nodeuin networkGand use the independent cascade model to perform multiple influence simulations on nodeuto obtain the average value,that is,the influence valueInfluences(u)of nodeu.Therefore,setXis{MI(u)|u∈V}and setYis{Influences(u)|u∈V}.Through the calculation of kendall correlation coefficientτ,we can analyze the correlation between the mixed importance of node and the influence of node to more accurately measure the ability of node to spread influence.The value ofτis in the range of[-1,1].The value ofτis high,when the ability of node to spread influence is great and the mixed importance value of node is high.

    The mixed importance value and influence of all nodes can be respectively obtained from Step 5 and Step 6,andταβis calculated by Eq.(3).Each pair ofαandβvalues corresponds to anταβvalue,and Step 11 is to select the maximumταβvalue and assigns the correspondingαandβvalues toαbestandβbest.From Steps 12 to 14,αbestandβbestare put into Eq.(2)to calculate the mixed importance value of all nodes.Finally,Step 15 selectsknodes with the maximum mixed importance value to be the seed setS.

    4 Experimental results and analysis

    We perform the experiments on four real social network datasets and 4 random network datasets.The four real social datasets are email[Yin,Benson,Leskovec et al.(2017)],socfbBowdoin47[Traud,Mucha and Porter(2012)],hamsterster[Dünker and Kunegis(2015)],and socfbSmith60[Traud,Kelsic,Mucha et al.(2011)].The data of Email derived from the large European research institutions and consisted of email sent and received by users.If one email at least is sent and received between useruand userv,there is an edge betweenuandv.SocfbBowdoin47 and socfbSmith60 are extracted from the data of facebook.If there is a friend relationship between useruand userv,there is an edge betweenuandv.Hamsterster is a collection of friends and loved ones from the hamsterster.com website.The four random datasets are undirected networks generated by Pajek and are denoted as random1,random2,random3,and random4.The topological attributes of all the datasets are shown in Tab.2,wherenis the total number of nodes in the dataset,mis the number of edges,dmaxis maximum degree,ˉdis average degree,ris same coefficient,Cis clustering coefficient,andDis network density.

    4.1 Selection of the optimal parameters

    Firstly,we analyze the value ofαandβ,because the value ofαandβin the Eq.(3)is variable.Therefore we need to calculate the optimal value ofαandβin different datasets.Moreover,the value of Eq.(2),that is the value of mixed importance,is positive correlation with the influence of node,so we use kendall correlation coefficientτto measure the correlation between the mixed importance of node and the influence of node.The optimal value ofαandβis obtained when the value ofτis maximum.In the networkG,we calculate the mixed importanceMI(u)of each nodeuaccording to Eq.(2),where the range ofαandβranges from 0.1 to 0.9.We traverse the double circulation constructed byαandβ,and the value ofαorβincrease 0.1 in each circulation.Secondly,we simulate the influenceInfluences(u)of each nodeuby using the independent cascade model in each circulation.In this paper,we set the probability of propagationp=0.01in the independent cascade model.Finally,we calculateτafter the double circulation constructed byαandβ,and select the optimal value ofαandβwhen the value ofτis maximum,in detail,the value ofτis calculated by Eq.(3).

    Figure1:Heat map on four real social network:we analyze the value of α and β in different real social network because α and β are unknow in Eq.(3).We study the correlation between the influence of node and the mixed importance of node by using kendall correaltion coefficient.The maximum τ in the heat map illustrate that the value of Eq.(3)with current α and β accord optimally with the real influence of node

    4.1.1 Real network

    In this section,we perform the mixed importance algorithm in the 4 real social networks to find the optimal value ofαandβin the every dataset respectively.In Fig.1,the vertical axis represents the value ofα,the horizontal axis represents the value ofβ,and(α,β)corresponds to the value ofτcalculated by Eq.(3).Fig.1(a)shows the result of the email dataset.wefind the value ofτis the best whenα=0.9andβ=0.5.In other words,Whenα=0.9andβ=0.5,the valueMI(u)of each nodeuis consistent with the valueInfluences(u),that is,the mixed importance value of nodeuis positive correlation with thein fluenceofnodeu.Similarly,Fig.1(b)show that thevalue ofτofthesocfbBowdoin47 dataset is the best,whenα=0.8andβ=0.7;Fig.1(c)show that the value ofτof the hamsterster dataset is the best,whenα=0.1andβ=0.1;Fig.1(d)show that the value ofτof the socfbSmith60 dataset is the best,whenα=0.8andβ=0.1.

    4.1.2 Random network

    Figure2:Heat map on four random social network:we analyze the value of α and β in different random social network because α and β are unknow in Eq.(3).We study the correlation between the influence of node and the mixed importance of node by using kendall correaltion coefficient.The maximum τ in the heat map illustrate that the value of Eq.(3)with current α and β accord optimally with the real influence of node

    In this section,we perform the mixed importance algorithm in the 4 random networks to find the optimal value ofαandβin the every dataset respectively.In Fig.2,the vertical axis represents the value ofα,the horizontal axis represents the value ofβ,and(α,β)corresponds to the value ofτ.In Fig.2(a),theτvalue of the random1 dataset is optimal,whenα=0.9andβ=0.3;In Fig.2(b),theτvalue of the random2 dataset is optimal,whenα=0.8andβ=0.9;In Fig.2(c),theτvalue of the random3 dataset is optimal,whenα=0.3andβ=0.8;In Fig.2(d),theτvalue of the random4 dataset is optimal,whenα=0.1andβ=0.2.

    4.2 Comparison and analysis of the scope of influence

    In the above experiment content,we achieve optimalαandβin the every dataset respectively.Then,we compare the influence of seed set selected by the mixed importance algorithm with the influence of seed set selected by other algorithms,such as Degree Centrality,PageRank[Page,Brin,Motwani et al.(1999)].We analyze the trend of the influence of the seed set selected by each algorithm,when we change the size of seed set.The experimental results show in Fig.3 and Fig.4.

    Figure3:The scatter figure of influence of the seed set selected by mixed importance algorithm on 4 real dataset:every scatter figure has 10 point for every algorithm and we connect 10 points with a dotted line for observing the trend of influence

    Figure4:The scatter figure of influence of the seed set selected by mixed importance algorithm on 4 random dataset:every scatter figure has 10 point for every algorithm and we connect 10 points with a dotted line for observing the trend of influence

    4.2.1 Real network

    In Fig.3 and Fig.4,the horizontal axis and the vertical axis respectively represents the size of seed set and the influence of the seed set.Fig.3(a)shows the influence range of the email.The influence of the mixed importance algorithm is almost the same as that of the degree centrality.The influence of the mixed importance algorithm is generally higher than that of PageRank.The seed set selected by the mixed importance algorithm has a good influence on the email.Fig.3(b)shows that the influence of the seed set selected by the mixed importance algorithm on the socfb Bowdoin47 is less than that of degree centrality,but the differences between the two algorithms are small.Fig.3(c)is the influence range of the hamsterster,and Fig.3(d)is the influence range of the socfbSmith60.Similarly,the influence of mixed importance is at least slightly less than the influence of degree centrality,but the scope of mixed importance is much larger than PageRank.

    4.2.2 Random network

    Fig.4(a)shows the influence range of the random1 dataset,and the influence of the mixed importance algorithm is almost the same as that of degree centrality.Fig.4(b)shows the influence range of the random2 dataset.The influence of the mixed importance algorithm exceeds that of degree centrality.In general,the influence range of the mixed importance algorithm is slightly smaller than that of degree centrality.Fig.4(c)shows the influence range of the random3 dataset.The influence ranges of the mixed importance algorithm and degree centrality are generally the same.Fig.4(d)shows the influence range of the random4 dataset,where the influence of the mixed importance algorithm and the influence of degree centrality are generally the same.

    4.3 Comparison and analysis of impact cost

    Finally,we compare the mixed importance algorithm with other algorithms,such as Degree Centrality,PageRank.We analyze the cost of the seed set selected by each algorithm,when we change the size of seed set.The experimental results show in Fig.5 and Fig.6.

    4.3.1 Real network

    In Fig.5 and Fig.6,the horizontal axis and the vertical axis respectively represents the size of seed set and the cost of the seed set.Fig.5(a)shows the cost of the email,where the cost of mixed importance algorithm,degree centrality and PageRank are similar.Fig.5(b)shows the cost of the socfbBowdoin47,Fig.5(c)shows the cost of the hamsterster,and Fig.5(d)shows the cost of the socfbSmith60.The cost of mixed importance algorithm and degree centrality are much higher than that of PageRank,and the cost of mixed importance algorithm is small compared to the Degree Centrality.

    Figure5:The scatter figure of cost of the seed set selected by mixed importance algorithm on 4 real dataset:every scatter figure has 10 point for every algorithm and we connect 10 points with a dotted line for observing the trend of cost

    Figure6:The scatter figure of cost of the seed set selected by mixed importance algorithm on 4 random dataset:every scatter figure has 10 point for every algorithm and we connect 10 points with a dotted line for observing the trend of cost

    4.3.2 Random network

    Fig.6(a)shows the cost of the random1,where the cost of mixed importance algorithm is slightly less than the cost of the Degree Centrality.Fig.6(b)shows the cost of the random2,and Fig.6(c)shows the cost of the random3.The cost of mixed importance algorithm is small compared to the cost of the Degree Centrality.Fig.6(d)shows the cost of the random4,where the cost of mixed importance algorithm and Degree Centrality are flat.In Fig.6,the cost of mixed importance algorithm is greater than the cost of PageRank.Based on the experimental comparison,the cost of PageRank is always less than the cost of mixed importance algorithm and Degree Centrality,but the range of in fluence of PageRank is also much smaller than that of mixed importance algorithm and Degree Centrality.The in fluence range of the mixed importance algorithm is equal to that of Degree Centrality,and the cost of mixed importance algorithm is much smaller than the cost of Degree Centrality.When the in fluence range of mixed importance algorithm is better than that of Degree Centrality,the cost of mixed importance algorithm is also less than the cost of Degree Centrality.The experiments show that the mixed importance algorithm has achieved good results.

    5 Conclusion

    This paper mainly analyzes how to effectively measure the influence of node in the process of influence maximization.The experiments show that the influence of a node is related not only to its degree,but also related to its coreness,as well as the degree and coreness of its neighbors.Therefore,we proposed an influence maximization algorithm based on the mixed importance of node.In this algorithm,the independent cascade model is used to simulate the influence of nodes.The Kendall correlation coefficient is used to measure the correlation of the mixed importance of node and the influence of node and the optimal values of two important parameters are achieved through calculation.The experimental comparisons of algorithms on four real datasets and four random datasets show that the influence maximization algorithm based on the mixed importance of node we propose in this paper achieved excellent performance.

    久久国产精品影院| 久热爱精品视频在线9| av免费在线观看网站| 色老头精品视频在线观看| 国产精品久久久久久精品电影小说| 丝袜脚勾引网站| 999久久久国产精品视频| 久久影院123| 午夜免费鲁丝| 9热在线视频观看99| 91九色精品人成在线观看| 国产精品久久久久成人av| 黄网站色视频无遮挡免费观看| 久久精品国产a三级三级三级| 欧美 亚洲 国产 日韩一| 亚洲情色 制服丝袜| 91精品伊人久久大香线蕉| 免费av中文字幕在线| svipshipincom国产片| 脱女人内裤的视频| 五月天丁香电影| 黄网站色视频无遮挡免费观看| 老熟女久久久| 欧美黄色片欧美黄色片| 久久人妻熟女aⅴ| 桃红色精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 亚洲精品国产色婷婷电影| xxxhd国产人妻xxx| 97人妻天天添夜夜摸| 少妇粗大呻吟视频| 欧美黑人精品巨大| 美女高潮喷水抽搐中文字幕| 亚洲av日韩精品久久久久久密| 亚洲七黄色美女视频| 国内毛片毛片毛片毛片毛片| 国产91精品成人一区二区三区 | 久久久精品免费免费高清| 日本黄色日本黄色录像| 1024香蕉在线观看| 欧美精品高潮呻吟av久久| 精品人妻一区二区三区麻豆| 男男h啪啪无遮挡| 久久综合国产亚洲精品| 亚洲国产精品一区三区| 国产成人啪精品午夜网站| 一本色道久久久久久精品综合| 久久精品亚洲av国产电影网| 香蕉丝袜av| 91成年电影在线观看| 欧美日本中文国产一区发布| 深夜精品福利| 99久久人妻综合| 亚洲成人免费电影在线观看| 五月天丁香电影| 50天的宝宝边吃奶边哭怎么回事| 国产成人av教育| 1024视频免费在线观看| 亚洲精品国产精品久久久不卡| 国产真人三级小视频在线观看| 国产一级毛片在线| 麻豆乱淫一区二区| 久久久久网色| 又黄又粗又硬又大视频| 国产视频一区二区在线看| 国产欧美日韩一区二区三区在线| 日韩欧美一区二区三区在线观看 | 丝瓜视频免费看黄片| av在线老鸭窝| 考比视频在线观看| 久久久国产精品麻豆| a级毛片在线看网站| 热99re8久久精品国产| 国产片内射在线| 免费在线观看日本一区| 男男h啪啪无遮挡| 亚洲欧美激情在线| 男女无遮挡免费网站观看| 老汉色av国产亚洲站长工具| 免费高清在线观看视频在线观看| 大码成人一级视频| 中文字幕高清在线视频| 亚洲熟女毛片儿| 精品人妻一区二区三区麻豆| 国产精品二区激情视频| 久久久久国内视频| av网站在线播放免费| 国产日韩一区二区三区精品不卡| 女人爽到高潮嗷嗷叫在线视频| 午夜两性在线视频| 男女无遮挡免费网站观看| 女性生殖器流出的白浆| 涩涩av久久男人的天堂| 欧美激情极品国产一区二区三区| 99热网站在线观看| 欧美精品啪啪一区二区三区 | 国产91精品成人一区二区三区 | 国产男女超爽视频在线观看| 母亲3免费完整高清在线观看| e午夜精品久久久久久久| 精品一区二区三区av网在线观看 | 18禁黄网站禁片午夜丰满| 国产片内射在线| 欧美日韩国产mv在线观看视频| 日韩一区二区三区影片| 久久精品国产亚洲av香蕉五月 | 国产片内射在线| 国产精品熟女久久久久浪| 老熟妇仑乱视频hdxx| 热99久久久久精品小说推荐| 99re6热这里在线精品视频| 最近最新免费中文字幕在线| 日韩中文字幕视频在线看片| 午夜福利影视在线免费观看| 99热全是精品| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久毛片微露脸 | 女人高潮潮喷娇喘18禁视频| 国产欧美亚洲国产| 精品视频人人做人人爽| 亚洲国产日韩一区二区| 电影成人av| 1024视频免费在线观看| 亚洲欧洲日产国产| 丝袜脚勾引网站| 乱人伦中国视频| 91麻豆精品激情在线观看国产 | 国产真人三级小视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 色婷婷av一区二区三区视频| 亚洲av成人一区二区三| 啦啦啦啦在线视频资源| 青春草视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩大片免费观看网站| www.精华液| 午夜91福利影院| 在线观看舔阴道视频| 超碰97精品在线观看| 久热这里只有精品99| 久久女婷五月综合色啪小说| 久久性视频一级片| 青春草亚洲视频在线观看| 老司机亚洲免费影院| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 女性生殖器流出的白浆| 一区二区三区精品91| 少妇的丰满在线观看| 久久99热这里只频精品6学生| 国产精品99久久99久久久不卡| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 成人国语在线视频| 人妻人人澡人人爽人人| 亚洲第一青青草原| 最新在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 色综合欧美亚洲国产小说| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 一级毛片电影观看| 丝瓜视频免费看黄片| 69av精品久久久久久 | 久久久久网色| 亚洲男人天堂网一区| 视频区图区小说| 两性午夜刺激爽爽歪歪视频在线观看 | 国产主播在线观看一区二区| 国产一区二区三区在线臀色熟女 | 国产人伦9x9x在线观看| 水蜜桃什么品种好| avwww免费| 日韩欧美免费精品| 色婷婷av一区二区三区视频| 亚洲欧美清纯卡通| 好男人电影高清在线观看| 亚洲久久久国产精品| 99国产综合亚洲精品| 日本wwww免费看| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 啪啪无遮挡十八禁网站| 亚洲精品国产一区二区精华液| 国产成人av激情在线播放| 手机成人av网站| 日韩视频在线欧美| 最新的欧美精品一区二区| 国产麻豆69| av在线播放精品| 欧美亚洲日本最大视频资源| 19禁男女啪啪无遮挡网站| 国产av又大| 亚洲国产精品一区三区| 国产欧美日韩一区二区三区在线| 国产免费现黄频在线看| 久久久久久亚洲精品国产蜜桃av| 国产成人a∨麻豆精品| 999久久久国产精品视频| 日韩视频在线欧美| 久久久久精品人妻al黑| 嫁个100分男人电影在线观看| 亚洲欧美激情在线| 日韩精品免费视频一区二区三区| 欧美精品一区二区大全| 日韩中文字幕视频在线看片| 九色亚洲精品在线播放| 日韩精品免费视频一区二区三区| 最近最新免费中文字幕在线| 正在播放国产对白刺激| 美女视频免费永久观看网站| 精品乱码久久久久久99久播| 69精品国产乱码久久久| 夜夜夜夜夜久久久久| 午夜福利视频精品| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看完整版高清| 欧美日韩视频精品一区| 久久久久国内视频| www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 免费看十八禁软件| 亚洲情色 制服丝袜| 丰满饥渴人妻一区二区三| 他把我摸到了高潮在线观看 | videos熟女内射| 日韩熟女老妇一区二区性免费视频| 别揉我奶头~嗯~啊~动态视频 | 超碰97精品在线观看| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 欧美大码av| 一边摸一边做爽爽视频免费| 久久久久精品人妻al黑| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡 | 一本一本久久a久久精品综合妖精| 一区二区三区精品91| 久久热在线av| 亚洲专区中文字幕在线| 女人久久www免费人成看片| 人人妻人人澡人人看| 美女福利国产在线| 伊人久久大香线蕉亚洲五| 美女高潮到喷水免费观看| 欧美人与性动交α欧美精品济南到| 日日爽夜夜爽网站| 国产精品影院久久| 高清黄色对白视频在线免费看| 午夜久久久在线观看| 九色亚洲精品在线播放| www.999成人在线观看| 99精品久久久久人妻精品| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 国产精品av久久久久免费| e午夜精品久久久久久久| 99国产精品一区二区三区| 男人添女人高潮全过程视频| 大型av网站在线播放| 黑人猛操日本美女一级片| 久久国产精品影院| 美女高潮到喷水免费观看| 99香蕉大伊视频| 9191精品国产免费久久| 国产精品影院久久| 高清黄色对白视频在线免费看| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 视频区欧美日本亚洲| tocl精华| 91精品伊人久久大香线蕉| 丝袜喷水一区| 国产成人精品久久二区二区91| 桃花免费在线播放| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 亚洲av片天天在线观看| 亚洲欧美色中文字幕在线| 久久免费观看电影| 极品人妻少妇av视频| av免费在线观看网站| 91成年电影在线观看| 黄色a级毛片大全视频| 国产免费av片在线观看野外av| e午夜精品久久久久久久| 中文字幕制服av| 嫁个100分男人电影在线观看| 欧美激情久久久久久爽电影 | 精品熟女少妇八av免费久了| 国产精品一二三区在线看| 亚洲七黄色美女视频| netflix在线观看网站| 91精品三级在线观看| 国产精品欧美亚洲77777| 国产野战对白在线观看| 极品人妻少妇av视频| 成人av一区二区三区在线看 | www.自偷自拍.com| 青草久久国产| 一边摸一边做爽爽视频免费| 又大又爽又粗| 色婷婷久久久亚洲欧美| 最近最新中文字幕大全免费视频| 色婷婷久久久亚洲欧美| 国产福利在线免费观看视频| 丰满少妇做爰视频| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 国产伦理片在线播放av一区| 欧美久久黑人一区二区| 18禁国产床啪视频网站| www.熟女人妻精品国产| 日韩欧美一区二区三区在线观看 | 最近最新免费中文字幕在线| 九色亚洲精品在线播放| 亚洲一区二区三区欧美精品| 精品少妇一区二区三区视频日本电影| 免费看十八禁软件| 欧美成人午夜精品| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 亚洲七黄色美女视频| 夜夜骑夜夜射夜夜干| 色94色欧美一区二区| 精品国产乱子伦一区二区三区 | 国产成人精品久久二区二区免费| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 久久中文看片网| 男女国产视频网站| 少妇被粗大的猛进出69影院| 欧美精品av麻豆av| 国产不卡av网站在线观看| 国产男女内射视频| 欧美变态另类bdsm刘玥| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 国产高清videossex| 久久精品国产亚洲av香蕉五月 | 首页视频小说图片口味搜索| 国产日韩欧美在线精品| 精品欧美一区二区三区在线| 成年动漫av网址| 中文字幕色久视频| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 美女午夜性视频免费| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 久久久久久亚洲精品国产蜜桃av| 国产在线观看jvid| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 男女床上黄色一级片免费看| 精品少妇久久久久久888优播| 亚洲,欧美精品.| 精品一区在线观看国产| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| 99精品欧美一区二区三区四区| 黄片播放在线免费| 黄色视频不卡| 亚洲中文日韩欧美视频| 天天添夜夜摸| 一本久久精品| 51午夜福利影视在线观看| 亚洲欧美清纯卡通| 永久免费av网站大全| 免费日韩欧美在线观看| 久久免费观看电影| 国产亚洲一区二区精品| 99精品久久久久人妻精品| 三上悠亚av全集在线观看| bbb黄色大片| 午夜精品国产一区二区电影| 日本撒尿小便嘘嘘汇集6| 极品少妇高潮喷水抽搐| 亚洲综合色网址| 久久国产精品男人的天堂亚洲| 老司机福利观看| av欧美777| www.精华液| 另类亚洲欧美激情| 午夜免费鲁丝| 91成年电影在线观看| 久久精品国产综合久久久| 最近中文字幕2019免费版| 久久精品国产综合久久久| 丝袜美腿诱惑在线| av不卡在线播放| 亚洲欧美一区二区三区黑人| av免费在线观看网站| 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 日韩一卡2卡3卡4卡2021年| 十八禁高潮呻吟视频| 国产区一区二久久| 精品亚洲成a人片在线观看| 首页视频小说图片口味搜索| 搡老岳熟女国产| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 国精品久久久久久国模美| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 手机成人av网站| 亚洲七黄色美女视频| 99国产精品99久久久久| 18禁观看日本| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩成人在线一区二区| 亚洲午夜精品一区,二区,三区| 国产精品自产拍在线观看55亚洲 | 午夜精品久久久久久毛片777| 午夜视频精品福利| 色婷婷av一区二区三区视频| avwww免费| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 精品高清国产在线一区| 狠狠狠狠99中文字幕| 手机成人av网站| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 精品久久久久久电影网| 男女无遮挡免费网站观看| av天堂久久9| 在线天堂中文资源库| 精品高清国产在线一区| 亚洲国产精品一区二区三区在线| 日韩一区二区三区影片| 老司机午夜十八禁免费视频| 久久久久久久国产电影| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看 | 国产精品成人在线| 国产欧美日韩一区二区三区在线| 国产成人欧美在线观看 | 欧美黄色淫秽网站| 午夜福利一区二区在线看| 国产日韩一区二区三区精品不卡| www.av在线官网国产| 搡老熟女国产l中国老女人| 69av精品久久久久久 | 中文字幕人妻丝袜一区二区| 丝袜美足系列| 男女下面插进去视频免费观看| 午夜两性在线视频| 精品国产一区二区久久| 日本欧美视频一区| 9色porny在线观看| 久久国产精品大桥未久av| 女人爽到高潮嗷嗷叫在线视频| 天天操日日干夜夜撸| 性色av一级| 女警被强在线播放| 美女中出高潮动态图| 中文字幕最新亚洲高清| 岛国毛片在线播放| 久久精品亚洲熟妇少妇任你| 亚洲精品久久久久久婷婷小说| 成人av一区二区三区在线看 | 国产精品久久久人人做人人爽| 久久久久久久精品精品| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av高清不卡| 久久香蕉激情| 日本五十路高清| 老司机福利观看| 美女高潮喷水抽搐中文字幕| 精品久久久精品久久久| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 成人国语在线视频| 久久中文看片网| 午夜日韩欧美国产| 欧美精品一区二区大全| 少妇粗大呻吟视频| 色综合欧美亚洲国产小说| 国产一卡二卡三卡精品| 王馨瑶露胸无遮挡在线观看| 久久天躁狠狠躁夜夜2o2o| 在线亚洲精品国产二区图片欧美| 夜夜夜夜夜久久久久| 在线观看一区二区三区激情| 午夜成年电影在线免费观看| 国产精品二区激情视频| 午夜91福利影院| 中亚洲国语对白在线视频| 国产欧美日韩一区二区三区在线| 一级片'在线观看视频| 精品乱码久久久久久99久播| 精品卡一卡二卡四卡免费| 欧美日韩亚洲综合一区二区三区_| 成年人午夜在线观看视频| 大香蕉久久成人网| 十八禁高潮呻吟视频| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 高清黄色对白视频在线免费看| 婷婷色av中文字幕| 欧美黄色淫秽网站| 午夜福利,免费看| 国产免费一区二区三区四区乱码| 免费看十八禁软件| 十八禁高潮呻吟视频| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 亚洲欧美日韩另类电影网站| 日韩一卡2卡3卡4卡2021年| 另类亚洲欧美激情| 国产免费一区二区三区四区乱码| 又大又爽又粗| 精品亚洲成a人片在线观看| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 亚洲精品第二区| 国产成人一区二区三区免费视频网站| av欧美777| 真人做人爱边吃奶动态| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区蜜桃| www.精华液| 性高湖久久久久久久久免费观看| 欧美激情久久久久久爽电影 | 亚洲av成人一区二区三| 又大又爽又粗| 久久久国产欧美日韩av| 久久热在线av| 香蕉丝袜av| 欧美日韩黄片免| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 一二三四社区在线视频社区8| 一区二区三区乱码不卡18| 久久国产精品大桥未久av| 不卡av一区二区三区| 18在线观看网站| 久久久国产欧美日韩av| 精品少妇久久久久久888优播| 国产福利在线免费观看视频| 男人舔女人的私密视频| 亚洲欧洲精品一区二区精品久久久| 久久女婷五月综合色啪小说| 亚洲专区国产一区二区| 精品久久久久久电影网| 欧美黄色片欧美黄色片| 欧美国产精品va在线观看不卡| 在线观看免费日韩欧美大片| 天天躁夜夜躁狠狠躁躁| 少妇人妻久久综合中文| 丝袜脚勾引网站| 一区福利在线观看| 少妇猛男粗大的猛烈进出视频| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 自线自在国产av| 一级,二级,三级黄色视频| 搡老乐熟女国产| 老汉色∧v一级毛片| 视频区欧美日本亚洲| 青草久久国产| 一区二区三区乱码不卡18| 亚洲国产日韩一区二区| 免费久久久久久久精品成人欧美视频| 久久久精品区二区三区| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 91大片在线观看| 午夜影院在线不卡| 日本撒尿小便嘘嘘汇集6| 一区二区三区激情视频| 中国美女看黄片| 欧美日韩精品网址| 中国美女看黄片| 久久久久久免费高清国产稀缺| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 亚洲精华国产精华精| 97人妻天天添夜夜摸| cao死你这个sao货| 亚洲精品一卡2卡三卡4卡5卡 | 日韩中文字幕视频在线看片| 波多野结衣av一区二区av| 777米奇影视久久| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美精品永久| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频| 亚洲成人免费av在线播放| 久久久久视频综合| 久久久国产欧美日韩av| 各种免费的搞黄视频| 久久狼人影院| 高清在线国产一区| 亚洲视频免费观看视频| 久久99热这里只频精品6学生| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| 女性生殖器流出的白浆|