• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative Analysis of Crime Incidents in Chicago Using Data Analytics Techniques

    2019-05-10 03:59:24DanielRiveraRuizandAlishaSawant
    Computers Materials&Continua 2019年5期

    Daniel Rivera Ruiz and Alisha Sawant

    Abstract:In this paper we aim to identify certain social factors that influence,and thus can be used to predict,the occurrence of crimes.The factors under consideration for this analytic are social demographics such as age,sex,poverty,etc.,train ridership,traffic density and the number of business licenses per community area in Chicago,IL.A factor will be considered pertinent if there is high correlation between it and the number of crimes of a particular type in that community area.

    Keywords:Analytics,big data,Chicago,correlation,crime.

    1 Introduction

    This analytic will analyze data of crime incidents in the city of Chicago and try to find patterns that can be useful to characterize these incidents.By combining different data sources,the analytic will extract information that is correlated to the pattern of crime incidents.Traditional sources of information for this kind of analysis will be used,such as demographics and geographical vicinity,but also additional re-sources will be considered to try to find new relationships and valuable insights.

    A typical user of this application would be the Police Department of the city of Chicago.The information that will be extracted using this analytic can be very useful to characterize the crime pattern in the city and its evolution with time.If the analytics proves to be useful,similar approaches could be developed for other cities in the US.

    In the broadest sense,the main beneficiary of this analytic would be the inhabit-ants of Chicago.If this analytic provides useful insight to reduce crime incidents,all the city would benefit from it.In a more practical sense,it will also benefit the Police Department,since it will help in the decision-making process of taking action to eradicate crime.

    The main objective of the analytic is to extract as much valuable information as possible.Examples of the kind of insights that we are aiming to find are the following:Which neighborhoods are more prone to which kinds of crime? Is there a trend over the years for different kinds of crimes? Are demographical factors such as poverty rate,ethnicity,etc.related to crime? What other factors that are not usually considered in this kind of analysis could be related to crime?

    The goodness of the analytic can be tested by comparing against previously published results (there are several works that have been published in the past and that are similar to ours).Additionally,we could apply the analytic to historical data for which the outcome is known:if the results of the analytic coincide with the expected output,it means that the results obtained are accurate.

    2 Motivation

    Crime is an ever-pervasive part of society and while our police forces work tirelessly to reduce the crime rate,there is only so much they can do when working solely off their intuition and training.This is where big data comes in.Crime is rarely random; and there are vast crime archives that can provide insight into the patterns in which crimes are committed.In addition to this,there may be a multitude of factors that affect the crime rate,and the nature of the crime,which are not immediately obvious,but the identification of which could aid the police in the prediction and thus,the prevention of criminal activities.

    This analytic can be used to anticipate the occurrence of certain types of crimes within the community areas (here,of Chicago,Illinois) of a city.With this information,the police can increase or decrease the number of policemen on patrol and the patrol frequency in those areas,thus improving the efficiency of the police department.

    Another usage of this analytic would be by the residents of the city.For example,a family wishing to move to Chicago could look up the types of crimes committed in that area and what factors influence those crimes.

    3 Related work

    The paper Crime Rate Inference with Big Data [Wang,Kifer,Graif et al.(2016)] tries to approach the old yet very important problem of crime inference by utilizing urban data that was not always available in previous research:points of interest (POIs) and taxi flows.POI data provide venue information such as GPS coordinates,popularity,and reviews according to different categories such as food,shop,transit,education,etc.Taxi flow data reflect how people commute in the city,so even if two communities are distant in geographical space,they could have a strong correlation if many people frequently travel between them.In the social science literature,the demographics and geographical neighbors are known to exhibit strong correlations with crime.This paper proposes to use POI features to assist the demographic features,and to use taxi flow as hyperlinks to supplement the geographical neighbors.By introducing these new features,they considerably improve the performance of the regression model for crime rate inference.Our project focuses in a very similar problem to the one addressed in this paper.We are trying to find valuable insight as to which factors play an important role when it comes to crime incidents using big data analytics techniques.In addition to having a similar objective to our project,the paper provides some background that will be useful for our work:1) The main source of crime data [Chicago Police Department (2018)] they use is the one available at the City of Chicago data portal:We are planning on using this dataset as well because it is very complete and publicly available on line.It is updated every week,and as of October 28th it contains over 6 million incidents.2) They are introducing additional datasets to explore the correlation between crime rate and social factors such as POIs and taxi flow.This could serve as a baseline for us to try and explore the correlation with other factors,introducing additional data of our own.3) In our project we will not address the problem of crime rate inference,but some of the techniques that they use in this paper will be very useful nonetheless:feature extraction and selection,data normalization,Pearson correlation analysis and feature importance analysis.4) The results obtained in this paper can provide a valuable baseline against which to measure our own results,or to prove/disprove the hypothesis that we state.

    In the Crime in Urban Areas [Zhao and Tang (2018)] paper,the authors discuss how crime prediction is typically carried out with respect to demographics of an area but that this is an insufficient predication.In order to make the analysis more sophisticated the paper delves into criminology and the various environments in which crimes occur.The various theories of criminology suggest that crime is directly related to time and location.This prompts a temporal,spatial and spatiotemporal pattern analysis on the data.This analysis reveals the existence of crime hotspots within urban areas and also gives information about the periodicity of crimes along with identifying the possibility of repeat victimization.Crime rate prediction itself can be modeled on different kinds of data such as,crime data,environmental context data and social media data.This information cross-referenced with spatiotemporal pattern analysis can provide insights into crime forecasting which can help with “next-location” prediction.The paper further talks about criminal network analysis using agent based,graph based and geographic information-based analysis.Crime analysis can be used by the police to not only increase patrols but plan efficient patrol routes in high-risk areas.

    The Crime Sensing with Big Data [Williams,Burnap and Sloan (2017)] paper focuses on exploring the influence that social media data can have in predicting crime patterns.This task is of great relevance considering that the expansion of social media over the past half a decade has been unprecedented,with estimates of approximately 2.5 billion nonunique users producing hundreds of petabytes of information.Along the lines of other studies,the paper makes the assumption that each Twitter user is a sensor of offline phenomena,creating a wide sensor-net covering ecological zones.Within this network,four types of sensors are identified according to their relationship to the information published:victims,firsthand witnesses,secondhand observers (e.g.,via media reports or the spread of rumor)and perpetrators.Big social data has received little attention amongst criminologists due to the challenges (and affordances) associated with it,which can be summarized as the 6 Vs:volume,variety,velocity,veracity,virtue and value.Furthermore,the attempts that have been made to integrate social media data into statistical models for crime estimation fall short due to the fact that they focus purely on geolocation data and completely dismiss the text of the tweet.Trying to address this issue,the paper explores the correlation of Twitter mentions of broken windows indicators to police-recorded crime rates.Broken windows is a well-known theory in criminology.which in its most basic formulation states that visible signs of neighborhood degeneration are causally linked to crime.The paper’s main findings were the following:1) Estimation models including social media variables increase the amount of crime variance explained compared to models that include offline variables alone.2) Twitter mentions of broken windows indicators are positively associated with police-recorded crime rates in low-crime areas.3)Twitter mentions of broken windows indicators are negatively or not associated with crime rates in high-crime areas.

    The Criminal Network Analysis [Pramanik,Zhang,Lau et al.(2016)] paper follows 4 stages:1) The Big data resource,2) Big data tools,3) Analytic procedures and 4)applications.An analysis of social networks can be used to identify previously unseen patterns in criminal networks and organizations.Relational analysis gives an idea about the relationships within and without the networks; while positional analysis describes the structure of the network.The paper follows with discussing the various big data frameworks available for Social Network Analysis.In order to improve the reliability of such studies,multidimensional analytics will need to be integrated into the criminal network analysis.

    4 Design and implementation

    4.1 Design details

    Fig.1 shows the design details of our project.Starting with the datasets described in the following section,the first stage in the pipeline is the data transfer into HDFS through the Globus interface.Following is the cleaning and formatting of the datasets using Hadoop MapReduce.Within this stage the Socrata Open Data API (SODA) [Socrata Open Data API (2018)] was extremely useful:making use of its online querying capabilities,we were able to transform the location data (GPS) available in most of the datasets into the corresponding community areas of Chicago.The third step was to generate Impala tables,so we could access and query the data seamlessly.Once the Impala tables were in place,we use standard SQL queries to generate one correlation table per community area plus a general table for the whole city of Chicago.These tables include the correlation of each factor (demographics,traffic,etc.) to each type of crime.Finally,we transfer the correlation tables to the local file system and generate a general table for all factors,community areas and crime types for which the correlation absolute value is greater or equal than 0.8.Using this table,we generate the visualizations presented in the Results section.

    Figure1:Flow diagram of the analytics process

    4.2 Description of datasets

    1.Crimes-2001 to present [Chicago Police Department (2018)]

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present,minus the most recent seven days.Data is extracted from the Chicago Police Department’s CLEAR(Citizen Law Enforcement Analysis and Reporting) system.The dataset (as of October 28th,2018) contains over 6.71M rows and 22 columns (1.7 GB approx.)

    2.Business licenses [City of Chicago (2018a)]

    Business licenses issued by the Department of Business Affairs and Consumer Protection in the City of Chicago from 2002 to the present.The dataset comprises 955K rows and 34 columns and is updated daily (approx.300 MB).

    3.Chicago traffic tracker [City of Chicago (2018b)]

    This dataset contains the historical estimated congestion for 1270 traffic segments,in selected time periods from August 2011 to May 2018.This dataset has 19.6M rows and 5 columns (approx.640 MB)

    4.Census community data [United States Census Bureau (2018)]

    This dataset is a combination of multiple datasets of Chicago by community areas,giving information about age,ethnicity and economic demographics.The dataset has information from 2009 to 2016.

    5.Train data-‘L’ station entries [Chicago Transit Authority (2018)]

    This dataset shows daily totals of ridership,by station entry,for each ‘L’ station da-ting back to 2001.Dataset shows entries at all turnstiles,combined,for each station.It has 910K rows and 5 columns.

    5 Results

    The main result obtained with this analytic is a set of 78 correlation tables,one per community area in the city of Chicago plus a general table for the whole city.Additionally,a summarizing table including only correlations with an absolute value greater or equal to 0.8 is presented to identify the factors and types of crime that present a stronger relationship.Tab.1 shows a few rows of the 3,650 high-correlation relationships available in the complete summary.

    Fig.2,Fig.3 and Fig.4 show plots of the top 10 crime types,factors and community areas,respectively,with their associated percentages out of the 3,650 records.

    Figure2:Top 10 crime types by percentage in the high correlation table summary

    Figure3:Top 10 factors by percentage in the high correlation table summary

    Figure4:Top 10 community areas by percentage in the high correlation table summary

    Table1:Examples of the records found in the high correlation summary table Community area=00 means the whole city of Chicago

    6 Future work

    Crime is definitely influenced by multiple factors in society and these factors may be complex and unsuspected.The key to improving this analytic is to identify more such factors and testing to see how they correlate with criminal activities in various areas.This could be done by a brute force checking of a large number of factors or a more sophisticated selection of parameters perhaps curated by domain experts in criminology.The analytic itself can be applied to any city in the world.

    Additionally,performing a deeper analysis including time series to identify not only the correlation between factors and crime types,but also to explore causality relationships.More sophisticated techniques such as feature ranking and selection could be explored to develop a machine learning model that would allow to forecast crime rates and therefore take action accordingly.

    7 Conclusions

    In this analytic we examined data of crime incidents in the city of Chicago aiming to find patterns that could be useful to characterize them.We combined several data sources including demographics,train ridership,traffic conditions and business li-censes in order to find correlations between these factors and the pattern of crime incidents.

    One of the most remarkable findings was the fact that non-traditional factors,such as the number of public transportation buses or the average speed in traffic-congested zones seem to be correlated to certain types of crime in certain community areas.

    Additionally,there are a few factors that exhibit a negative correlation (see Tab.1 for a couple of examples).These instances are also interesting because they can provide useful guidelines to take action towards reducing crime incidents in the most affected community areas.

    91久久精品国产一区二区成人| 少妇丰满av| 国产真实伦视频高清在线观看| 美女国产视频在线观看| 69人妻影院| 久久久久性生活片| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 高清av免费在线| 久久久久九九精品影院| 久久草成人影院| 亚洲精品自拍成人| 亚洲av成人精品一二三区| 深爱激情五月婷婷| 91精品国产九色| 美女被艹到高潮喷水动态| av天堂中文字幕网| 99热网站在线观看| 免费观看的影片在线观看| 九九爱精品视频在线观看| 亚洲av电影不卡..在线观看| 日本黄色片子视频| 免费在线观看成人毛片| 午夜福利视频1000在线观看| 久久久久久伊人网av| 中文字幕精品亚洲无线码一区| 色播亚洲综合网| 国产男人的电影天堂91| 精品午夜福利在线看| 91在线精品国自产拍蜜月| 男人的好看免费观看在线视频| 免费观看的影片在线观看| 女人十人毛片免费观看3o分钟| 久久6这里有精品| 简卡轻食公司| 非洲黑人性xxxx精品又粗又长| 欧美成人午夜免费资源| 直男gayav资源| 久久精品久久精品一区二区三区| av在线老鸭窝| 日本黄色片子视频| 能在线免费观看的黄片| 六月丁香七月| 少妇的逼好多水| av免费观看日本| 亚洲电影在线观看av| 色噜噜av男人的天堂激情| 一夜夜www| 中文字幕精品亚洲无线码一区| 欧美97在线视频| av.在线天堂| 99久久中文字幕三级久久日本| 久久午夜福利片| 狂野欧美白嫩少妇大欣赏| 亚洲精品国产av成人精品| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲av嫩草精品影院| 日本五十路高清| 国产在线男女| 夜夜爽夜夜爽视频| 又爽又黄无遮挡网站| 精品无人区乱码1区二区| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜爱| 亚洲最大成人中文| ponron亚洲| 亚洲国产高清在线一区二区三| 亚洲av成人精品一区久久| 午夜精品国产一区二区电影 | 男女国产视频网站| 日日干狠狠操夜夜爽| 91久久精品国产一区二区成人| 中文天堂在线官网| 亚洲伊人久久精品综合 | 日日摸夜夜添夜夜添av毛片| 一夜夜www| videos熟女内射| 91久久精品国产一区二区三区| 久久欧美精品欧美久久欧美| 村上凉子中文字幕在线| 三级经典国产精品| 午夜老司机福利剧场| 男的添女的下面高潮视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久av不卡| 乱人视频在线观看| 欧美高清成人免费视频www| 男的添女的下面高潮视频| 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 欧美最新免费一区二区三区| 亚洲人成网站在线播| 亚洲高清免费不卡视频| 欧美性猛交╳xxx乱大交人| 青青草视频在线视频观看| 久久综合国产亚洲精品| 亚洲熟妇中文字幕五十中出| 一级毛片电影观看 | 国产成人免费观看mmmm| 蜜臀久久99精品久久宅男| 22中文网久久字幕| 国产不卡一卡二| 亚洲综合色惰| 国产一区二区在线观看日韩| 黄片无遮挡物在线观看| 国产一区二区在线观看日韩| 久久久久久伊人网av| 搡女人真爽免费视频火全软件| 26uuu在线亚洲综合色| 日韩人妻高清精品专区| 男人舔女人下体高潮全视频| 欧美日韩精品成人综合77777| 日本黄大片高清| 国产 一区精品| 人人妻人人澡欧美一区二区| 国内精品美女久久久久久| 国产精品1区2区在线观看.| 九草在线视频观看| 欧美+日韩+精品| 在线播放无遮挡| 亚洲国产日韩欧美精品在线观看| 国产成人freesex在线| 日韩国内少妇激情av| 高清视频免费观看一区二区 | 午夜福利成人在线免费观看| 午夜精品在线福利| 国产精品久久视频播放| 国产成人a∨麻豆精品| 高清av免费在线| 亚洲美女视频黄频| 久久热精品热| 亚洲成色77777| 国产精品麻豆人妻色哟哟久久 | 日本三级黄在线观看| 国产淫语在线视频| 久久久久久久久久成人| 人人妻人人澡人人爽人人夜夜 | av在线老鸭窝| 少妇高潮的动态图| 久久精品人妻少妇| 少妇被粗大猛烈的视频| av又黄又爽大尺度在线免费看 | 一级毛片电影观看 | 偷拍熟女少妇极品色| 国产成人精品婷婷| 九九热线精品视视频播放| 五月伊人婷婷丁香| 边亲边吃奶的免费视频| 亚洲成人av在线免费| 国产高清不卡午夜福利| 亚洲国产高清在线一区二区三| 国产熟女欧美一区二区| 人人妻人人澡欧美一区二区| av又黄又爽大尺度在线免费看 | a级毛色黄片| 蜜臀久久99精品久久宅男| 国产午夜精品久久久久久一区二区三区| 免费观看a级毛片全部| 亚洲成人中文字幕在线播放| 国产精品av视频在线免费观看| 精品久久久久久久久av| videossex国产| 亚洲av电影不卡..在线观看| 国产成人午夜福利电影在线观看| 高清午夜精品一区二区三区| 91av网一区二区| 久久久久久久午夜电影| 最近中文字幕高清免费大全6| 人妻少妇偷人精品九色| 久久精品国产99精品国产亚洲性色| 精品久久久噜噜| 国产v大片淫在线免费观看| 国产精品一区www在线观看| 中文乱码字字幕精品一区二区三区 | 亚洲婷婷狠狠爱综合网| 免费观看人在逋| 成人漫画全彩无遮挡| 国产av不卡久久| 成人特级av手机在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜精品在线福利| 麻豆av噜噜一区二区三区| 国产久久久一区二区三区| 国产又黄又爽又无遮挡在线| 啦啦啦韩国在线观看视频| 国产伦在线观看视频一区| 亚洲欧美日韩东京热| 免费观看在线日韩| 欧美bdsm另类| 国产av不卡久久| 丰满少妇做爰视频| 熟女人妻精品中文字幕| 国产一级毛片在线| 久久久a久久爽久久v久久| 日韩成人伦理影院| 国产精品.久久久| 久久久亚洲精品成人影院| 欧美日本亚洲视频在线播放| 日韩av不卡免费在线播放| 日本午夜av视频| 久久精品国产自在天天线| 男女国产视频网站| 久久99热这里只频精品6学生 | 非洲黑人性xxxx精品又粗又长| 女人被狂操c到高潮| 18禁动态无遮挡网站| 成人欧美大片| 亚洲人成网站在线观看播放| 亚洲国产精品合色在线| 国产一级毛片七仙女欲春2| 汤姆久久久久久久影院中文字幕 | 老师上课跳d突然被开到最大视频| 国产淫语在线视频| 欧美变态另类bdsm刘玥| 日日摸夜夜添夜夜添av毛片| 国产伦在线观看视频一区| 天天躁夜夜躁狠狠久久av| 亚洲欧美成人综合另类久久久 | 午夜精品国产一区二区电影 | 欧美日韩一区二区视频在线观看视频在线 | 国产色爽女视频免费观看| 国产精品国产高清国产av| 国产真实伦视频高清在线观看| 亚洲av成人av| 欧美成人a在线观看| 亚洲国产精品成人久久小说| 天堂影院成人在线观看| 夜夜爽夜夜爽视频| 亚洲国产日韩欧美精品在线观看| 在线a可以看的网站| 国产女主播在线喷水免费视频网站 | 免费观看性生交大片5| 久久99热这里只频精品6学生 | 日韩 亚洲 欧美在线| 又爽又黄无遮挡网站| 国产av一区在线观看免费| 99热精品在线国产| 秋霞伦理黄片| 久久久久久久久久成人| 在线a可以看的网站| 永久免费av网站大全| 美女大奶头视频| 精品人妻偷拍中文字幕| 久久欧美精品欧美久久欧美| 久久这里只有精品中国| 我要看日韩黄色一级片| 亚洲精品国产av成人精品| 久久精品国产99精品国产亚洲性色| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 久久精品熟女亚洲av麻豆精品 | 深夜a级毛片| 爱豆传媒免费全集在线观看| 91久久精品国产一区二区三区| 丰满少妇做爰视频| 欧美另类亚洲清纯唯美| 国产在视频线在精品| 日日摸夜夜添夜夜添av毛片| 精品国产一区二区三区久久久樱花 | 毛片一级片免费看久久久久| 午夜激情欧美在线| 高清在线视频一区二区三区 | av在线蜜桃| 神马国产精品三级电影在线观看| 久久久成人免费电影| 久久韩国三级中文字幕| 三级国产精品片| 精品久久久久久久人妻蜜臀av| 黄色日韩在线| 男人舔奶头视频| 亚洲熟妇中文字幕五十中出| 久久久久九九精品影院| 成年av动漫网址| 亚洲国产精品合色在线| 亚洲av日韩在线播放| 自拍偷自拍亚洲精品老妇| 亚洲av免费在线观看| 精品免费久久久久久久清纯| 亚洲国产精品成人久久小说| 久久久久久久久久久丰满| 赤兔流量卡办理| 在线a可以看的网站| av免费在线看不卡| 久久韩国三级中文字幕| 国产精品一二三区在线看| 亚洲久久久久久中文字幕| 国产免费男女视频| 国内精品美女久久久久久| 国产午夜精品久久久久久一区二区三区| 日韩强制内射视频| 午夜激情欧美在线| 亚洲丝袜综合中文字幕| 国产极品精品免费视频能看的| 亚洲欧洲国产日韩| 欧美zozozo另类| 久久久国产成人精品二区| 国产成人午夜福利电影在线观看| 亚洲国产精品合色在线| 国产极品天堂在线| av又黄又爽大尺度在线免费看 | 久久精品影院6| 国产精品久久久久久av不卡| 啦啦啦啦在线视频资源| 久久人妻av系列| 国产探花极品一区二区| 久久久午夜欧美精品| 天堂√8在线中文| 卡戴珊不雅视频在线播放| 久久精品夜色国产| 啦啦啦观看免费观看视频高清| 亚洲电影在线观看av| 亚洲av成人精品一二三区| 一级二级三级毛片免费看| 国产美女午夜福利| 国产探花在线观看一区二区| 国产毛片a区久久久久| 中文欧美无线码| 国产精品,欧美在线| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 久久精品国产亚洲网站| 日韩一区二区视频免费看| 国产av码专区亚洲av| 日本免费一区二区三区高清不卡| 国产伦精品一区二区三区视频9| 一级二级三级毛片免费看| 99久久精品国产国产毛片| 99热6这里只有精品| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| 亚洲欧美日韩东京热| 中文欧美无线码| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 99热精品在线国产| 永久免费av网站大全| 国产一区亚洲一区在线观看| 嫩草影院入口| 亚洲图色成人| 亚洲经典国产精华液单| 国内揄拍国产精品人妻在线| 丝袜美腿在线中文| 色视频www国产| 中文字幕制服av| 99久久成人亚洲精品观看| 国产老妇女一区| 中文字幕熟女人妻在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线播放国产精品三级| 国产亚洲精品av在线| 欧美日韩国产亚洲二区| 美女脱内裤让男人舔精品视频| 久久精品国产自在天天线| 视频中文字幕在线观看| 少妇熟女欧美另类| 成人综合一区亚洲| 伦精品一区二区三区| 亚洲经典国产精华液单| 天堂av国产一区二区熟女人妻| 亚洲av中文字字幕乱码综合| 两个人的视频大全免费| 亚洲av成人av| 亚洲国产最新在线播放| 欧美高清性xxxxhd video| 久久久久国产网址| 国产亚洲5aaaaa淫片| 久久久精品欧美日韩精品| 男人的好看免费观看在线视频| 亚洲欧美一区二区三区国产| av专区在线播放| 大香蕉久久网| av国产免费在线观看| 有码 亚洲区| 亚洲欧美清纯卡通| 精品久久久久久久久久久久久| 国产毛片a区久久久久| 亚洲欧美成人综合另类久久久 | 免费在线观看成人毛片| 久久人妻av系列| 麻豆成人av视频| 日本黄色视频三级网站网址| 日韩一本色道免费dvd| 国产真实伦视频高清在线观看| 久久精品影院6| 男插女下体视频免费在线播放| 亚洲人与动物交配视频| 亚洲图色成人| 秋霞伦理黄片| 在线a可以看的网站| 纵有疾风起免费观看全集完整版 | 非洲黑人性xxxx精品又粗又长| 亚洲丝袜综合中文字幕| 午夜福利网站1000一区二区三区| 爱豆传媒免费全集在线观看| 亚洲综合精品二区| 免费黄网站久久成人精品| 女人久久www免费人成看片 | 91久久精品国产一区二区成人| 久久久国产成人免费| 中文字幕亚洲精品专区| 国产伦理片在线播放av一区| 黄色一级大片看看| 亚洲中文字幕日韩| 又粗又爽又猛毛片免费看| 欧美日本亚洲视频在线播放| 亚洲熟妇中文字幕五十中出| 校园人妻丝袜中文字幕| 99久国产av精品国产电影| 久热久热在线精品观看| 麻豆成人av视频| 1000部很黄的大片| 国产精品三级大全| 人妻系列 视频| 97超碰精品成人国产| 婷婷色麻豆天堂久久 | 简卡轻食公司| 亚洲人成网站高清观看| 亚洲成人av在线免费| 精品久久久久久久久亚洲| 国产成人福利小说| 午夜老司机福利剧场| 久热久热在线精品观看| 如何舔出高潮| av专区在线播放| 老女人水多毛片| 汤姆久久久久久久影院中文字幕 | 国语自产精品视频在线第100页| 日本wwww免费看| 久久草成人影院| 久久鲁丝午夜福利片| 久久热精品热| 男女国产视频网站| 能在线免费观看的黄片| 尤物成人国产欧美一区二区三区| 免费av观看视频| 国内精品美女久久久久久| 精品久久国产蜜桃| 人妻系列 视频| 久久久久国产网址| 热99在线观看视频| 性色avwww在线观看| 国产亚洲av片在线观看秒播厂 | 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频 | 欧美区成人在线视频| 三级国产精品欧美在线观看| av国产免费在线观看| 少妇的逼好多水| 午夜免费激情av| 三级国产精品片| 久久久久久久久中文| 欧美高清性xxxxhd video| 禁无遮挡网站| 大又大粗又爽又黄少妇毛片口| 精品人妻偷拍中文字幕| 国产亚洲最大av| 男人狂女人下面高潮的视频| 少妇熟女aⅴ在线视频| 精品久久久久久久久亚洲| 久久韩国三级中文字幕| 丝袜喷水一区| 日本黄大片高清| 国国产精品蜜臀av免费| 久久精品久久久久久久性| 内射极品少妇av片p| 高清日韩中文字幕在线| 午夜激情欧美在线| 在线a可以看的网站| 亚洲国产欧美在线一区| 99热全是精品| 老司机影院毛片| 日韩强制内射视频| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 亚洲国产欧美在线一区| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 国产高潮美女av| 九九热线精品视视频播放| 欧美成人免费av一区二区三区| 人人妻人人澡人人爽人人夜夜 | 九九爱精品视频在线观看| 国产午夜福利久久久久久| 深爱激情五月婷婷| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 亚洲av一区综合| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区| 亚洲高清免费不卡视频| 麻豆一二三区av精品| 久久精品久久久久久噜噜老黄 | 中文字幕av在线有码专区| 一边亲一边摸免费视频| 国产探花在线观看一区二区| 国产午夜精品久久久久久一区二区三区| 男人的好看免费观看在线视频| 国产精品野战在线观看| 久久99蜜桃精品久久| 最近中文字幕高清免费大全6| 老师上课跳d突然被开到最大视频| 欧美精品一区二区大全| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 又粗又爽又猛毛片免费看| 国产黄片视频在线免费观看| 老女人水多毛片| 久久99蜜桃精品久久| 大香蕉97超碰在线| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| 亚洲av中文av极速乱| av视频在线观看入口| a级一级毛片免费在线观看| 少妇被粗大猛烈的视频| 简卡轻食公司| 欧美日韩综合久久久久久| av在线天堂中文字幕| 久久精品国产鲁丝片午夜精品| 中文字幕av成人在线电影| 丰满少妇做爰视频| 麻豆成人av视频| 久久这里只有精品中国| 狂野欧美白嫩少妇大欣赏| 精品国产一区二区三区久久久樱花 | 亚洲精品国产av成人精品| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久 | 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 亚洲人成网站在线播| 男人舔奶头视频| 春色校园在线视频观看| 内射极品少妇av片p| 国产亚洲91精品色在线| 国产精品久久电影中文字幕| 亚洲真实伦在线观看| 成人av在线播放网站| 白带黄色成豆腐渣| 亚洲自偷自拍三级| 蜜桃亚洲精品一区二区三区| 日韩人妻高清精品专区| 色播亚洲综合网| 国产亚洲精品av在线| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类| 久久久久国产网址| 亚洲欧洲日产国产| 久久久久久久久久久丰满| 国产精品福利在线免费观看| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 色吧在线观看| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 一本一本综合久久| .国产精品久久| 一级二级三级毛片免费看| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 亚洲精品456在线播放app| 国产精品综合久久久久久久免费| 卡戴珊不雅视频在线播放| 亚洲无线观看免费| 中文精品一卡2卡3卡4更新| 免费看日本二区| 日韩一本色道免费dvd| 18禁裸乳无遮挡免费网站照片| 特级一级黄色大片| 亚洲最大成人av| 亚洲丝袜综合中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | a级毛色黄片| 色网站视频免费| 少妇裸体淫交视频免费看高清| 亚洲av中文字字幕乱码综合| 国产一区亚洲一区在线观看| 国产在线一区二区三区精 | 日韩欧美三级三区| 成人亚洲精品av一区二区| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区| 黄片wwwwww| 国产精品美女特级片免费视频播放器| 人人妻人人澡人人爽人人夜夜 | 91久久精品电影网| 一级毛片我不卡| 成人亚洲欧美一区二区av| 91精品伊人久久大香线蕉| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 精品国内亚洲2022精品成人| 亚洲av男天堂| 晚上一个人看的免费电影| 国产精品福利在线免费观看| 1024手机看黄色片| 大话2 男鬼变身卡| 亚洲最大成人手机在线| 99视频精品全部免费 在线| 日本爱情动作片www.在线观看| 日韩在线高清观看一区二区三区| 男女边吃奶边做爰视频| 99热这里只有是精品50| 九九久久精品国产亚洲av麻豆| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 亚洲精品456在线播放app| 村上凉子中文字幕在线| 建设人人有责人人尽责人人享有的 | 尤物成人国产欧美一区二区三区| 国产男人的电影天堂91|