• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau,China

    2019-05-09 07:33:50HongWeiWangYuanQiChunLinHuangXiaoYingLiXiaoHongDengJinLongZhang
    Sciences in Cold and Arid Regions 2019年2期

    HongWei Wang ,Yuan Qi,ChunLin Huang ,XiaoYing Li,2,XiaoHong Deng ,JinLong Zhang

    1.Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    2.University of Chinese Academy of Sciences,Beijing 100049,China

    ABSTRACT This research was undertaken to clarify the characteristics of vegetation change and its main influencing factors on the Qinghai-Tibet Plateau.Using the greenness rate of change(GRC)and correlation factors,we analyzed the trend of vegetation change and its dominant factors from 2000 to 2015. The results indicate that the vegetation tended to improve from 2000 to 2015 on the Qinghai-Tibet Plateau,with the improved area accounting for 39.93% of the total;and the degraded area accounting for 19.32%. The areas of degraded vegetation are mainly concentrated in the low-relief and intermediate-relief mountains of the high-altitude and extremely high-altitude areas on the Qinghai-Tibet Plateau, as the vegetation characteristics are impacted by the terrain. Temperature and precipitation have obvious response mechanisms to vegetation growth, but the effects of precipitation and temperature on vegetation degradation are not significant over a short time frame. Overgrazing and population growth are the dominant factors of vegetation degradation on the Qinghai-Tibet Plateau.

    Keywords:Qinghai-Tibet Plateau;remote sensing;vegetation activity;degraded;dominant factors

    1 Introduction

    Climate change and environmental issues are two key elements of global change research,which analyzes challenges to the survival of humans and the sustainable development of the global socio-economy(Wang et al., 2008; Moss et al., 2010). As an important component of the terrestrial ecosystem, vegetation is a natural link to the water cycle, energy exchange, and biogeochemical cycle on the terrestrial surface (Peng et al., 2012). Vegetation dynamics are closely associated with ecosystem services, such as biodiversity,soil and water conservation,wildlife habitats, and food and fiber production (Godinez-Alvare et al.,2009;Smith et al.,2014).

    Remote-sensing data has become the most important source for monitoring and evaluating global vegetation dynamics at large spatial scales, based on the great advantages of long time-series span and wide coverage (Zhang et al., 2011; Peng et al., 2012;Dardel et al.,2014).The normalized difference vegetation index (NDVI) is an important indicator for characterizing surface plant growth and monitoring vegetation changes (Stow et al., 2004; Jamali et al.,2014; Tian et al., 2016). NDVI is mainly derived from advanced very high-resolution radiometer(AVHRR), Système Probatoire d'Observation de la Terre VéGéTATION (SPOT VGT), and moderateresolution-imaging spectroradiometer (MODIS) remote-sensing data, which can detect regional and global land-vegetation processes and how they change temporally and spatially across seasonal and interannual scales (Pinzon and Tucker, 2014; Tian et al., 2015; Otto et al., 2016).AVHRR NDVI data have been available since 1981,which provides a long time sequence and is used for drought monitoring, vegetation-change monitoring, land-cover change, climate relations, and other fields of inquiry (Anyamba and Tucker, 2012; Waylen et al., 2014; Xu et al., 2014;Tian et al., 2016). However, these data have inadequacies such as low spatial resolution, a wide band vulnerable to water vapor interference, etc. (Fensholt et al., 2009). The SPOT/VGT sensor began to obtain data in April 1998 for global vegetation-cover observation. Its band information is rich and has the advantages of a red band sensitive to chlorophyll content, a near-infrared band removed from the water vapor absorption zone, and a high spatial resolution(Fensholt et al., 2009). MODIS NDVI data improved the spatial resolution, temporal resolution, spectral resolution, and chlorophyll sensitivity, which were superior to AVHRR NDVI and SPOT VGT NDVI data, excluding atmospheric water vapor interference. Additionally, MODIS NDVI has promise for vegetation dynamic monitoring (Huete et al., 2002).Therefore, MODIS NDVI data were selected to analyze the vegetation activities on the Qinghai-Tibet Plateau.

    The Qinghai-Tibet Plateau is one of the most sensitive areas responding to global climate change and global environmental change, and is recognized as a hot spot for coupled studies on global terrestrial ecosystem change and global climate change. This paper calculated the greenness rate of change (GRC) on the Qinghai-Tibet Plateau and then quantitatively analyzed the relationship between vegetation change and land use, topography, climate, and human activities.This research has scientific and practical significance for the study of the response and feedback mechanisms of vegetation restoration and global climate change on the Qinghai-Tibet Plateau.

    2 Data and methods

    2.1 Study area

    The Qinghai-Tibet Plateau is known as "the third pole of the earth" and "the roof of the world." It is a"sensitive area" of climate change in the Northern Hemisphere, containing many glaciers, permafrost,wetlands, lakes, and large areas of grassland and forest ecosystems, and is an important source of water for Asia(Sun et al.,2012;Zhang et al.,2014).The alpine meadow, alpine steppe, and alpine swamp-meadow grassland are widely distributed on the Qinghai-Tibet Plateau;and they are an important part of the Qinghai-Tibet Plateau ecosystem and the basis of the regional economic development of animal husbandry(Wang et al.,2002).With changes in the water and hydrological conditions, the pattern, process, and function of the Qinghai-Tibet Plateau ecosystem have changed. Grassland degradation, forest fluctuation,wetland disappearance,and intensification of desertification have seriously affected the environment, socioeconomic development and production, and the life of the local people on the Qinghai-Tibet Plateau (Yao and Zhu, 2006; Zhu et al., 2015; Wang et al., 2016;Hu et al.,2017).

    2.2 Data

    2.2.1 DEM data

    Digital elevation model(DEM)(90m×90m resolution) data are from the U. S. Geological Survey(USGS) Earth Resources Observation and Science(EROS) Center (https://eros. usgs. gov). DEM data were processed by geometric correction, registration,and projection transformation.Figure 1 shows the distribution of DEM and meteorological stations on the Qinghai-Tibet Plateau.

    2.2.2 MODIS NDVI data

    MODIS NDVI data are freely available for download from the National Aeronautics and Space Administration (NASA) (http://www.nasa.gov), including the Terra's and the Aqua's 1-km-resolution monthly synthetic-vegetation-index products MOD13A3 and MYD13A3, from 2000 to 2015. The MODIS reprojection tool (MRT) is used to preprocess the image mosaic, data-format conversion, and projection conversion. The average monthly MOD NDVI and MYD NDVI have a correlation coefficient of 0.991 on the Qinghai-Tibet Plateau, as was calculated by taking the weighted average of the two types of data(Figure 2).

    2.2.3 Other data

    Meteorological data came from the China Meteorological Data Service Center (CMDC) (http://data.cma. cn), including indicators of the Qinghai-Tibet Plateau and the surrounding area. One-hundred-andnineteen weather stations provided monthly average temperature and precipitation data from 2000 to 2015.The weather-station data were preprocessed,and missing values were removed.

    The land-use (1km×1km resolution) data were derived from the Cold and Arid Regions Science Data Center(http://westdc.westgis.ac.cn).

    The statistical data were derived from the National Bureau of Statistics (NBS) of China national data(http://data.stats.gov.cn).

    Figure 1 Spatial distribution of DEM and meteorological stations on the Qinghai-Tibet Plateau

    Figure 2 Time-series of NDVI values among MOD13A3,MYD13A3,and the average monthly NDVI on the Qinghai-Tibet Plateau from 2000 to 2015

    2.3 Methods

    2.3.1 Trend analysis

    Linear-regression analysis can simulate the trend of each grid. This method was used to simulate the GRC of vegetation and analyze the change rates of NDVI (Stow et al., 2003), as shown in the following formula:

    where Θslopeis the slope of the unary linear-regression equation; n is the serial number of years 2000-2015;and MNDVI,iis the maximum NDVI value of the growing season in the i th year.

    2.3.2 Spearman's rank correlation analysis

    The relationship between vegetation change and climate response was analyzed for the Qinghai-Tibet Plateau. Because the data is not subject to the normal distribution, Spearman's rank correlation coefficients were used (Croux and Dehon, 2010). The formula is as follows:

    where rsis Spearman's rank correlation coefficient; n is the time-series; and xi,yiare the rank of each variable in the time-series i(1≤i≤n).The statistical significance of the correlation coefficient is verified by the ttest method.

    3 Results and discussion

    3.1 Monitoring of vegetation activities on the Qinghai-Tibet Plateau

    Based on the monthly mean MODIS NDVI data on the Qinghai-Tibet Plateau, the maximum growing season of vegetation was calculated. From Figure 6a for the one cycle, based on MODIS NDVI data of the maximum growing season from 2000 to 2015,the GRC was calculated for 2000-2005/2005-2010/2010-2015/2000-2015(Figure 3)to analyze the rates of change of NDVI on the Qinghai-Tibet Plateau.The results, as presented in Table 1, show that (1) (from Figure 3a) the vegetation improved from 2000 to 2005, with the improved area and degraded area accounting for 60.09% and 24.45%, respectively; from Figure 3b, the improved area and degraded area were nearly equal to each other for 2005-2010, accounting for 38.33% and 38.83%, respectively; and from Figure 3c, the degradation of vegetation is serious for 2010-2015, with a degraded area as high as 55.48%.This degradation was mainly concentrated in the eastern region of the Qinghai-Tibet Plateau. (2) Overall,there was an improvement of vegetation from 2000 to 2015 on the Qinghai-Tibet Plateau (Figure 3d). The improved area accounted for 39.93%, while the degraded area accounted for 19.32%.The degraded area was mainly concentrated in the Naqu, Dangqiong,Sangri, Naidong, Qusong, Luolong, Gonghe, Gangcha regions.

    Figure 3 Spatial change trends of MODIS NDVI on the Qinghai-Tibet Plateau:(a)2000-2005,(b)2005-2010,(c)2010-2015,and(d)2000-2015

    Table 1 Comparison of MODIS NDVI trend on the Qinghai-Tibet Plateau(2000-2005,2005-2010,2010-2015,2000-2015)

    3.2 Analysis of vegetation change of different ecological types on the Qinghai-Tibet Plateau

    The vegetation-distribution pattern was divided into forest, grassland, farmland, and sparse vegetation(Li et al., 2014). Grassland was the dominant type,with an area of 15×105km2, accounting for 57.5% of the total area of the Qinghai-Tibet Plateau (Figure 4).From 2000 to 2005, the vegetation types improved;and the improvement of grassland was the most obvious.The improved area accounted for 59.8%of the total grassland area. From 2005 to 2010, forest vegetation was degraded; and the degraded area accounted for 52.44% of the total forest area. Grassland vegetation was degraded, and the degraded area accounted for 41.8% of the total grassland area. Farmland and sparse vegetation remained stable. From 2010 to 2015, the grassland vegetation type was seriously degraded, and the degraded area accounted for 61.4% of the total area of grassland vegetation. In terms of severity, this change was followed by forest vegetation,with a degraded area accounting for 57% of the total area of forest vegetation.The degradation of farmland and sparse vegetation was minor.

    Figure 4 Change trend of NDVI in different vegetation types

    3.3 Analysis of mountain types and vegetation changes on the Qinghai-Tibet Plateau

    According to the method of mountain division,the Qinghai-Tibet Plateau was divided into 26 categories for analysis (Nan et al., 2016).According to Figure 5, the vegetation-degraded area was mainly concentrated in the high-altitude area of the plain/platform, hill, low-relief mountain, intermediate-relief mountain, high-relief mountain; and at the extremely high altitude of the low-relief mountain and intermediate-relief mountain. The area of vegetation degradation was the most severe in the region from 2000 to 2005. Virtually unchanged areas were mainly concentrated in the sub-high altitude of the plain/platform,high-altitude area of the plain/platform, hill, low-relief mountain, intermediate-relief mountain, high-relief mountain; and at the extremely high-altitude area of the low-relief mountain and intermediate-relief mountain. The terrain for improved and degraded areas was consistent. However, the area of vegetation improvement in this area was the largest from 2000 to 2005; the area of vegetation improvement was minor from 2010 to 2015.

    Figure 5 The change trend of NDVI in different types of mountainous areas(A1-A5 is low altitude,intermediate altitude,sub-high altitude,high altitude,and extremely high altitude;B1-B6 is plain/platform,hill,low-relief mountain,intermediate-relief mountain,high-relief mountain,and extremely high-relief mountain)

    3.4 Response analysis of vegetation change to temperature and precipitation on the Qinghai-Tibet Plateau

    We analyzed the relationships among monthly MODIS NDVI, average temperature and precipitation range from 2000 to 2015. The correlations among MODIS NDVI, temperature, and precipitation were 0.72 (P >0.01) (Figure 6) and 0.82 (P >0.01)(Figure 7), showing that temperature and precipitation have obvious impacts on vegetation growth.

    From 2000 to 2015, on the Qinghai-Tibet Plateau, precipitation decreased at a rate of 0.3 mm/a;the temperature increased at a rate of 0.03 °C/a; and the overall trend of vegetation change improved.From 2000 to 2005, precipitation decreased at a rate of 1.04 mm/a; the temperature increased at a rate of 0.11 °C/a; and the overall trend of vegetation change improved. From 2005 to 2010, precipitation increased at a rate of 0.49 mm/a; the temperature increased at a rate of 0.07 °C/a; and the overall trend of vegetation remained virtually unchanged. From 2010 to 2015, precipitation decreased at a rate of 0.25 mm/a; the temperature decreased at a rate of 0.04 °C/a; and the overall trend of vegetation change worsened.In conclusion,through the analysis of vegetation change with precipitation and temperature, it was shown that precipitation and temperature have no significant effect on vegetation activity over a short period.

    Figure 6 Time-series changes of NDVI and mean temperature on the Qinghai-Tibet Plateau

    Figure 7 Time-series changes of NDVI and precipitation on the Qinghai-Tibet Plateau

    3.5 Analysis of vegetation change and human activities on the Qinghai-Tibet Plateau

    The capacity of grassland was analyzed by remote sensing and observation data during 2003-2004 and 2010 on the Qinghai-Tibet Plateau. The results showed that in the Qinghai Province and the Tibet Autonomous Region, the overload grazing is serious (Qian et al., 2007; Li et al., 2014). This paper is based on the long-term statistical data of the Qinghai Province and the Tibet Autonomous Region, analyzing the impact of human activities on vegetation changes. The analysis relied on statistics of population changes, the amount of livestock at the end of the year, the amount of sheep at the end of the year, and the total amount of cattle and sheep at the end of the year. By converting heavy livestock into sheep (heavy livestock conversion coefficient 5.0, sheep conversion coefficient 1.0) (Li et al., 2014), the analysis showed that the population of the Qinghai Province and the Tibet Autonomous Region had increased at a rate of 0.087 million people/a,and the sheep had increased at 1.002 million/a (Figure 8). Therefore, there was long-term overloading of the Qinghai-Tibet Plateau that was coupled with the rapid growth of population pressure on the environment, explaining the phenomenon of the mild improvement, mild degradation, and severe degradation of vegetation on the Qinghai-Tibet Plateau from 2000 to 2015.

    Figure 8 Time-series change of population and livestock in the Qinghai Province and the Tibet Autonomous Region

    4 Conclusions

    In this paper, the changes of vegetation activities are analyzed by MODIS NDVI remote-sensing data from 2000 to 2015 on the Qinghai-Tibet Plateau. The conclusions were drawn as follows:

    (1) The vegetation showed different trends during different periods on the Qinghai-Tibetan Plateau. In general, the vegetation of the Qinghai-Tibet Plateau tended to improve from 2000 to 2015; and the improved area accounted for 39.93% of the area. In terms of stages,the vegetation types showed improvement from 2000 to 2005, especially the grassland.The vegetation types were stable from 2005 to 2010,and forests and grasslands were slightly degraded.Vegetation was generally degraded from 2010 to 2015, grassland and forests were seriously degraded,and the farmland and sparse vegetation were relatively weakly degraded.

    (2) Through the analysis of mountain types and vegetation change trends, the vegetation degradation was shown to be concentrated in the high-altitude and extremely high-altitude areas on the Qinghai-Tibet Plateau. Vegetation remained virtually unchanged, as degradation was concentrated in the sub-high altitude,high altitude, and extremely high altitude. The terrain of the degraded area was consistent with the terrain of the vegetation-improved area,but the status of vegetation health in each area showed opposing trends.

    (3) According to the relationship among vegetation NDVI and temperature and precipitation, temperature and precipitation showed an obvious response to vegetation growth. However, the change rate of precipitation and temperature was not related to vegetation degradation. Precipitation and temperature have no significant effect on vegetation degradation in the short period.

    (4) From the perspective of vegetation degradation, population, and stocking capacity, the Qinghai-Tibet Plateau had long been overloaded, and coupled with the pressure on the environment caused by the dramatic population growth. Vegetation showed the phenomena of slight improvement, mild degradation,and severe degradation in different years on the Tibetan Plateau.

    Acknowledgments:

    This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No. XDA20100101), and the Foundation for Excellent Youth Scholars of Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences(Y651K91001).

    1024手机看黄色片| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器 | 少妇裸体淫交视频免费看高清 | 在线a可以看的网站| 美女免费视频网站| 在线观看美女被高潮喷水网站 | 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 一进一出好大好爽视频| 在线观看免费日韩欧美大片| 夜夜躁狠狠躁天天躁| 久久精品影院6| 精品久久久久久久末码| 级片在线观看| 妹子高潮喷水视频| 日韩欧美三级三区| 一本久久中文字幕| 免费在线观看日本一区| 男人舔奶头视频| 床上黄色一级片| 一本一本综合久久| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 女生性感内裤真人,穿戴方法视频| 一本一本综合久久| 日韩大尺度精品在线看网址| 好男人电影高清在线观看| 免费高清视频大片| 久久久国产成人免费| 国产成人av激情在线播放| 国产亚洲精品久久久久久毛片| 99久久精品热视频| 成年人黄色毛片网站| 欧美久久黑人一区二区| 999精品在线视频| 日韩欧美三级三区| 一本一本综合久久| 亚洲av片天天在线观看| 国产精品久久久av美女十八| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 日韩欧美精品v在线| 99国产综合亚洲精品| 99久久精品国产亚洲精品| 亚洲国产欧美网| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲| 一a级毛片在线观看| 亚洲一码二码三码区别大吗| svipshipincom国产片| 亚洲精品一卡2卡三卡4卡5卡| 国产av一区二区精品久久| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| 亚洲国产高清在线一区二区三| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 国产午夜精品久久久久久| 操出白浆在线播放| 超碰成人久久| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 免费在线观看影片大全网站| av在线天堂中文字幕| 欧美丝袜亚洲另类 | 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 国产黄片美女视频| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| av天堂在线播放| 叶爱在线成人免费视频播放| 国产精品永久免费网站| 亚洲 欧美 日韩 在线 免费| АⅤ资源中文在线天堂| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 精品国产美女av久久久久小说| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 母亲3免费完整高清在线观看| 黄色丝袜av网址大全| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区色噜噜| 床上黄色一级片| 午夜激情福利司机影院| 欧美不卡视频在线免费观看 | 啦啦啦韩国在线观看视频| 伊人久久大香线蕉亚洲五| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 全区人妻精品视频| 国产一区二区在线av高清观看| 黄色片一级片一级黄色片| 国产亚洲精品av在线| 久久久国产欧美日韩av| 十八禁人妻一区二区| 一级毛片女人18水好多| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 欧美久久黑人一区二区| 最好的美女福利视频网| 久久精品成人免费网站| 怎么达到女性高潮| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 精品第一国产精品| 男人舔奶头视频| 少妇裸体淫交视频免费看高清 | 女人高潮潮喷娇喘18禁视频| 免费人成视频x8x8入口观看| 日日夜夜操网爽| 亚洲精品一区av在线观看| 亚洲七黄色美女视频| 国产片内射在线| 老司机靠b影院| 亚洲狠狠婷婷综合久久图片| 欧洲精品卡2卡3卡4卡5卡区| 999久久久国产精品视频| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 国产三级在线视频| 亚洲五月天丁香| 久久久精品大字幕| 午夜福利在线在线| 久久久久国内视频| 国产亚洲精品综合一区在线观看 | 国产aⅴ精品一区二区三区波| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av电影在线进入| 91麻豆av在线| 999久久久精品免费观看国产| 国产三级黄色录像| 久久久久国产一级毛片高清牌| 精品久久久久久久毛片微露脸| 国产精品久久视频播放| 久久 成人 亚洲| 在线视频色国产色| 1024手机看黄色片| 欧美不卡视频在线免费观看 | 欧美日本视频| 欧美午夜高清在线| 国内精品久久久久久久电影| 国产亚洲精品久久久久久毛片| 国产精品九九99| 可以免费在线观看a视频的电影网站| 777久久人妻少妇嫩草av网站| 亚洲熟妇中文字幕五十中出| 精品日产1卡2卡| 日韩中文字幕欧美一区二区| 国产伦人伦偷精品视频| 国产又黄又爽又无遮挡在线| 18禁观看日本| 51午夜福利影视在线观看| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 啪啪无遮挡十八禁网站| 日韩欧美在线乱码| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 级片在线观看| 国产精品久久久av美女十八| 亚洲成人久久爱视频| 欧美日韩瑟瑟在线播放| 欧美性猛交黑人性爽| 99热这里只有精品一区 | 欧美日本亚洲视频在线播放| 一本一本综合久久| 757午夜福利合集在线观看| 岛国视频午夜一区免费看| 97超级碰碰碰精品色视频在线观看| 午夜激情av网站| 亚洲精品美女久久av网站| 免费看日本二区| 久久香蕉精品热| 久久久精品欧美日韩精品| 国内久久婷婷六月综合欲色啪| 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 久久久精品大字幕| 国产精品av视频在线免费观看| 可以在线观看的亚洲视频| 国产精品国产高清国产av| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 悠悠久久av| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 波多野结衣高清作品| 少妇的丰满在线观看| 国产亚洲精品久久久久久毛片| 嫩草影院精品99| 国产高清videossex| 999久久久国产精品视频| 色播亚洲综合网| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 国产av又大| 特级一级黄色大片| 欧美日韩中文字幕国产精品一区二区三区| 欧美极品一区二区三区四区| 一区二区三区高清视频在线| 久久亚洲真实| 亚洲av成人一区二区三| 18禁国产床啪视频网站| 两人在一起打扑克的视频| 久久香蕉精品热| 日韩欧美免费精品| 亚洲av中文字字幕乱码综合| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 精品电影一区二区在线| 成人手机av| 99国产精品一区二区三区| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| av天堂在线播放| 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 日本免费a在线| 50天的宝宝边吃奶边哭怎么回事| 97人妻精品一区二区三区麻豆| 别揉我奶头~嗯~啊~动态视频| 老司机在亚洲福利影院| 天天添夜夜摸| 亚洲av中文字字幕乱码综合| 免费高清视频大片| 久久国产精品人妻蜜桃| 亚洲片人在线观看| 亚洲欧美精品综合久久99| 亚洲全国av大片| 色精品久久人妻99蜜桃| 欧美 亚洲 国产 日韩一| 国产午夜精品久久久久久| 黄色丝袜av网址大全| 亚洲自拍偷在线| 久久香蕉激情| 不卡一级毛片| 男人的好看免费观看在线视频 | 一本一本综合久久| 国产亚洲精品久久久久久毛片| 搡老妇女老女人老熟妇| 好看av亚洲va欧美ⅴa在| 亚洲av成人av| svipshipincom国产片| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站| 少妇粗大呻吟视频| 亚洲成av人片免费观看| 午夜两性在线视频| 久久精品成人免费网站| 婷婷精品国产亚洲av| 香蕉丝袜av| 黄色毛片三级朝国网站| 久久精品影院6| 高清在线国产一区| 国产在线观看jvid| 国产成人av教育| 国产99白浆流出| 老鸭窝网址在线观看| 成人永久免费在线观看视频| 亚洲性夜色夜夜综合| 看免费av毛片| 亚洲精品美女久久久久99蜜臀| 成人18禁在线播放| 美女大奶头视频| 精品无人区乱码1区二区| 亚洲精品中文字幕在线视频| 青草久久国产| 欧美精品亚洲一区二区| 日韩av在线大香蕉| 成人国产综合亚洲| 日日干狠狠操夜夜爽| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 制服人妻中文乱码| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 2021天堂中文幕一二区在线观| av福利片在线| 午夜视频精品福利| 精品熟女少妇八av免费久了| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 免费无遮挡裸体视频| 男女之事视频高清在线观看| 久久精品国产综合久久久| 国产av不卡久久| 精品第一国产精品| 精品乱码久久久久久99久播| 精品第一国产精品| 美女黄网站色视频| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 午夜视频精品福利| 后天国语完整版免费观看| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 精品福利观看| 国产精品久久视频播放| 又紧又爽又黄一区二区| 18禁裸乳无遮挡免费网站照片| 欧美精品亚洲一区二区| av超薄肉色丝袜交足视频| www日本在线高清视频| 91av网站免费观看| 欧美性长视频在线观看| 国产成人精品久久二区二区91| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 亚洲欧美日韩东京热| 日本免费a在线| 黑人操中国人逼视频| videosex国产| 91在线观看av| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| 久久久久久大精品| 国产亚洲精品av在线| 露出奶头的视频| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 一区二区三区国产精品乱码| 亚洲人成77777在线视频| 成人精品一区二区免费| 听说在线观看完整版免费高清| 色综合婷婷激情| 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| videosex国产| 9191精品国产免费久久| 日韩欧美免费精品| 一本综合久久免费| 亚洲七黄色美女视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美免费精品| 757午夜福利合集在线观看| 亚洲欧美一区二区三区黑人| 免费无遮挡裸体视频| 日韩av在线大香蕉| 在线a可以看的网站| 中国美女看黄片| 三级男女做爰猛烈吃奶摸视频| 色精品久久人妻99蜜桃| 亚洲中文字幕日韩| 麻豆国产av国片精品| 黄色 视频免费看| 1024手机看黄色片| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 好男人电影高清在线观看| 国产麻豆成人av免费视频| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 在线视频色国产色| 国产激情久久老熟女| 色噜噜av男人的天堂激情| 美女扒开内裤让男人捅视频| 亚洲激情在线av| 久久人妻av系列| 美女黄网站色视频| 中文在线观看免费www的网站 | 99久久99久久久精品蜜桃| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 69av精品久久久久久| 国产乱人伦免费视频| 1024视频免费在线观看| 国产一区二区三区视频了| 午夜精品久久久久久毛片777| ponron亚洲| 女警被强在线播放| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| 久久精品aⅴ一区二区三区四区| 高清在线国产一区| 十八禁网站免费在线| 国产激情欧美一区二区| 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 一本一本综合久久| 波多野结衣高清无吗| 国产亚洲欧美98| 国产在线观看jvid| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 天堂av国产一区二区熟女人妻 | 人妻丰满熟妇av一区二区三区| АⅤ资源中文在线天堂| 亚洲国产日韩欧美精品在线观看 | 色综合站精品国产| 欧美乱码精品一区二区三区| cao死你这个sao货| 国产精品久久久久久久电影 | 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 日韩高清综合在线| ponron亚洲| 99久久精品国产亚洲精品| 97人妻精品一区二区三区麻豆| 最近视频中文字幕2019在线8| 99热这里只有是精品50| 九九热线精品视视频播放| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 一本久久中文字幕| 大型黄色视频在线免费观看| 免费看日本二区| 草草在线视频免费看| 国产av一区在线观看免费| 亚洲18禁久久av| 欧美大码av| 精品乱码久久久久久99久播| 一级毛片高清免费大全| 一夜夜www| 国产精品1区2区在线观看.| 国产成人影院久久av| 两个人的视频大全免费| 最新在线观看一区二区三区| 草草在线视频免费看| 两个人看的免费小视频| 国产一区二区激情短视频| 香蕉久久夜色| 国产精品久久视频播放| www日本在线高清视频| 草草在线视频免费看| av天堂在线播放| 丁香欧美五月| 国产视频内射| 美女免费视频网站| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 1024手机看黄色片| 999久久久国产精品视频| 国产亚洲av嫩草精品影院| 亚洲精品一卡2卡三卡4卡5卡| 极品教师在线免费播放| 国产亚洲精品一区二区www| 亚洲欧美一区二区三区黑人| 免费在线观看视频国产中文字幕亚洲| 俄罗斯特黄特色一大片| 手机成人av网站| 中亚洲国语对白在线视频| 一区二区三区激情视频| 久久香蕉激情| 国产三级在线视频| 女人被狂操c到高潮| 一a级毛片在线观看| 正在播放国产对白刺激| 久久久水蜜桃国产精品网| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 制服诱惑二区| 午夜免费成人在线视频| 午夜福利成人在线免费观看| 国产免费av片在线观看野外av| 男女那种视频在线观看| 视频区欧美日本亚洲| 特级一级黄色大片| 久久亚洲真实| 人妻夜夜爽99麻豆av| 午夜激情福利司机影院| 亚洲成人中文字幕在线播放| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 男女那种视频在线观看| 天天添夜夜摸| 老司机在亚洲福利影院| tocl精华| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 日本三级黄在线观看| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 亚洲国产精品成人综合色| 可以在线观看毛片的网站| 亚洲美女视频黄频| av片东京热男人的天堂| 久久精品人妻少妇| 一本一本综合久久| 黄色成人免费大全| 国产高清有码在线观看视频 | 亚洲18禁久久av| 亚洲免费av在线视频| 欧美三级亚洲精品| 99riav亚洲国产免费| 午夜视频精品福利| 精品久久蜜臀av无| 在线免费观看的www视频| 精品久久久久久久人妻蜜臀av| 性色av乱码一区二区三区2| 老熟妇乱子伦视频在线观看| 真人一进一出gif抽搐免费| 午夜免费成人在线视频| 亚洲第一电影网av| av有码第一页| 亚洲午夜精品一区,二区,三区| 给我免费播放毛片高清在线观看| 日本五十路高清| 欧美中文综合在线视频| 亚洲熟妇熟女久久| 欧美 亚洲 国产 日韩一| 国产成人影院久久av| 又粗又爽又猛毛片免费看| 老司机福利观看| 国产成年人精品一区二区| 9191精品国产免费久久| 日本 欧美在线| 91麻豆av在线| 日本精品一区二区三区蜜桃| 国产午夜精品论理片| 国模一区二区三区四区视频 | 久久精品影院6| 天天一区二区日本电影三级| 给我免费播放毛片高清在线观看| 日韩成人在线观看一区二区三区| 最新美女视频免费是黄的| 亚洲av电影在线进入| 777久久人妻少妇嫩草av网站| 久久久国产成人免费| 亚洲国产精品sss在线观看| 最近最新中文字幕大全电影3| 亚洲av电影在线进入| 女同久久另类99精品国产91| x7x7x7水蜜桃| 他把我摸到了高潮在线观看| 色综合婷婷激情| 中亚洲国语对白在线视频| 神马国产精品三级电影在线观看 | 国产av不卡久久| 99国产精品一区二区三区| 久久九九热精品免费| 久久人人精品亚洲av| 一本精品99久久精品77| 极品教师在线免费播放| 亚洲精品在线美女| 国产成人欧美在线观看| 亚洲av美国av| 亚洲自偷自拍图片 自拍| 亚洲成av人片免费观看| 在线视频色国产色| 精品国内亚洲2022精品成人| 亚洲一码二码三码区别大吗| 一区二区三区高清视频在线| 成人亚洲精品av一区二区| 九色成人免费人妻av| 日韩精品中文字幕看吧| 亚洲人成电影免费在线| 久久婷婷人人爽人人干人人爱| 一区二区三区国产精品乱码| www.www免费av| 最好的美女福利视频网| 熟女少妇亚洲综合色aaa.| 日韩欧美一区二区三区在线观看| 国产又黄又爽又无遮挡在线| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久久国产欧美日韩av| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 女人高潮潮喷娇喘18禁视频| 国产69精品久久久久777片 | 老汉色∧v一级毛片| 久久久精品国产亚洲av高清涩受| 五月伊人婷婷丁香| 一本精品99久久精品77| 国产欧美日韩精品亚洲av| 黑人操中国人逼视频| 成人午夜高清在线视频| 国产亚洲精品久久久久久毛片| 黄片大片在线免费观看| 亚洲av五月六月丁香网| 中国美女看黄片| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 国产男靠女视频免费网站| 欧美极品一区二区三区四区| 在线永久观看黄色视频| 欧美一级a爱片免费观看看 | 一级毛片高清免费大全| 一个人免费在线观看电影 | 日本黄色视频三级网站网址| 丝袜美腿诱惑在线|