• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The study on neuroprotective mechanism of water extract of Fomitopsis Pinicola on mesencephala dopaminergic neurons induced by MPP+

    2019-05-09 01:23:36ShanshanGuoWolfDieterRausch
    TMR Modern Herbal Medicine 2019年2期

    Shanshan Guo ,Wolf Dieter Rausch

    1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. 2 Institute for Medical Biochemistry,University for Veterinary Medicine,Veterinaerplatz 1,A-1210 Vienna,Austria.

    Background

    Parkinson's disease is a neurodegenerative disease in human beings, which seriously affects the health of more than 6.5 million people worldwide.The prevalence of the elderly over 65 years old is about 1-2% [1, 2].Although the exact etiology and pathogenesis of Parkinson's disease remains unclear, oxidative stress has been proven to be a key factor in the selective degeneration of dopaminergic neurons in the nigrostriatal striatum [3, 4]. Studies have showed that excessive production of Reactive Oxygen Species (ROS) induceS mitochondrial dysfunction,including decreased the mitochondrial membrane potential (△Ψm) and the activity of respiratory chain complex enzymes Ⅰ, as well as abnormal mitochondria DNA[5, 6]. In addition, the sensitivity and selectivity of the nigrostriatal pathway to oxidative stress can also lead to DNA damage of dopaminergic neurons in patients with Parkinson's disease[7].

    Fomitopsis Pinicola is a medicinal fungus which belongs to the Polyporaceae and Pseudomonas. It has a flat, slightly bitter taste and has pharmacological effects such as anti-oxidation, anti-bacterial, anti-tumor and immune enhancement [8, 9]. Our previous studies have confirmed that aqueous extracts of Fomitopsis Pinicola have a protective effect on MPP+-induced apoptosis of fetal midbrain dopaminergic cells,which can significantly increase the number of dopaminergic neurons and axonal length, and Increase the activity of mitochondrial respiratory chain complex enzyme I[10].

    In this study, we will use the Ferric reducing antioxidant power method (FRAP) to observe the antioxidant capacity of aqueous extracts of Fomitopsis Pinicola, and observe the anti-inflammatory effect of lipopolysaccharide (LPS)-induced NO release in BV2 microglia.The effects of cultured midbrain dopaminergic neurons on nuclear morphology,mitochondrial membrane potential and ROS production were observed in vitro, so as to reveal the protective mechanism of endomycetes on dopaminergic neurons.

    Material

    Animal

    The 14-day-pregnancy mice, OF1/SPF, from the Austrian Laboratory Animal and Veterinary Genetics Institute,experimented with experimental animals in accordance with European Commission Directive 86/609/EU.

    Test sample

    Fomitopsis Pinicola was produced in Austria and was identified by Professor Wolf Dieter Rausch as Footmitopsis Pinicola. After the pulverization of the Fomitopsis Pinicola, the water extract extract was obtained by hot water extraction, and the crude polysaccharide content was 8.95%.

    cell line

    Mouse microglioma cell line BV2, from the Department of Biochemistry,Vienna Veterinary University,in DMEM medium (sigma) containing 10% fetal bovine serum, 2%B27(Gibco),2%glutamine,37°C 5%CO2 culture.

    cell culture medium

    BM (basic medium) medium to which DMEM medium was supplemented with 10% fetal bovine serum, 30 mM glucose, 2 mM glutamine, 1% streptomycin and 0.5%amphotericin.

    main reagents and instruments

    MPP+ is sigma product, purity ≥ 98%; anti-tyrosine hydroxylase(TH) primary and secondary antibody are all products of American Vectastain. TPTZ (2,4,6-tripyridine triazine), FeCl3 ? 6H2O, FeSO4?7H2O are products of American sigma-Aldrich. DAPI dyeing solution, JC-1 dyeing solution and C-DCDHF-DA dyeing solution are all products of Invitrogen Molecular Probes.The original solution concentration was 1mg/ml, 1mg/ml and 1M,respectively. Fluorescence microscope, made by Nikon company in Japan, model TS-100-F. Spectrophotometer for Germany Pharmacia Biotech products, models for Novaspec Ⅱ.

    method

    Determination of antioxidant capacity of extracts by FRAP method

    After the preparation of 30 ml of FRAP work fluid (300 mmol/L acetate buffer, 10 mmol/L TPTZ solution, 20 mmol/L FeCl3solution mixed uniformly at a volume ratio of 10:1:1), 450 mu L FRAP working liquid was added with different concentrations of 60 μl aqueous extracts of Fomitopsis Pinicola and 45 μl double evaporate water.Blending 37 °C avoid light reaction after 30 min, then determin its absorbance values at 593 nm. The total antioxidant capacity of each extract was quantified using Trolox as the standard. Three parallel assays were performed for each sample.The results were expressed as Trolox equivalent (TEAC) (mol TEAC/g) per gramme extract.

    NO release assay was used to detect the anti-inflammatory effect of the extract

    The logarithmic phase BV2 cells inoculated in 48-well plates at the concentration of 1 x 105cells/ ml. After inclubation for 37 °C and 5% CO2, the lipopolysaccharide (LPS) was added for stimulation, the final concentration was 1μg/ml. Then, different concentrations of the extract were added, and the cells were cultured at 37 °C under 5% CO2for 48 h, after which the concentration of NO2-was measured. Before the trial, Griess reagents A and B were taken out from refrigerator at 4 °C and allowed to equilibrate room temperature for 30 min. The nitrite standards were serially diluted (20, 10, 5, 2, 1, and 0.5μM) to produce standard curves. Add 50 μL of the diluted standard and the supernatant of the sample to be tested(4 replicates for each concentration),add to the 96-well plate,then add 50 μL of the A solution,incubate at room temperature for 10 min in the dark, and add 50 μL of the B solution. After incubation for 10 min at room temperature in the dark,the absorbance was measured at 550 nm with a microplate reader within 30 min,and the release of NO in the supernatant was calculated according to the standard curve [11]. At the same time, 10 μl MTT (5 mg/mL in PBS solution) was added to each well of the cell plate,and cultured at 37 ° C for 5 % CO2for 4h. After the supernatant was discarded, 100 μL of DMSO was added to each well,and the absorbance was measured at 570 nm after fully dissolved,to observe the cell survival rate.

    Culture and identification of primary midbrain dopaminergic cells and drug treatment

    The pregnant mice were sacrificed and transferred to a petri dish containing DPBS buffer, the mouse embryos were dissected, the midbrain was isolated, cut into small pieces and collected in DPBS buffer containing 2ml of 0.1% trypsin and 2ml 0.02% of DNase I. Incubate for 7 min in 37 °C water bath, and then add 2 ml of trypsin inhibitor at a concentration of 0.125 mg/ml, centrifugal the tissue at 100 x g for 4 min, and discard the supematant. Then, DMEM medium containing 0.02%DNase I was added, and the separated cells were resuspended in BM cell culture medium, seeded in polylysine-treated cell plates, and cultured at 37 °C, 5%CO2.On the 10th day of culture,10 μM MPP+was added to the cultured primary neuron cells for treatment, and then 50, 25, 12.5 μg/ml aqueous extract of Fomitopsis Pinicola was added for treatment at 37 °C, 5% CO2was cultured for 48 hours. On the 12th day of culture, some cells were used for the identification of dopaminergic neurons, and the cells were fixed with 4%paraformaldehyde at 4°C for 30 min,and then permeable for 30 min at room temperature with 0.4% Triton X-100.After rinsing with PBS buffer for 3 times, it was blocked with horse serum blocking solution for 90 min, then anti-TH primary antibody was added overnight, then biotinylated secondary antibody was added for room temperature for 90 min,and finally 3,3'-diaminobenzidine(DAB, 5 mg/ml) was developed. The cells positive for TH color were observed under the microscope as dopaminergic neurons.

    Observation of nuclear morphology

    MPP+ and drug-treated cells were fixed with 4%paraformaldehyde for 30 min, then ruptured with 0.4%Triton X-100 for 30 min,and then added with DAPI stain solution at a final concentration of 1 μg/ml for 5 min at room temperature. The morphology of the nucleus was observed under a fluorescence microscope.The excitation wavelength was 340 nm, and 4 fields were randomly selected for each well.

    Detection of mitochondrial membrane potential

    MPP+ and drug-treated cells were added to JC-1 dye at a final concentration of 10 μg/ml, and incubated at 37 °C for 15 min. The fluorescence intensity changes were observed by fluorescence microscopy at 488 nm and 568 nm excitation light respectively. The change in mitochondrial membrane potential was measured by the ratio of the fluorescence intensity at 568 nm to the fluorescence intensity at 488 nm.

    ROS production test

    MPP+ and drug-treated cells were added to C-DCDHF-DA dye at a final concentration of 10 mM,and after incubation at 37 °C for 30 min, the culture solution was discarded, and the cells were washed twice with a colorless DMEM medium. Fluorescence microscopy was used to observe the change of fluorescence intensity. The excitation wavelength was 488 nm, and 4 fields of view were randomly selected for each well. The time of exposure of the cells to the excitation light was not more than 5s.

    Results

    Antioxidant ability of Fomitopsis Pinicola

    Fomitopsis Pinicola has obvious anti-oxidation effect,and its water extract has an antioxidant capacity of(165.80±7.13)μmol TEAC/g extract.

    Anti-inflammatory effect of Fomitopsis Pinicola

    After LPS induced BV2 cells, the release of NO was significantly increased, which was significantly different from that of the normal control group.After the aqueous extract of Fomitopsis Pinicola, the release of NO was significantly reduced, among which 100, 50, 25, there was a significant difference between the 12.5 μg/ml dose group and the LPS group (Fig. 1). After LPS induced BV2 cells, the cell survival rate was significantly lower than that of the normal control group.After the action of the aqueous extract of Fomitopsis Pinicola, the 100μg/ml dose group had a significant reduction in cell viability,and there was a significant difference compared with the LPS group. The 50, 25, 12.5 μg/ml dose group had no significant effect on cell viability(Figure 1,Figure 2).

    Identification of midbrain dopaminergic neurons in fetal rats

    After the specific TH staining of the cultured fetal rat midbrain neurons, the dopaminergic neurons showed a clear brownish yellow color, and the staining of the cell bodies and axons was clearly visible, which proved that the dopaenergic neurons were cultured successfully(Figure 3).

    Figure 1 Effects of water extracts of Fomitopsis Pinicola on the release of NO in BV2 cells induced by LPS

    Figure 2 influence of water extract of Fomitopsis Pinicola on the survival rate of BV2 cells

    Figure 3 TH-labeled mesencephala DA neuron staining

    Effect of Fomitopsis Pinicola on nuclear morphology

    DAPI, 4',6-diamidino-2-phenylindole, is a fluorescent dye that penetrates the cell membrane and binds strongly to DNA. The results of this experiment showed that the nuclei of dopaminergic neurons in the normal control group remained almost intact and the chromatin was uniform. The MPP+ control group showed significant chromatin condensation, nuclear membrane lysis, and nuclear lysis. After the action of the aqueous extract of Fomitopsis Pinicola, the morphology of the nucleus was relatively intact, and the characteristics of apoptosis were reduced(Figure 4).

    Effect of Fomitopsis Pinicola on Mitochondrial Membrane Potential

    After MPP+ induction, the mitochondrial membrane potential of dopaminergic neurons decreased significantly,which was significantly different from that of the normal control group (P < 0.01).After the action of the aqueous extract of Fomitopsis Pinicola, the mitochondrial membrane potential decreased after MPP+ induction.There was a significant increase in mitochondrial membrane potential in the 50, 25, and 12.5 μg/ml dose groups compared with the MPP+control group(P<0.01,P<0.05)(Figure 5).

    Effect of Pseudomonas sinensis on ROS production

    After MPP+ induction, the ROS production of dopaminergic neurons was significantly increased, which was significantly different from that of the normal control group (P < 0.01).After the action of the aqueous extract of Fomitopsis Pinicola, the ROS increased after MPP+induction.The reduction of ROS production in the 50 and 25 μg/ml dose groups was significantly different from the MPP+control group(P<0.01)(Figure 6,Figure 7).

    Figure 4.DAPI fluorescence staining imaging of DA neurons in the mesencephala

    Figure 5 The effect of water extract of Fomitopsis Pinicola on MPP+-induced mitochondrial membrane potential of mesencephala DA neurons

    Figure 6.C-DCDHF-DA fluorescence staining of DA neurons in the mesencephala

    Figure 7 effects of water extracts of Fomitopsis Pinicola on MPP+-induced mesencephala DA neuron ROS production

    Conclusion

    The degeneration of dopaminergic neuron(DA neuron)in the midbrain is lost and The Lewy body in the cytoplasm of residual neurons is the main feature of Parkinson's disease. The clinical symptoms mainly include static tremor, bradykinesia, and hypermyotonia, posture instability, et al. At present, the treatment of Parkinson's disease is still dominated by dopamine replacement therapy. Although it can improve the symptoms of patients, it does not prevent the development of the disease. Long-term application will cause many adverse reactions[12],so the study of new therapeutic approaches is imperative. Studies have shown that oxidative stress and oxidized dopamine levels are important causes of selective damage of dopaminergic neurons [13], and some natural antioxidants such as quercetin, curcumin,tea polyphenols, et al have been confirmed to be dopamine caused by nerve agents. Neuronal damage has obvious protective effects [14 - 16], so it is promising to screen drugs for the treatment of Parkinson's disease from traditional Chinese medicines with antioxidant pharmacological effects.

    In this study, FRAP was used to detect the antioxidant capacity of aqueous extracts of Fomitopsis Pinicola, using Trolox(6-hydroxy-2,5,7,8-tetramethylchroman) 2-carboxylic acid) was found to have significant antioxidant effects.The anti-inflammatory effect of aqueous extracts of

    Fomitopsis Pinicola was detected by lipopolysaccharide-induced BV2 microglia release NO method, and there was no significant effect on cell viability at concentrations below 100 μg/ml, indicating that it was in glial cells have significant anti-inflammatory effects and have no significant effect on cell survival.

    Oxidative stress refers to the imbalance between the production and elimination of oxygen free radicals in the body. It is an early event in the process of neuronal degeneration-apoptosis. Studies have shown that brain tissue is rich in phospholipids and unsaturated fatty acids,both of which are susceptible to oxidative stress. In patients with Parkinson's disease, Malondialdehyde, the lipid peroxidation index, in the striatum is significantly increased, while the concentration of polyunsaturated.fatty acids decreased significantly [17], the content of glutathione (GSH) decreased, and the function of mitochondrial respiratory chain complex enzyme I was impaired[18,19].MPP+ is a metabolite of the neurotoxic agent MPTP in the body,which can generate free radicals in the body, inhibit mitochondrial function, destroy DA neurons in the substantia nigra,and develop symptoms of Parkinson's disease in animal models. NO is also involved in the damage mechanism of MPP+. Excessive NO diffuses into DA neurons, which can nitrosation with the sulfhydryl site of the enzyme and inhibit mitochondrial respiratory chain complex enzyme I activity[20,21].

    The results of this study showed that after MPP +induced primary cultured DA neurons, the nucleus showed obvious apoptosis, mitochondrial membrane potential decreased, and ROS production increased significantly, indicating that MPP+ can induce apoptosis of DA neurons Bby inhibiting mitochondrial oxidative stress. aqueous extract of Fomitopsis Pinicola a can improve the morphology of dopaminergic neurons after MPP+ induction, increase mitochondrial membrane potential, and reduce ROS production, indicating that water extract of Fomitopsis Pinicola inhibits the damage of midbrain DA neurons damaged by nerve agents,which may be related to its anti-oxidation and inhibition of NO production, and protect neurons by inhibiting mitochondrial oxidative stress.

    1. Khan AU, Akram M, Daniyal M, et al. Awareness and current knowledge of Parkinson disease: A Neurodegenerative disorder. Int J Neurosci 2018, 8:1-64.

    2. Klingelhoefer L, Reichmann H. Parkinson's disease as a multisystem disorder.J Neural Transm(Vienna)2017,124:709-713.

    3. Choi DH, Cristóv?o AC, Guhathakurta S, et al.NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson's disease.Antioxid Redox Signal 2012,16:1033-1045.

    4. Asaithambi A,Ay M, Jin H, et al. Protein kinase D1(PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress.PLoS One,2014,9:e96947.

    5. Berndt N,Bulik S,Holzhütter HG.Kinetic Modeling of the Mitochondrial Energy Metabolism of Neuronal Cells: The Impact of Reduced α-Ketoglutarate Dehydrogenase Activities on ATP Production and Generation of Reactive Oxygen Species.Int J Cell Biol 2012,2012:757594.

    6. Yan MH,Wang X,Zhu X.Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.Free Radic Biol Med 2013,62:90-101.

    7. Guo C, Sun L, Chen X, Zhang D. Oxidative stress,mitochondrial damage and neurodegenerative diseases.Neural Regen Res 2013,8:2003-2014.

    8. Hao L, Sheng Z, Lu J, et al. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola.Carbohydr Polym,2016,141:54-59.

    9. Shah F,Mali T,Lundell TK. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe3+-Reducing Metabolite Secretion.Appl Environ Microbiol,2018,84:e02662-17.

    10. Guo SS,Wolf D.Study on neuroprotective effects of water extract of Fomitopsis Pinicola on dopaminergic neurons in vitro.Chin J Pharmacovigil 2018,15:582-586.

    11. Khaled Radad, Rudolf Moldzio, Wolf-Dieter Rausch .Toxicity Minocycline Protects Dopaminergic Neurons Against Long-Term Rotenone.Can J Neurol Sci 2010,37:81-85.

    12. Rizek P, Kumar N, Jog MS.An update on the diagnosis and treatment of Parkinson disease.CMAJ 2016,188:1157-1165.

    13. Crotty GF, Ascherio A, Schwarzschild MA.Targeting urate to reduce oxidative stress in Parkinson disease.Exp Neurol 2017,298:210-224.

    14. Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease.J Neurochem 2017, 141:766-782.

    15. Wang MS, Boddapati S, Emadi S, et al. Curcumin reducesalpha-synuclein induced cytotoxicity in Parkinson's disease cell model.BMC Neurosci 2010,11:57.

    16. Weinreb O,Amit T,Mandel S,et al.Neuroprotective molecular mechanisms of(-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties.Genes Nutr 2009,4:283-296.

    17. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson's disease. Neuron 2010, 66:646-61.

    18. Bodis-Wollner. Retinopathy in Parkinson Disease. J Neural Transm(Vienna)2009,116:1493-1501.

    19. Hisahara S, Shimohama S. Toxin-induced and genetic animal models of Parkinson's disease.Parkinsons Dis.2010,2011:951709.

    20. Yang S, Liu T, Li S, et al. Comparative proteomic analysis of brains of naturally aging mice.Neuroscience 2008,154:1107-1120.

    21. Gautier CA, Corti O, Brice A. Mitochondrial dysfunctions in Parkinson's disease. Rev Neurol(Paris)2014,170:339-343.

    美女福利国产在线| 黄频高清免费视频| 欧美精品人与动牲交sv欧美| 国产成人精品福利久久| 久久精品aⅴ一区二区三区四区 | 99九九在线精品视频| 91久久精品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 91国产中文字幕| 免费观看在线日韩| 亚洲中文av在线| 亚洲视频免费观看视频| 日本欧美视频一区| 国语对白做爰xxxⅹ性视频网站| 国产综合精华液| 中国三级夫妇交换| 欧美日韩视频精品一区| 肉色欧美久久久久久久蜜桃| 久久精品人人爽人人爽视色| 国产色婷婷99| 伊人久久国产一区二区| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区国产| 免费在线观看视频国产中文字幕亚洲 | 久久99精品国语久久久| 国产成人精品福利久久| 成年人免费黄色播放视频| kizo精华| 午夜福利一区二区在线看| 亚洲国产看品久久| 亚洲欧美精品综合一区二区三区 | 精品午夜福利在线看| 亚洲欧洲精品一区二区精品久久久 | 亚洲成av片中文字幕在线观看 | 18禁观看日本| 久久热在线av| 97在线视频观看| 亚洲伊人久久精品综合| 男女边摸边吃奶| 国产av精品麻豆| av有码第一页| 一区二区日韩欧美中文字幕| 一级a爱视频在线免费观看| 老司机影院成人| videossex国产| 久久午夜综合久久蜜桃| 国产欧美日韩综合在线一区二区| 人人妻人人澡人人爽人人夜夜| 久久精品熟女亚洲av麻豆精品| 在现免费观看毛片| 国产人伦9x9x在线观看 | 亚洲国产精品成人久久小说| 午夜91福利影院| 搡老乐熟女国产| 免费在线观看黄色视频的| 母亲3免费完整高清在线观看 | 日韩熟女老妇一区二区性免费视频| 亚洲精品久久成人aⅴ小说| 黑人巨大精品欧美一区二区蜜桃| 97精品久久久久久久久久精品| 超碰成人久久| 欧美人与性动交α欧美软件| 热99国产精品久久久久久7| 亚洲欧美一区二区三区久久| 看免费av毛片| 两性夫妻黄色片| 日产精品乱码卡一卡2卡三| 亚洲激情五月婷婷啪啪| 久久久久久久久久久久大奶| 在线天堂最新版资源| 黄色一级大片看看| 国产精品二区激情视频| 久久精品aⅴ一区二区三区四区 | 国产成人午夜福利电影在线观看| 狠狠精品人妻久久久久久综合| 女性被躁到高潮视频| 人妻人人澡人人爽人人| 亚洲精品国产色婷婷电影| 激情五月婷婷亚洲| 9191精品国产免费久久| 91精品伊人久久大香线蕉| a级毛片黄视频| 国产精品久久久久久精品电影小说| 国产成人aa在线观看| 国产精品免费视频内射| 超碰成人久久| 免费在线观看视频国产中文字幕亚洲 | 十分钟在线观看高清视频www| 国产极品粉嫩免费观看在线| 日韩人妻精品一区2区三区| 制服丝袜香蕉在线| 成人免费观看视频高清| 在线观看免费视频网站a站| 在线免费观看不下载黄p国产| 亚洲欧美中文字幕日韩二区| 国产成人aa在线观看| 亚洲欧美日韩另类电影网站| 少妇人妻精品综合一区二区| 最近2019中文字幕mv第一页| 一二三四在线观看免费中文在| 亚洲,一卡二卡三卡| 亚洲,一卡二卡三卡| 久久久久久久精品精品| 自拍欧美九色日韩亚洲蝌蚪91| 视频区图区小说| 搡女人真爽免费视频火全软件| 国产国语露脸激情在线看| 国产成人免费观看mmmm| 久久久精品国产亚洲av高清涩受| 国产国语露脸激情在线看| 精品国产一区二区久久| 一区二区av电影网| 国产精品无大码| 国产精品国产三级专区第一集| 只有这里有精品99| 亚洲精品,欧美精品| 两性夫妻黄色片| 亚洲欧美成人综合另类久久久| 欧美日韩精品成人综合77777| 免费播放大片免费观看视频在线观看| 国产一区二区在线观看av| 爱豆传媒免费全集在线观看| 亚洲精品乱久久久久久| 男女边吃奶边做爰视频| 国产精品欧美亚洲77777| a级毛片在线看网站| 亚洲欧美精品自产自拍| 母亲3免费完整高清在线观看 | 香蕉国产在线看| 精品人妻偷拍中文字幕| 日韩一本色道免费dvd| 亚洲一区二区三区欧美精品| 免费高清在线观看视频在线观看| 亚洲精品久久久久久婷婷小说| 大香蕉久久成人网| 观看av在线不卡| 69精品国产乱码久久久| 欧美人与性动交α欧美精品济南到 | 久久久精品免费免费高清| 人妻一区二区av| 看十八女毛片水多多多| 欧美xxⅹ黑人| 男的添女的下面高潮视频| 免费人妻精品一区二区三区视频| 久久久久精品久久久久真实原创| 色哟哟·www| 亚洲精品av麻豆狂野| 热99国产精品久久久久久7| 国产乱来视频区| 丁香六月天网| 久久精品熟女亚洲av麻豆精品| 久久精品国产亚洲av涩爱| 九草在线视频观看| 久久久国产精品麻豆| 黑丝袜美女国产一区| 国产女主播在线喷水免费视频网站| 午夜日本视频在线| 亚洲国产av影院在线观看| 国产一区亚洲一区在线观看| 高清av免费在线| 欧美国产精品一级二级三级| 天堂8中文在线网| 精品卡一卡二卡四卡免费| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美色中文字幕在线| 亚洲三级黄色毛片| 国产又色又爽无遮挡免| 黄色配什么色好看| 久久久久久久久久人人人人人人| 中文字幕另类日韩欧美亚洲嫩草| 老鸭窝网址在线观看| 亚洲av国产av综合av卡| 欧美亚洲日本最大视频资源| 女的被弄到高潮叫床怎么办| 精品亚洲成国产av| 少妇的逼水好多| 国产成人精品一,二区| 国产日韩欧美亚洲二区| 久久久国产欧美日韩av| 国产又色又爽无遮挡免| 国产欧美亚洲国产| 人成视频在线观看免费观看| 母亲3免费完整高清在线观看 | 久久久久久伊人网av| 国产精品亚洲av一区麻豆 | 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| www.av在线官网国产| 国产午夜精品一二区理论片| 免费看不卡的av| 黄色一级大片看看| 国产成人精品无人区| 美女大奶头黄色视频| 黄片小视频在线播放| 国产高清不卡午夜福利| 成人亚洲精品一区在线观看| 成人毛片60女人毛片免费| 国产精品国产三级专区第一集| 日韩伦理黄色片| 久久久国产一区二区| av一本久久久久| 成人漫画全彩无遮挡| 91在线精品国自产拍蜜月| 天天躁日日躁夜夜躁夜夜| 下体分泌物呈黄色| 熟妇人妻不卡中文字幕| 久久婷婷青草| 欧美激情极品国产一区二区三区| 肉色欧美久久久久久久蜜桃| 免费高清在线观看视频在线观看| 少妇被粗大猛烈的视频| 亚洲精品乱久久久久久| 国产综合精华液| 国产精品熟女久久久久浪| 蜜桃国产av成人99| tube8黄色片| 午夜免费男女啪啪视频观看| 国产av码专区亚洲av| 91国产中文字幕| 成人国产av品久久久| 黑人猛操日本美女一级片| 亚洲内射少妇av| 日本爱情动作片www.在线观看| 我的亚洲天堂| 亚洲成人手机| 一本大道久久a久久精品| 丰满少妇做爰视频| 欧美日韩国产mv在线观看视频| 国产 精品1| 三上悠亚av全集在线观看| 亚洲精品久久成人aⅴ小说| 大香蕉久久网| 亚洲av中文av极速乱| 国产精品 欧美亚洲| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 国产高清不卡午夜福利| 久久精品亚洲av国产电影网| 成人国语在线视频| 色视频在线一区二区三区| 女性被躁到高潮视频| 999久久久国产精品视频| 精品一品国产午夜福利视频| 亚洲精品美女久久久久99蜜臀 | 可以免费在线观看a视频的电影网站 | 男女无遮挡免费网站观看| 美女高潮到喷水免费观看| 午夜福利网站1000一区二区三区| 欧美日韩一级在线毛片| 搡老乐熟女国产| 99久国产av精品国产电影| 18禁动态无遮挡网站| 精品国产一区二区三区四区第35| 亚洲国产看品久久| 岛国毛片在线播放| a级毛片在线看网站| 一本色道久久久久久精品综合| 91在线精品国自产拍蜜月| 最近2019中文字幕mv第一页| 亚洲五月色婷婷综合| 国产亚洲av片在线观看秒播厂| 亚洲在久久综合| 老鸭窝网址在线观看| 日日撸夜夜添| 精品国产乱码久久久久久小说| 欧美日韩精品成人综合77777| 男女国产视频网站| 欧美人与性动交α欧美软件| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 一级毛片黄色毛片免费观看视频| 亚洲天堂av无毛| 国产亚洲最大av| 久久国内精品自在自线图片| 日日啪夜夜爽| 18禁观看日本| 热99久久久久精品小说推荐| 日本-黄色视频高清免费观看| 99香蕉大伊视频| 青春草亚洲视频在线观看| 99久国产av精品国产电影| 中文字幕制服av| 日韩电影二区| 狠狠婷婷综合久久久久久88av| 又大又黄又爽视频免费| 一边亲一边摸免费视频| 91精品国产国语对白视频| 亚洲四区av| 精品国产一区二区三区四区第35| 成年美女黄网站色视频大全免费| av片东京热男人的天堂| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| 免费黄频网站在线观看国产| 女性生殖器流出的白浆| 欧美日韩视频精品一区| 国产高清国产精品国产三级| av女优亚洲男人天堂| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av电影在线进入| 国产免费福利视频在线观看| 久久精品亚洲av国产电影网| 久久久久久久久免费视频了| 久久久久久久国产电影| 国产熟女欧美一区二区| 久久久久国产一级毛片高清牌| 水蜜桃什么品种好| 精品亚洲乱码少妇综合久久| 国产欧美亚洲国产| 男人操女人黄网站| 美女xxoo啪啪120秒动态图| 一边摸一边做爽爽视频免费| 国产免费又黄又爽又色| 岛国毛片在线播放| 亚洲天堂av无毛| 日本爱情动作片www.在线观看| 超碰97精品在线观看| 欧美+日韩+精品| 成人黄色视频免费在线看| 国产人伦9x9x在线观看 | 亚洲精品美女久久久久99蜜臀 | 亚洲精品日本国产第一区| 亚洲美女搞黄在线观看| 亚洲人成网站在线观看播放| 国产熟女欧美一区二区| 爱豆传媒免费全集在线观看| 一级毛片我不卡| 国产亚洲精品第一综合不卡| 国产高清不卡午夜福利| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 久久久久久久国产电影| 国产在线视频一区二区| 日韩av在线免费看完整版不卡| av一本久久久久| 99热全是精品| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 国产高清国产精品国产三级| 久久国内精品自在自线图片| 欧美av亚洲av综合av国产av | 91精品伊人久久大香线蕉| 超碰97精品在线观看| 十八禁网站网址无遮挡| 亚洲人成电影观看| 9色porny在线观看| 免费看av在线观看网站| 欧美激情 高清一区二区三区| 伊人亚洲综合成人网| 中文字幕最新亚洲高清| 国产一级毛片在线| 在线天堂中文资源库| 最近最新中文字幕大全免费视频 | av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 黑人猛操日本美女一级片| a 毛片基地| 十八禁高潮呻吟视频| 看十八女毛片水多多多| 日本vs欧美在线观看视频| 精品少妇久久久久久888优播| 妹子高潮喷水视频| 国产精品二区激情视频| 91国产中文字幕| 黄色毛片三级朝国网站| 老熟女久久久| 熟女电影av网| 七月丁香在线播放| 午夜福利影视在线免费观看| 青春草国产在线视频| 国产一区二区三区综合在线观看| av免费在线看不卡| 777久久人妻少妇嫩草av网站| 免费在线观看完整版高清| 日日撸夜夜添| 亚洲精品成人av观看孕妇| 久久精品人人爽人人爽视色| 多毛熟女@视频| 亚洲图色成人| 天天操日日干夜夜撸| 亚洲色图综合在线观看| 亚洲伊人色综图| 亚洲精品自拍成人| 少妇猛男粗大的猛烈进出视频| 亚洲国产看品久久| 99香蕉大伊视频| 97人妻天天添夜夜摸| 久久久久久久亚洲中文字幕| 亚洲精品自拍成人| 黄色毛片三级朝国网站| 精品视频人人做人人爽| 日韩精品有码人妻一区| 五月天丁香电影| 看免费成人av毛片| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 大香蕉久久网| 免费在线观看黄色视频的| 一区二区三区乱码不卡18| 亚洲第一av免费看| 91精品三级在线观看| 亚洲国产精品一区二区三区在线| 欧美少妇被猛烈插入视频| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 国产精品秋霞免费鲁丝片| 亚洲精品国产色婷婷电影| 国产精品免费视频内射| 十八禁高潮呻吟视频| 最近最新中文字幕大全免费视频 | 国产日韩欧美视频二区| 18禁国产床啪视频网站| 亚洲精品自拍成人| 久久影院123| 久久久久久久大尺度免费视频| videosex国产| 国产亚洲欧美精品永久| 一本久久精品| 亚洲美女搞黄在线观看| 欧美人与善性xxx| 日本av免费视频播放| 毛片一级片免费看久久久久| 国产一区有黄有色的免费视频| 精品福利永久在线观看| 国产精品女同一区二区软件| 日韩制服丝袜自拍偷拍| 90打野战视频偷拍视频| 七月丁香在线播放| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 精品久久久久久电影网| av不卡在线播放| kizo精华| 欧美日韩一级在线毛片| 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 香蕉国产在线看| 亚洲国产欧美网| 国产xxxxx性猛交| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| av在线老鸭窝| 大话2 男鬼变身卡| 91久久精品国产一区二区三区| 中文字幕制服av| av.在线天堂| 国产亚洲午夜精品一区二区久久| 黄网站色视频无遮挡免费观看| 午夜福利,免费看| 男女边摸边吃奶| 国产成人免费无遮挡视频| 亚洲精品美女久久久久99蜜臀 | 免费久久久久久久精品成人欧美视频| 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 桃花免费在线播放| 97人妻天天添夜夜摸| 18禁国产床啪视频网站| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 人妻一区二区av| 亚洲av.av天堂| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 亚洲av成人精品一二三区| 97人妻天天添夜夜摸| 亚洲国产日韩一区二区| 精品午夜福利在线看| 韩国高清视频一区二区三区| 老司机影院毛片| www.精华液| 建设人人有责人人尽责人人享有的| 看十八女毛片水多多多| 亚洲av福利一区| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 大码成人一级视频| 97精品久久久久久久久久精品| 国产免费现黄频在线看| 一级片'在线观看视频| 香蕉精品网在线| 你懂的网址亚洲精品在线观看| 色哟哟·www| 男人舔女人的私密视频| a级毛片在线看网站| 色播在线永久视频| 人妻 亚洲 视频| 亚洲国产av影院在线观看| 免费黄色在线免费观看| 国产av精品麻豆| 成人影院久久| 成年av动漫网址| 亚洲成人av在线免费| 激情五月婷婷亚洲| 人妻少妇偷人精品九色| 岛国毛片在线播放| 精品午夜福利在线看| 精品国产超薄肉色丝袜足j| 午夜福利在线免费观看网站| 免费播放大片免费观看视频在线观看| videossex国产| 欧美激情 高清一区二区三区| 日韩不卡一区二区三区视频在线| av女优亚洲男人天堂| 性高湖久久久久久久久免费观看| 午夜久久久在线观看| www.自偷自拍.com| 精品人妻偷拍中文字幕| 亚洲精品av麻豆狂野| 久久精品国产鲁丝片午夜精品| 久久精品人人爽人人爽视色| 丰满乱子伦码专区| 国产野战对白在线观看| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 99久久人妻综合| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 你懂的网址亚洲精品在线观看| 久久ye,这里只有精品| 老女人水多毛片| 99香蕉大伊视频| 久久人人爽人人片av| 男女边摸边吃奶| 国产黄色视频一区二区在线观看| 久久精品国产亚洲av高清一级| 日韩av不卡免费在线播放| 亚洲综合色惰| 如何舔出高潮| 波多野结衣一区麻豆| 久久人人爽人人片av| 纵有疾风起免费观看全集完整版| 91精品国产国语对白视频| 免费大片黄手机在线观看| 精品第一国产精品| 成人午夜精彩视频在线观看| 777米奇影视久久| 精品一区二区三卡| 成人国语在线视频| 伊人久久大香线蕉亚洲五| av福利片在线| 国产精品久久久久久久久免| 这个男人来自地球电影免费观看 | 日日摸夜夜添夜夜爱| 黄色一级大片看看| 亚洲,一卡二卡三卡| 日本黄色日本黄色录像| 有码 亚洲区| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃| 日韩av在线免费看完整版不卡| 欧美国产精品va在线观看不卡| 国产成人精品福利久久| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 亚洲情色 制服丝袜| 免费看不卡的av| 男女国产视频网站| 国产av一区二区精品久久| 午夜激情久久久久久久| h视频一区二区三区| 国产精品 欧美亚洲| 久久婷婷青草| 多毛熟女@视频| 另类亚洲欧美激情| 免费久久久久久久精品成人欧美视频| 少妇精品久久久久久久| 久久久久视频综合| av在线app专区| 精品久久久久久电影网| 老熟女久久久| 亚洲综合色惰| 乱人伦中国视频| 免费播放大片免费观看视频在线观看| 婷婷色av中文字幕| 新久久久久国产一级毛片| 久久这里只有精品19| 国产日韩欧美在线精品| 多毛熟女@视频| 美女午夜性视频免费| 国产97色在线日韩免费| 青春草视频在线免费观看| 高清av免费在线| 亚洲,欧美精品.| 日日爽夜夜爽网站| 免费高清在线观看日韩| 最近手机中文字幕大全| 高清黄色对白视频在线免费看| a 毛片基地| 免费高清在线观看视频在线观看| 婷婷成人精品国产| 99热网站在线观看| 亚洲国产看品久久| 搡老乐熟女国产| 亚洲国产精品999| 91精品国产国语对白视频| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频| 欧美精品一区二区大全| 亚洲欧美精品综合一区二区三区 | 欧美精品国产亚洲| 国产午夜精品一二区理论片| 国产亚洲最大av| 久久精品国产亚洲av涩爱| 在线观看免费高清a一片| 久久久久久久久久人人人人人人| 99久久精品国产国产毛片| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 亚洲熟女精品中文字幕|