• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure effect on electronic and optical properties of BiI3: first-principles calculations

    2019-04-29 03:08:04SHENChenHaiWANGGuangTao

    SHEN Chen-Hai, WANG Guang-Tao

    (College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China)

    Abstract: Based on the density functional theory (DFT), the pressure effect on the structural, electronic and optical properties of BiI3 are investigated by using the full potential linearized augmented plane wave (FP-LAPW) method, considering the spin-orbit coupling (SOC) effects. The calculated band structures show an indirect band gap of 1.867 eV for BiI3 at 0 GPa, and the gap value decreases as pressure increases. Moreover, the applied pressure can enhance the optical absorption coefficients and photoconductivity of BiI3. Thanks to its high absorption coefficient with an value of about 4×105 cm-1 and photoconductivity with a value of 3×103 Ω-1·cm-1 in the visible light at 0 GPa, the optical response indicates that BiI3 is an alternative materials as a photovoltaic application.

    Key words: First-principles calculation; Structural property; Electronic structure; Optical property; High pressure

    1 Introduction

    In recent years, Bismuth tri-iodide (BiI3) attracted scientist’s attention as an important semiconductor material for room temperature gamma-ray detections[1-3]and photovoltaic absorber applications[4,5]. Podrazaetal.[6]and Matsumotoetal.[7]showed that BiI3can be applied as a radiation sensor in room temperature gamma-ray detectors, primarily due to its high effective atomic number (ZBi= 83,ZI= 53) and density (5.78 g/cm3), as well as its wide band gap value 1.67 eV. Gokhaleet.al[8]fabricated an radiation detectors using the single crystals grown from ultra-pure BiI3powder by the Physical Vapor Transport (PVT) technique and estimated that the electron mobility of BiI3is 433 ± 79 cm2/V. Moreover, Saitoetal.[9]also fabricated a radiation detector and estimated that the mobility-lifetime product isμeτe= 3.4-8.5×10-6cm2/V and the electron-hole pair creation energy is 5.8 eV. All the researches suggest that BiI3are promising candidates for detectors in the radiographic imaging or gamma ray spectroscopy.

    Recently, some research groups investigated the optical properties of BiI3and applied it to photovoltaic devices. Brandtetal.[5]measured its optical band gap (1.8 eV), optical absorption and recombination lifetime by experiment methods and got an indirect band gap 1.73 eV by density-functional theory (DFT) calculation. Moreover, the band gap of BiI3has been studied by different computational methods[6,10,11]and its value ranges from 1.43 to 1.92 eV. The values of optical band gap measured and reported in some previous studies[3,12-15]vary from 1.72 eV to 2.03 eV. More recently, Lehneretal. found that layer binary BiI3can be used as the active layer in planar solar cell architectures[4]. Therefore, the above studies indicate that layer binary BiI3may have an important application in the future optoelectronic devices.

    It is well known that strain can tune effectively the phase transition, electronic and optical properties. Sunetal.[16]investigated the structure transitions of BiI3under high pressure by first-principle calculations, and Devidasetal.[17]investigated the pressure-induced change in the structure and the electronic properties of BiI3by using a combination of experiment and first-principles calculations. However, to our knowledge, the pressure effects on band structures and optical properties of BiI3have not been investigated to date. In this work, we systematically investigate the electronic structures and optical properties of BiI3under different pressures by using first-principles calculations. Our results can provide a reference in theory for the future applications of BiI3in photovoltaic devices or optoelectronic devices.

    2 Computation details

    All the calculations were performed by FP-LAPW method as implemented in WIEN2k package[18,19]. The exchange-correlation functional employed generalized gradient approximation in the Perdew-Burke-Ernzerhof form (GGA-PBE)[20]. All the geometry structures of BIi3were fully relaxed with SOC until force were converged to 1.0 mRy/Bohr. We used a parameterRMTKmax=7, whereRMTdenotes the minimum radius of the muffin-tin atomic sphere andKmaxis the magnitude of the greatestKvector in the plane wave expansion. Both theRMTof Bi and I are taken to be 2.5 Bohr. The modified tetrahedron method[21]was applied to integrate inside the Brillouin zone(BZ) with a dense mesh of 1000 uniformly distributed k-points. For the calculation of optical properties, we increased the numbers of k-point to 5000. The self-consistent was converged to 10-5eV.

    The linear response of a material to an external electromagnetic field is measured by using the complex dielectric function:

    ε(ω)=ε1(ω)+iε2(ω)

    (1)

    The imaginary partε2(ω) of the dielectric function could be calculated from the momentum matrix elements between the occupied and unoccupied wave functions with the selection rules[22]:

    (2)

    whereMcv(k) are the matrix elements of direct transitions between valence bandμvk(r) and conduction bandμck(r) states andωcv(k) =Eck-Evkis the corresponding transition energy.

    The real partε1(ω) of the dielectric function can be evaluated from the imaginary part by Kramer-Kronig relationship[23]:

    (3)

    wherePis the principal value of the integral. All of the optical properties, including the absorption coefficienta(x), refractive indexn(x), extinction coefficient and the energy-loss spectrumL(x), can be directly calculated fromε1(ω) andε2(ω)[20,24].

    3 Results and discussion

    3.1 Structure parameters

    Fig. 1 (a) The unit cell and (b) primitive cell of BiI3, dark gray balls stand for Bi atoms and light gray balls for I atoms

    To make the calculations of the electronic and optical properties of BiI3more precise, the structure optimization is made by the following method. We select respectively five values with the form of percent change for the volume andc/aof BiI3, such as -6%, -3%, 0, 3% and 6% for volume change and -4%, -2%, 0, 2% and 4% forc/achange, to form a 2D mesh. The optimized structure can be found by calculation the total energy of the 25 points in the mesh with the relaxation of internal coordinates. The optimized structural parameters are listed in Table 1. Numerical results show that the calculated lattice parameters area=7.8384 ? andc=22.8569 ?, which agree with the experimental measuresa=7.823 ? andc=20.721 ?[25].

    Next, we investigate the influences of different pressures on structure parameters of BiI3. We optimize thec/avalue for each considered pressure to obtain more accurate results in the future calculation for each property of BiI3. The total energy as a function ofc/aratio at different pressures is shown in Fig. 2. By fitting these data points and then finding the point corresponding to the minimum energy, the optimizedc/aat each pressure is obtained and shown in Fig. 3. The values of a, c andc/aeventually adopted by fitting these data are listed in Table 1. Numerical results show that the total energy increases with the increase of pressure applied to the BiI3. Moreover, the optimizedc/avalue at each pressure decreases with the increase of pressure. The reason can be understood as follows. Bulk BiI3has a layer structure, in which the van der Waals force between layers is week in comparison with the strong ionic bonding within a layer. Thus, the change of distance in the direction ofcaxis is more evident than that ofaaxis andbaxis in the BiI3. Moreover, Fig.3 also shows that there is a pressure point, 2 GPa, below which the value ofc/adecreases rapidly and above which it decreases slowly.

    Fig. 2 The total energy as a function of c/a ratio at different pressures for BiI3 with R-3 phase

    Table 1 The optimized lattice constants and the c/a ratios at different pressures

    Pressure (GPa)a (?)c (?)c/a07.838422.85692.916017.675921.30862.776127.583320.83062.746937.519220.56662.735247.466520.37912.729457.428520.23202.7236

    Fig. 3 Change of the optimized c/a with the increase pressure for BiI3 with R-3 phase

    3.2 Pressure effects on electronic structures of BiI3

    The calculated band structure of BiI3at 0 GPa is shown in Fig. 4(a) and the conventional Brillouin zone and k-path of BiI3are also shown in Fig.4(b). The band structures show that the conduction band minimum (CBM) is located at A point, while the valence band maximum (VBM) lies between A point and Γ point. The results indicate that BiI3possesses the indirect band gap characteristics with the band gap values of 1.867 eV, which agrees with previous studies[14]. In addition, our calculation results show that for the band structures of BiI3at different pressures, there are no obvious differences on the shape of conduction band and valence band at different pressures. However, compared with the gap value 1.867 eV at zero pressure, the calculated values of band gap are 1.731 eV at 1 GPa, 1.677 eV at 2 GPa, 1.626 eV at 3 GPa, 1.595 eV at 4 GPa and 1.572 eV at 5 GPa respectively, which indicates that the gap value is decreased when the applied pressure is increased, as shown in Fig. 4(c).

    Fig. 4 (a) The calculated band structure of BiI3 at 0 GPa, (b) the conventional Brillouin zone and k-path of BiI3 and (c) the band gap energy of BiI3 at different pressures.

    Fig. 5 shows the total and partial densities of state (DOSs) of BiI3at different pressures. Numerical results show that for the applied pressures ranging from 0 GPa to 5 GPa, the electronic characteristics present similar behavior. Moreover, the electronic states are separated into three regions: lower energy region between -12 eV and -8 eV mainly is contributed by Bi-s states; the energy region between -4 eV and 0 eV mainly attribute to the mixing hybridization between I-p states and Bi-s states. Meanwhile, the CBM is dominated by Bi-p states with little contribution of I-p states.

    Fig. 5 Total and partial density of states for BiI3 at (a) 0 GPa and (b) 5 GPa. The Fermi level is set to zero

    3.3 Pressure effects on optical properties of BiI3

    It is well known that the optical properties of semiconductor material are very important to the optoelectronic device applications. Thus, in this subsection, we will investigate the influences of pressure on optical properties of BiI3, such as the imaginary partε2(ω) and real partε1(ω) of dielectric function, and optical absorption coefficient. Moreover, the optical properties along a- and c-axes are denoted as xx and zz.

    In Fig. 6, we present the real partsε1(ω) and imaginary partsε2(ω) of dielectric function for BiI3along xy- and z-directions at different pressures. Numerical results show that the imaginary partsε2(ω) and real partε1(ω) present anisotropic characteristics in the BiI3. The reason is that the hexagonal structure of BiI3leads to a difference for the dielectric responses between thexyplane andz-direction. As is also well known, the static dielectric constantε1(0) is the most important parameter of the real partε1(ω) of the dielectric function, which may be related to the reflective index measured at a frequency above the lattice vibration frequencies. It can be seen from Fig. 6(a) that the value of static dielectric constant increases with the increase of pressure ranging from 0 GPa to 5 GPa. Moreover, Fig. 6(a) also shows that the value of real part of dielectric function increases with the increase of pressure when the photon energy is lower than 2 eV, while the change of the value of dielectric function is insensible when the photo energy is beyond 2 eV.

    In addition, we can also see from Fig. 6(b) that for the imaginary partε2(ω), the threshold energy value decreases slightly with increasing pressure, which corresponds to the direct optical transition between the upper of the valence band and the lowest conduction band level. The reason is that the band gap is decreased when the pressure is increased. In addition, Fig. 6(b) also further shows that the imaginary part of dielectric function of BiI3increases with the increase of pressure. The strong relationship betweenε1(0) andEgcan be explained from the basis of Penn Model[26],ε1(0)=1+(?ω/Eg)2, where the static dielectric constant changes inversely with the value of band gap.

    Fig. 6 The calculated (a) real part, (b) imaginary part of dielectric function, absorption coefficient with (c)electromagnetic field perpendicular to c axis and (d) electromagnetic field parallel to c axis for BiI3

    To further understand the pressure effects on opticalproperties, the optical absorption coefficients are investigated as a function of photon energy at different pressures and along different incident light polarization directions, which are shown in Fig.6 (c) and (d). Numerical results show that the characteristics of thexyplane andz-direction optical absorption coefficients are different for each considered pressure, which further indicates that the optical absorptions are anisotropic in the BiI3material. In addition, it can also be seen from Fig.6(c) and (d) that with the increase of pressure, the red shift of the absorption edge occurs for both thexyplane andz-direction polarization cases, which is the results of decreasing band gap. Also, the values of optical band gap is 1.76 eV at 0 GPa, 1.68 eV at 1 GPa, 1.64 eV at 2 GPa, 1.60 eV at 3 GPa, 1.59 eV at 4 GPa and 1.58 eV at 5 GPa, respectively. Fig. 6(c) and (d) shows that the decreases of band gap induce the increases of optical absorption strength of ~105cm-1in the visible light activity range. These results indicate that BiI3is expected to be a promising material in optoelectronic devices.

    In Fig. 7, we also present the photoconductivity,σ(ω), as a function of photon energy, considering different pressures and incident light polarization directions. The optical conductivity parameters are closely related to the photo-electric conversion efficiency and mainly used to measure the change caused by the illumination. Numerical results show that BiI3has non-vanishing conductivity in the visible light region (about 1.62-3.11 eV), and hence has a strong absorption ability to solar radiations. All of these factors mentioned above are a powerful suggestion that BiI3can be used to make thin-film solar cell, and Lehneretal[4]have fabricated solar cell with efficiency approximately 0.3% using BiI3as active layer. Thus, the results also further indicate that BiI3has a potential application to fabricate optoelectronic devices under high pressure.

    Fig. 7 The calculated photoconductivity for BiI3 with (a) electromagnetic field perpendicular to c axis and (b) electromagnetic field parallel to c axis.

    4 Conclusions

    We have investigated the pressure effects on structural parameters, electronic structures and optical properties of BiI3by using the first-principles method. Numerical results show that the band gap value of BiI3decreases as pressure increases. Moreover, its optical properties present the anisotropic characteristics for each considered pressure case. The static dielectric constant increases with the increase of pressure. The real part of dielectric increases when photon energy is lower than 2 eV, while it is insensible when the photo energy is beyond 2 eV at different pressure. Also, the pressure also induces the red shift of the threshold energy values of imaginary part and optical absorption. In addition, our results also show that high optical absorption strength (of ~105cm-1) and non-vanishing conductivity occur in the visible light activity range. These results also further indicate that BiI3has a potential application to fabricate optoelectronic devices under high pressure.

    avwww免费| 级片在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 国产午夜精品论理片| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 动漫黄色视频在线观看| 桃色一区二区三区在线观看| 国产精品日韩av在线免费观看| 国产午夜福利久久久久久| 99热这里只有是精品在线观看 | 偷拍熟女少妇极品色| 天堂网av新在线| 69av精品久久久久久| 麻豆久久精品国产亚洲av| 亚洲人成网站高清观看| 18禁黄网站禁片午夜丰满| 国产精品免费一区二区三区在线| 又紧又爽又黄一区二区| 久久人妻av系列| 国产伦人伦偷精品视频| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 精品一区二区免费观看| 欧美三级亚洲精品| 国产在视频线在精品| 一区二区三区四区激情视频 | 成人欧美大片| 男插女下体视频免费在线播放| 精品久久久久久久久亚洲 | 中亚洲国语对白在线视频| 日韩精品中文字幕看吧| 成人av在线播放网站| 熟妇人妻久久中文字幕3abv| 简卡轻食公司| 在线免费观看的www视频| 国产精品乱码一区二三区的特点| 午夜激情欧美在线| 亚洲国产精品成人综合色| 国产91精品成人一区二区三区| 亚洲精品在线美女| 久久久久久久久中文| 十八禁人妻一区二区| 亚洲综合色惰| 亚洲成人免费电影在线观看| 成人美女网站在线观看视频| 国产精品精品国产色婷婷| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 老司机深夜福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 51午夜福利影视在线观看| av国产免费在线观看| 成人国产综合亚洲| 国产成人a区在线观看| 国产成人aa在线观看| 精品久久久久久久久av| 久久热精品热| 熟妇人妻久久中文字幕3abv| 亚洲国产精品久久男人天堂| 美女xxoo啪啪120秒动态图 | 天美传媒精品一区二区| 欧美bdsm另类| 变态另类成人亚洲欧美熟女| 国产色婷婷99| 非洲黑人性xxxx精品又粗又长| 香蕉av资源在线| 欧美日本视频| 深爱激情五月婷婷| 嫩草影视91久久| 91在线观看av| 国产亚洲欧美98| 国产v大片淫在线免费观看| 少妇的逼好多水| 亚洲av成人av| 两个人的视频大全免费| 99热这里只有是精品在线观看 | 国产精品野战在线观看| 精品免费久久久久久久清纯| 亚洲av.av天堂| 99久久99久久久精品蜜桃| 国产在视频线在精品| 桃色一区二区三区在线观看| 又黄又爽又刺激的免费视频.| 亚洲在线观看片| 久久久久免费精品人妻一区二区| 欧洲精品卡2卡3卡4卡5卡区| 狂野欧美白嫩少妇大欣赏| 欧美日韩乱码在线| 国产欧美日韩精品亚洲av| 亚洲激情在线av| 午夜福利18| 国内少妇人妻偷人精品xxx网站| 免费看光身美女| 怎么达到女性高潮| 国产精品一区二区免费欧美| 国产v大片淫在线免费观看| 俺也久久电影网| 亚洲欧美日韩卡通动漫| 国产欧美日韩精品亚洲av| 欧美精品国产亚洲| 国产爱豆传媒在线观看| 在线观看免费视频日本深夜| 亚洲无线观看免费| 亚洲精品乱码久久久v下载方式| 亚洲人成伊人成综合网2020| 午夜精品在线福利| 极品教师在线免费播放| 精品久久久久久久久av| 日韩欧美一区二区三区在线观看| 精品人妻偷拍中文字幕| 日日摸夜夜添夜夜添av毛片 | 午夜激情欧美在线| 在线免费观看不下载黄p国产 | or卡值多少钱| www.色视频.com| 香蕉av资源在线| 欧美黄色片欧美黄色片| 十八禁网站免费在线| 亚洲,欧美精品.| АⅤ资源中文在线天堂| 精品午夜福利在线看| www.999成人在线观看| 97超视频在线观看视频| 一进一出好大好爽视频| 香蕉av资源在线| 五月玫瑰六月丁香| 波多野结衣高清作品| www.999成人在线观看| 国产精品一区二区三区四区久久| 99久久精品热视频| 男女下面进入的视频免费午夜| 色噜噜av男人的天堂激情| 国产三级中文精品| 波多野结衣高清无吗| 日韩免费av在线播放| 国产高清视频在线播放一区| 亚洲第一区二区三区不卡| 夜夜看夜夜爽夜夜摸| 日韩免费av在线播放| 国产野战对白在线观看| 免费看a级黄色片| av在线观看视频网站免费| 999久久久精品免费观看国产| 一进一出抽搐gif免费好疼| 我的老师免费观看完整版| 身体一侧抽搐| 日本成人三级电影网站| 欧美不卡视频在线免费观看| 老司机深夜福利视频在线观看| 日日摸夜夜添夜夜添av毛片 | 色精品久久人妻99蜜桃| 制服丝袜大香蕉在线| 男女之事视频高清在线观看| 最近视频中文字幕2019在线8| 亚洲性夜色夜夜综合| 午夜亚洲福利在线播放| a级毛片免费高清观看在线播放| 亚洲综合色惰| 香蕉av资源在线| 国产不卡一卡二| 亚洲精品成人久久久久久| 久久久久久国产a免费观看| 亚洲五月婷婷丁香| 亚洲不卡免费看| 在线播放国产精品三级| 怎么达到女性高潮| 国产亚洲精品综合一区在线观看| 国产精品人妻久久久久久| 午夜视频国产福利| 日韩欧美在线乱码| 看片在线看免费视频| 又黄又爽又刺激的免费视频.| 观看免费一级毛片| 久久久久久久亚洲中文字幕 | 免费看a级黄色片| 亚洲专区中文字幕在线| 国产老妇女一区| 色哟哟哟哟哟哟| 人人妻,人人澡人人爽秒播| 成人毛片a级毛片在线播放| 亚洲 国产 在线| 国产一区二区在线观看日韩| 精品乱码久久久久久99久播| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 嫩草影院精品99| 国产三级黄色录像| 国产精品精品国产色婷婷| 欧美激情在线99| 天美传媒精品一区二区| 国产精华一区二区三区| 首页视频小说图片口味搜索| 久久伊人香网站| av专区在线播放| 亚洲一区二区三区不卡视频| 日韩精品中文字幕看吧| 日韩欧美国产在线观看| 精品一区二区三区av网在线观看| 在线观看舔阴道视频| 欧美日韩综合久久久久久 | 一级av片app| 日本三级黄在线观看| 老女人水多毛片| 美女xxoo啪啪120秒动态图 | 欧美日韩福利视频一区二区| 给我免费播放毛片高清在线观看| 桃红色精品国产亚洲av| 在线观看午夜福利视频| 麻豆成人午夜福利视频| 亚洲成人久久爱视频| 夜夜爽天天搞| 亚洲精品久久国产高清桃花| 毛片一级片免费看久久久久 | 中文字幕高清在线视频| 日韩大尺度精品在线看网址| 又黄又爽又刺激的免费视频.| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区在线观看免费| 老女人水多毛片| 亚洲中文日韩欧美视频| 亚洲va日本ⅴa欧美va伊人久久| 国内精品一区二区在线观看| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩东京热| 国产乱人伦免费视频| 亚洲国产精品合色在线| 欧美不卡视频在线免费观看| 小说图片视频综合网站| 变态另类成人亚洲欧美熟女| 身体一侧抽搐| 午夜福利在线在线| 亚洲国产精品999在线| 欧美bdsm另类| 亚洲av免费在线观看| 女生性感内裤真人,穿戴方法视频| 免费高清视频大片| 亚洲精品日韩av片在线观看| 久久这里只有精品中国| 日韩欧美三级三区| 女生性感内裤真人,穿戴方法视频| 一个人免费在线观看的高清视频| 99国产精品一区二区蜜桃av| 亚洲av熟女| 精品欧美国产一区二区三| 国产大屁股一区二区在线视频| 9191精品国产免费久久| 亚洲国产日韩欧美精品在线观看| 在线播放国产精品三级| 美女高潮的动态| 久久午夜亚洲精品久久| 美女cb高潮喷水在线观看| 18禁黄网站禁片午夜丰满| 国产精品美女特级片免费视频播放器| 在线看三级毛片| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看日本一区| 午夜日韩欧美国产| 伊人久久精品亚洲午夜| 久久香蕉精品热| 国产乱人视频| 国产私拍福利视频在线观看| 国产精品一及| 麻豆国产97在线/欧美| 一区二区三区四区激情视频 | 亚洲,欧美,日韩| 国产精品99久久久久久久久| 一级黄色大片毛片| 亚洲 国产 在线| 亚洲美女黄片视频| 草草在线视频免费看| 精品乱码久久久久久99久播| 乱人视频在线观看| 久久亚洲真实| 简卡轻食公司| 别揉我奶头 嗯啊视频| 99久国产av精品| 欧美国产日韩亚洲一区| 18+在线观看网站| 亚洲人成网站在线播放欧美日韩| 欧美一区二区精品小视频在线| 最好的美女福利视频网| 午夜福利欧美成人| 美女黄网站色视频| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美在线一区二区| 亚洲av第一区精品v没综合| 岛国在线免费视频观看| 毛片女人毛片| 欧美成人免费av一区二区三区| 免费一级毛片在线播放高清视频| 亚洲一区二区三区不卡视频| 黄色日韩在线| 网址你懂的国产日韩在线| 亚洲精品成人久久久久久| 亚洲国产色片| 99热这里只有是精品在线观看 | 99久久久亚洲精品蜜臀av| 久久久久久九九精品二区国产| av国产免费在线观看| 亚洲,欧美精品.| 一夜夜www| 亚洲欧美日韩高清专用| 精品日产1卡2卡| 欧美潮喷喷水| 亚洲最大成人中文| 日韩精品青青久久久久久| 国产主播在线观看一区二区| 88av欧美| 性色av乱码一区二区三区2| 亚洲成人久久爱视频| 男人狂女人下面高潮的视频| 99热精品在线国产| 亚洲欧美日韩东京热| 亚洲一区二区三区色噜噜| 亚洲乱码一区二区免费版| 搡女人真爽免费视频火全软件 | 日本黄色片子视频| 精品日产1卡2卡| 久久久久久久久中文| 欧美区成人在线视频| 日本与韩国留学比较| 少妇的逼好多水| 淫秽高清视频在线观看| a在线观看视频网站| 日本撒尿小便嘘嘘汇集6| 欧美国产日韩亚洲一区| 国产精品人妻久久久久久| 精品福利观看| 又粗又爽又猛毛片免费看| 亚洲美女视频黄频| 黄色视频,在线免费观看| 一本一本综合久久| 久久草成人影院| 人妻久久中文字幕网| 国产综合懂色| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 亚洲一区二区三区色噜噜| 免费看a级黄色片| 亚洲av成人av| 亚洲五月天丁香| 中国美女看黄片| 美女cb高潮喷水在线观看| x7x7x7水蜜桃| 亚洲精品乱码久久久v下载方式| 高潮久久久久久久久久久不卡| 九色国产91popny在线| 中国美女看黄片| 麻豆成人av在线观看| 亚洲国产欧洲综合997久久,| 首页视频小说图片口味搜索| bbb黄色大片| 久久久国产成人精品二区| 亚洲人成网站高清观看| 国产精品国产高清国产av| 亚洲美女黄片视频| 国产精品精品国产色婷婷| 久久性视频一级片| 欧美黄色淫秽网站| 国内精品一区二区在线观看| 成年女人看的毛片在线观看| 99国产极品粉嫩在线观看| 一区福利在线观看| 日韩欧美免费精品| 成人av在线播放网站| 国产综合懂色| 国产精品国产高清国产av| 大型黄色视频在线免费观看| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久av| 国产高清有码在线观看视频| 国产美女午夜福利| 国产大屁股一区二区在线视频| 欧美乱色亚洲激情| 大型黄色视频在线免费观看| 日韩欧美 国产精品| 国产精品,欧美在线| 乱人视频在线观看| 毛片女人毛片| 亚洲美女搞黄在线观看 | 麻豆国产av国片精品| 久久草成人影院| 老司机午夜十八禁免费视频| 国产精品伦人一区二区| 美女 人体艺术 gogo| 亚洲美女搞黄在线观看 | 亚洲av五月六月丁香网| 日韩中文字幕欧美一区二区| 18禁黄网站禁片免费观看直播| 色综合站精品国产| 一级作爱视频免费观看| 免费看日本二区| 免费看a级黄色片| 久久久久久久久大av| 最近视频中文字幕2019在线8| 最近最新免费中文字幕在线| 欧美黄色淫秽网站| 看黄色毛片网站| 国产免费一级a男人的天堂| 亚洲国产精品sss在线观看| 少妇的逼好多水| 一本一本综合久久| 成人美女网站在线观看视频| 成人特级黄色片久久久久久久| 色综合亚洲欧美另类图片| 天天躁日日操中文字幕| 少妇人妻精品综合一区二区 | 欧美另类亚洲清纯唯美| 99久久99久久久精品蜜桃| 999久久久精品免费观看国产| 国产av不卡久久| 青草久久国产| 欧美高清成人免费视频www| 自拍偷自拍亚洲精品老妇| 制服丝袜大香蕉在线| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| 精品一区二区三区视频在线| 日韩大尺度精品在线看网址| 亚洲 国产 在线| 色哟哟·www| 成人av在线播放网站| 日本熟妇午夜| www日本黄色视频网| 欧美在线一区亚洲| 99精品久久久久人妻精品| 国产精品一区二区免费欧美| 欧美区成人在线视频| 日韩中字成人| 露出奶头的视频| 日韩欧美精品免费久久 | av天堂中文字幕网| 男女下面进入的视频免费午夜| 日韩av在线大香蕉| 免费看日本二区| 91九色精品人成在线观看| 国内少妇人妻偷人精品xxx网站| 国产亚洲欧美在线一区二区| 青草久久国产| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 香蕉av资源在线| 午夜免费激情av| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| avwww免费| 丝袜美腿在线中文| www.熟女人妻精品国产| 国产伦在线观看视频一区| 男女下面进入的视频免费午夜| 一边摸一边抽搐一进一小说| 国产精品嫩草影院av在线观看 | 欧美激情国产日韩精品一区| 亚洲成人精品中文字幕电影| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 欧美日本视频| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图 | 国产av麻豆久久久久久久| 国产精品亚洲一级av第二区| 日本五十路高清| 男女之事视频高清在线观看| 日本在线视频免费播放| 熟女电影av网| 99在线人妻在线中文字幕| 简卡轻食公司| 日本三级黄在线观看| 国产精品1区2区在线观看.| www.色视频.com| 欧美乱妇无乱码| 久久久久久久久中文| 无遮挡黄片免费观看| 欧美成人性av电影在线观看| 91麻豆av在线| 白带黄色成豆腐渣| 日本五十路高清| 超碰av人人做人人爽久久| 无人区码免费观看不卡| 国产欧美日韩精品一区二区| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图 | 中文字幕人妻熟人妻熟丝袜美| 亚洲专区国产一区二区| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 亚洲国产日韩欧美精品在线观看| 国产野战对白在线观看| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| 亚洲av五月六月丁香网| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 人人妻,人人澡人人爽秒播| 亚洲性夜色夜夜综合| 久久伊人香网站| 国产老妇女一区| 丰满乱子伦码专区| 99riav亚洲国产免费| 亚洲avbb在线观看| 1000部很黄的大片| 琪琪午夜伦伦电影理论片6080| 99热6这里只有精品| 亚洲无线观看免费| 一区福利在线观看| www.www免费av| 美女被艹到高潮喷水动态| av天堂在线播放| 久久亚洲真实| 乱码一卡2卡4卡精品| 悠悠久久av| 亚洲av第一区精品v没综合| 久久草成人影院| 免费av不卡在线播放| avwww免费| 麻豆成人午夜福利视频| 色综合婷婷激情| 搡女人真爽免费视频火全软件 | 最新中文字幕久久久久| 日本一二三区视频观看| 中文字幕av在线有码专区| 日韩中字成人| 欧美日韩福利视频一区二区| 精品福利观看| 欧美精品国产亚洲| 午夜激情欧美在线| 国产精品98久久久久久宅男小说| 少妇的逼好多水| 特大巨黑吊av在线直播| 永久网站在线| 欧美性猛交黑人性爽| 校园春色视频在线观看| 午夜福利在线观看免费完整高清在 | 波野结衣二区三区在线| 变态另类丝袜制服| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 丝袜美腿在线中文| 亚洲中文日韩欧美视频| 午夜免费成人在线视频| 日韩欧美精品免费久久 | av欧美777| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 亚洲精品色激情综合| 99久国产av精品| 精品一区二区三区人妻视频| 亚洲av第一区精品v没综合| 99热这里只有是精品50| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 欧美丝袜亚洲另类 | 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 乱人视频在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品日韩av片在线观看| 成年女人毛片免费观看观看9| 午夜福利高清视频| 久久久久国内视频| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 国产精品久久久久久久电影| 国产亚洲精品久久久com| av在线蜜桃| 亚洲成人久久爱视频| 老熟妇仑乱视频hdxx| 最近在线观看免费完整版| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 国产精品不卡视频一区二区 | 久久久久久久精品吃奶| 国产在视频线在精品| 久久久久久九九精品二区国产| 久久久久久久精品吃奶| 99热精品在线国产| 九色成人免费人妻av| 国产精品永久免费网站| 自拍偷自拍亚洲精品老妇| 可以在线观看的亚洲视频| 永久网站在线| 一区二区三区免费毛片| 久久久久久久久久成人| 90打野战视频偷拍视频| 赤兔流量卡办理| 黄色视频,在线免费观看| 级片在线观看| 99久久精品热视频| 久久99热6这里只有精品| 中文字幕av成人在线电影| 麻豆成人午夜福利视频| .国产精品久久| 毛片一级片免费看久久久久 | 日韩欧美精品v在线| 熟女人妻精品中文字幕| 色哟哟哟哟哟哟| 我要搜黄色片| 免费人成在线观看视频色| 亚洲精品一区av在线观看| 久99久视频精品免费| 日韩欧美 国产精品| 午夜精品在线福利| 午夜两性在线视频| 少妇裸体淫交视频免费看高清|