• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PMS-Sorting: A New Sorting Algorithm Based on Similarity

    2019-04-29 03:21:36HongbinWangLiankeZhouGuodongZhaoNianbinWangJianguoSunYueZhengandLeiChen
    Computers Materials&Continua 2019年4期

    Hongbin Wang, Lianke Zhou, Guodong Zhao , , Nianbin Wang, Jianguo Sun,Yue Zheng and Lei Chen

    Abstract: Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm, it is mainly suitable for the high duplication of search results, for the independent search results, the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive, but position relationship cannot fully represent the correlation changes. aimed at this drawback, the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm, firstly the position score of the returned results is standardized processing, and the similarity retrieval word string with the query results is combined into the algorithm, the similarity calculation method is also improved, through the experiment, the improved algorithm is superior to traditional sorting algorithm.

    Keywords: Meta search engine, result sorting, query similarity, Borda sorting algorithm,position relationship.

    1 Introduction

    Meta search engine [Zhang, Yu, Liao et al. (2004); Smyth and Boydell (2010)] is aimed to increase the precision and recall rate of in-dependent search engine, so there is no need to set data base for search and retrieval mechanism [Yamamoto, Fujii, Toyofuku et al.(2001); Yang (2005); Chen and Xu (2016)]. It achieve its search behavior by integrating a search engine that best meets user needs in accordance with the users’ interest or excellent degree of search engines, and its search interface is the same as the tradition-al search engines. For the search results returned, the Meta search engine will integrate a mechanism in accordance with results to remove-duplicate web pages and complete mix,then sort them according to a certain algorithm, finally return to user a process. Therefore,the ranking of results for the Meta search engine is of vital importance. There are a lot of researches for algorithm of ranking results nowadays. In this paper, the author studies and makes improvement on the classic Borda ranking algorithm. As a traditional ranking algorithm in a weighed way, Borda ranking algorithm is first applied in vote [Yang(2005); Yong and Zulin (2011)], which is a method for voters to choose candidates.Because of its good availability, it has been widely used.

    2 Traditional borda sorting algorithm model

    The traditional Borda algorithm [Cho, Brand, Bordawekar et al. (2015)] is a kind of improvement based on the weighted sorting algorithm. The algorithm is described as follows:

    We define the set of tested search engines in the meta search engine as S={s1,s2,…,sn}.R={r1,r2,...,rm} is the set for all query results to query word q. Each query result rkis composed of four parts: URL, title, abstract, relevance score, which are represented by array assi_Url[k],si_Title[k],si_Abs[k],si_Score[k] on condition of k=1,2,… ,m,i=1,2,…,n.

    The Borda sorting algorithm [Katsirelos, Walsh, Davies et al. (2011)] in meta search engine [Lawrence and Giles (1998)] is voted by the results returned by tested search engines. It establishes the preference relationship in position relationship among tested search engines according to the returned results after inputting query word [García-Lapresta and Martínez-Panero (2002)]. If the result is independent, we regard related score in other search engines as zero. Finally we put all the scores of each result to be summed to obtain the final score, and sort it in descending order. The mathematical model for the algorithm is as follows: the number of tested search engine is n, which means S={s1,s2,…,sn}; the set of query results is R={r1,r2,...,rm}. For Sk, we build matrix of preference relationship to Rkas Eq. (1).

    when riis ranked before rjby k,=1; otherwise it is 0. The score for ri from Sk is shown in Eq. (2).

    so the matrix of all query results from Rk(k=1,2,…,n) is shown in Eq. (3).

    the final score is shown in Eq. (4).

    sorting Borda(ri) according to relevance score of Borda and return to users.

    3 PMS-sorting

    The PMS-sorting algorithm based on the query result position, multiplicity and query similarity as is proposed in this paper, not only considers the relevancy and repeated read information of the query result position, but also combines the similarity of the query term and query result, which improves considerably the result of independent searching[Ping (2003)].

    Besides, we plan to use global similarity for computing the similarity between query term and query result, because the methods of relevance algorithm of each independent search engine are not public, or are to be compared directly. In addition, on the problem of malpractice of the current global relevance algorithm, the similarity algorithm on the titles and abstracts of the return result would be more effective and accurate.

    The research in the paper is about one user’s query string q, the score of the query result can be ultimately represented as a Borda score, and can be sorted and showed to users.We are going to make discussions on the algorithms in the following part.

    3.1 The position standardization of the query result in search engine

    Result list of independent search engines is sorted according to relevance of search words,therefore, the position of results can reflect its relevance with the query word enormously.Under common cases, the first ones of the results are most relevant to the users, making it very necessary to consider the position information of independent search engine. To make the position score more accurate, we improved the algorithm as follows.

    N search engine members S1,S2,…,Snsearch a certain query word q, and m results are returned by search engine Sj, and the relevance of the result rklocated in k and the users query position is represented by pos(q,Sj,rk), which is shown in Eq. (5).

    where pos(q,Sj,rk)∈[0,1], if the query result rk is the first result in the result collection of some search engine, then the score of pos(q,Sj,rk) is 1, which means that the first result of all member search engines are equally important. But if the numbers of results list documents that returned are different, the smaller is the number, the higher is the score. It means that having a good position in a list that has more results is more valuable than in a list that has fewer results. Thus the relationship between query results and query words is unified, i.e., the latter the position is, the smaller pos(q,Sj,rk) is, the fewer its relationship with the query word is, and the less the influence on the sorting.

    3.2 The global similarity between query results and user query

    Suppose query string q has n feature items t1,t2,…,tnand two documents d1,d2, if a certain feature occurred n times in d1while other feature items haven’t occurred, but in d2, n feature items have occurred once, in this case, although the word frequency is the same in the two documents, d2is obviously more relevant and has the most comprehensive covered features. For example, the query string “central People’s Government” divides q into three feature items, t1= “Central”,t2= “People’s”,t3=“Government” , if feature item t1= “Central” occurred many times in document one with other features not occurring, while all the three features occurred once in document two, apparently document two is more relevant to query string q. Under such cases,higher weight should be put when the query string matches the query word more comprehensively.

    The matching degree between query string q and the rkabstract. If the feature term matches the abstract rather comprehensively, it should have higher weight. The matching level of feature item ti and abstract is represented by pg(ti,Sj,rk? abs), and the computing method is shown in Eq. (6).

    in the above method, w(ti) represent the weight of each feature item given by query string.

    The matching level of query string q and abstract can be represented as pg(ti,Sj,rk? abs),and the computing formula is shown in Eq. (7).

    3.1.1 The computing of the similarity of feature item tiand rkabstract

    Now let’s compute the similarity between every feature item of the query string and the result rk, then the similarity between each feature item tiand rk abstract can be represented by sim ti,Sj,rk,? abs , which is shown in Eq. (8).

    in the above method, N(ti,abs) represents the times that feature item tiof the query string occurred in the query result rk, and length(abs) represents the length of query result rkabstract, position(ti,k) represents the k times that feature item tioccurred in the abstract. Then the computing method of the similarity between query string q and abstract is shown in Eq. (9).

    3.1.2 Computing of the similarity of query string q and rk

    If the similarity of query string q and abstract is represented as corr(q,Sj,rk.abs), the computing method is shown in Eq. (10).

    and the query result rkcan be represented as Eq. (11).

    the computing of the similarity of query string q and rkquery result. The computing can be more scientific by making weighted summation of the similarity of query string q and title rkand abstract. The two weights are represented as α and β, and the ultimate similarity as corr(q,Sj,rk), the formula is as Eq. (12).

    where α +β =1.

    3.2 Computing of relevant score of the query result

    The Borda sorting idea is the accumulated ultimate score of every result, whose query result is voted by search engine, and the score has considered the position of query result.In this paper, the ultimate relevant score of query result rk is represented as the above weighted summation of position relevance pos(q,Sj,rk) and the similarity corr(q,Sj,rk)between query word string and query result rk. The computing method is as Eq. (13).

    where ω and θ are weight factors, and ω + θ =1.

    3.3 Score computing of the ultimate borda of the query result

    Through the above steps we have computed the relevant score of the query result rk, the score of the results searched by many member search engines is the sum of each one of them. Hence, for n member search engines, the Borda score of the query result rkis represented by Borda(q,Sj,rk) as Eq. (14).

    in the end, descending the query result according to the score of Borda(q,Sj,rk), and display it to users.

    4 Experiment results and analysis

    Authors should discuss the results and how they can be interpreted in perspective of previous studies and of the working hypotheses. The findings and their implications should be discussed in the broadest context possible. Future research directions may also be highlighted.

    4.1 Selection of dataset

    To analyze and exam the algorithm with experiment, we build a prototype system of search engine, whose member search engines are Baidu, Yahoo, Bing and Sogou. We do experiments on representative retrieval topics, and each time of the search concludes the first 30 results of their member queries.

    The query dataset uses the top 100 query words on the search ranking list of search engines in 2004. In this experiment, we use query words of different topics. In the end,we compare them concerning effect of algorithm.

    4.2 Evaluation method

    Common evaluation methods in search engine domain are recall, precision, system response time, etc. Because of the principle of element search engine, normally they all can get pretty high recall ratio, and the formula we use in this paper to evaluate the efficiency of algorithm by precision is demonstrated in Eq. (15).

    4.3 Result and analyze

    4.3.1 The influence on the algorithm by weight factors ω and θ

    In the algorithm in the paper, the weight factors ω and θ influence the weight of position and similarity factors, hence their dereferencing have great influence on the algorithm. In the experiment, the dereferencing of ω vary from 0.1 to 0.9, and the variety of the average precision on different dereferencing is demonstrated in Fig. 1.

    Figure 1: The relationship between the dereferencing (ω) and the average precision

    As we can see from Fig. 1, when ω<0.4, the variety remains barely changed, but when the dereferencing is around 0.6, the precision reaches its highest point, and then in the downward trend. Hence, in the following experiment, the dereferencing of weight factor is ω=0.6, which means the great value of the result permutation position in the return results collection of its search engine.

    4.3.2 Comparison between the algorithm in the paper and independent search engine

    To verify the effectiveness of the algorithm in the paper, we will compare the element search engine NMSE of the algorithm with the average precision rate and recall rate of its element search engine. Different search engine will have different effect in accordance with different query subject, for example, among the search engines, the precision rate of searching “Ebola virus” of Baidu is 0.75, of Yahoo is 0.68, of Bing is 0.59, and of Sogou is 0.67. And when searching other words, we receive different results. In the following section, we will search with every independent search engine and the element search engine using the algorithm in the paper, and the effect of average value comparison is demonstrated in Fig. 2.

    Figure 2: Average precision comparison

    As we can see from Fig. 2, Baidu remains the leading role in Chinese searching, while the element search engine used the algorithm in the paper has higher average precision rate than Baidu when searching different subjects.

    4.3.3 Comparison between the improved algorithm in the paper and classic element search engine sorting algorithm

    The algorithm in the paper is improved based on the Borda sorting algorithm in element search engine. To verify the efficiency of the algorithm, we now choose several classic sorting algorithms as comparison object, which are Borda sorting algorithm, Round-Robin algorithm and Comb SUM algorithm.

    The Round-Robin algorithm adopts the idea of polling, and its algorithm method is to first arrange the member search engines in a certain order, and when the search engine does results merging, get the first result of its member search engine, then the second, and so on. Comb SUM algorithm is a relevance score method, because local similarity of different search engines cannot be compared but to composed directly, we can get normalized relevance score by mapping the position of search result to [0,1]. Com SUM algorithm is to add all the relevance scores that occur in different search engines as the ultimate relevance score, and sorting in this order.

    We now select query key words of different subjects from the dataset, and do search experiment for ten consecutive years under the Web environment, in the end, we extract the average value. The comparison effect of the four algorithms is demonstrated in Fig. 3.

    Figure 3: Precision comparison diagrams between our algorithm and traditional algorithm

    As we can see fromFig. 3, along with the increase of results, the precision is declining.The algorithm in the paper has better precision than traditional Borda sorting algorithm,and also higher than the other two traditional sorting algorithm, which means that the improved algorithm is very effective.

    5 Conclusions

    The improved algorithm has made the following improvements on the basis of traditional Borda sorting algorithm. (1) Normalize the sorting position of the query results, and replace the position score with position relevance. We cannot directly compare the query result position in the search engine, because the results returned from each search engine are few yet different, which is why it is not accurate to represent the position score by the quantity, whereas position relevance can better represent the relevance between position and query word. (2) Considering the current relevance algorithm is to first download the original document, then compute in unification the global similarity, which waste a lot of time and network resource thus cannot be accepted by users. According to research, the title and abstract of search results centralized the main information of the websites, so in the paper, we compute global relevance with information extracted from titles and abstracts returned by websites. (3) When computing the similarity with titles and abstracts, we combined the matching weight of query words and results, which makes the computing more accurate. However, there exist some shortcomings in time efficiency.Besides, it does not take individualized needs of different users into consideration.Element search engine will be more personalize, professionalize, and intellectualize,which is also a hotspot for future element search engine research.

    Acknowledgement:This work was funded by the National Natural Science Foundation of China under Grant (No. 61772152 and No. 61502037), the Basic Research Project(Nos. JCKY2016206B001, JCKY2014206C002 and JCKY2017604C010), and the Technical Foundation Project (No. JSQB2017206C002).

    日本黄色片子视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看影片大全网站| 丁香欧美五月| 免费看美女性在线毛片视频| 欧美3d第一页| 看黄色毛片网站| 岛国在线观看网站| 欧美不卡视频在线免费观看| 国产精品国产高清国产av| 欧美中文综合在线视频| 757午夜福利合集在线观看| av中文乱码字幕在线| 丰满人妻一区二区三区视频av | 性色av乱码一区二区三区2| 女警被强在线播放| 欧美大码av| 精品熟女少妇八av免费久了| 国产精品一及| 久久人人精品亚洲av| 国产精品av视频在线免费观看| 精华霜和精华液先用哪个| av中文乱码字幕在线| 老熟妇乱子伦视频在线观看| 在线视频色国产色| 久久久水蜜桃国产精品网| 嫁个100分男人电影在线观看| 特大巨黑吊av在线直播| 成人永久免费在线观看视频| 97人妻精品一区二区三区麻豆| 露出奶头的视频| 欧美性猛交╳xxx乱大交人| 在线视频色国产色| 欧美三级亚洲精品| 两个人的视频大全免费| 亚洲中文av在线| 男人和女人高潮做爰伦理| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆| 91av网站免费观看| 日本黄色片子视频| 国产单亲对白刺激| 国产伦人伦偷精品视频| 亚洲中文av在线| 男人和女人高潮做爰伦理| 国产aⅴ精品一区二区三区波| 国产免费男女视频| 后天国语完整版免费观看| 性色avwww在线观看| 国产v大片淫在线免费观看| 韩国av一区二区三区四区| ponron亚洲| 精品人妻1区二区| 国产成+人综合+亚洲专区| 日本一本二区三区精品| 黄色丝袜av网址大全| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 1024香蕉在线观看| 男人和女人高潮做爰伦理| 99久久成人亚洲精品观看| 国产av一区在线观看免费| 亚洲 欧美一区二区三区| 国产亚洲精品综合一区在线观看| 午夜精品久久久久久毛片777| 亚洲国产精品成人综合色| 51午夜福利影视在线观看| 99久久无色码亚洲精品果冻| 亚洲国产中文字幕在线视频| 成年版毛片免费区| av欧美777| a级毛片在线看网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 亚洲一区二区三区色噜噜| 日韩精品中文字幕看吧| 欧美日韩国产亚洲二区| 搞女人的毛片| 变态另类成人亚洲欧美熟女| 亚洲中文字幕日韩| 亚洲电影在线观看av| 亚洲av成人不卡在线观看播放网| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 亚洲无线观看免费| 国产一区二区在线观看日韩 | 听说在线观看完整版免费高清| 99热6这里只有精品| 中文字幕最新亚洲高清| 国产人伦9x9x在线观看| 国产精品一区二区免费欧美| 色视频www国产| 国产单亲对白刺激| 曰老女人黄片| 久久精品影院6| 成人性生交大片免费视频hd| 99国产精品99久久久久| www日本黄色视频网| 亚洲av第一区精品v没综合| 婷婷丁香在线五月| 一区二区三区激情视频| 成人特级av手机在线观看| 国产亚洲欧美98| 少妇熟女aⅴ在线视频| 热99在线观看视频| 在线观看午夜福利视频| 久久久久久久久免费视频了| 熟女电影av网| 哪里可以看免费的av片| 国产日本99.免费观看| 可以在线观看毛片的网站| 亚洲国产欧美网| 999久久久精品免费观看国产| 床上黄色一级片| aaaaa片日本免费| 亚洲欧美日韩东京热| 成人三级黄色视频| 色精品久久人妻99蜜桃| 精品久久久久久久人妻蜜臀av| 神马国产精品三级电影在线观看| 免费搜索国产男女视频| 成人欧美大片| 国内精品美女久久久久久| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 国产伦一二天堂av在线观看| avwww免费| 十八禁人妻一区二区| 一级毛片女人18水好多| 757午夜福利合集在线观看| 国产精品综合久久久久久久免费| 999久久久国产精品视频| 国产极品精品免费视频能看的| 国产综合懂色| 亚洲av五月六月丁香网| 亚洲国产欧洲综合997久久,| 亚洲精品456在线播放app | 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 精品久久久久久久人妻蜜臀av| 欧美日本视频| av天堂中文字幕网| 小说图片视频综合网站| 全区人妻精品视频| 一区福利在线观看| 一级作爱视频免费观看| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 中文字幕人妻丝袜一区二区| 亚洲九九香蕉| 国产精品 国内视频| 国产成人aa在线观看| 桃色一区二区三区在线观看| 成人三级做爰电影| 亚洲av中文字字幕乱码综合| 亚洲中文字幕一区二区三区有码在线看 | 九色成人免费人妻av| 免费在线观看成人毛片| 不卡av一区二区三区| 亚洲国产精品sss在线观看| 一二三四社区在线视频社区8| 免费高清视频大片| a级毛片a级免费在线| 国产精品爽爽va在线观看网站| 中国美女看黄片| 美女被艹到高潮喷水动态| 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 亚洲在线观看片| 91字幕亚洲| 国产黄色小视频在线观看| 国产精品av久久久久免费| 19禁男女啪啪无遮挡网站| 九九热线精品视视频播放| 亚洲人与动物交配视频| 超碰成人久久| 十八禁网站免费在线| 亚洲欧美激情综合另类| 99视频精品全部免费 在线 | 久久精品亚洲精品国产色婷小说| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 男插女下体视频免费在线播放| 嫩草影院入口| 亚洲人与动物交配视频| 黄色丝袜av网址大全| 亚洲成av人片在线播放无| 婷婷亚洲欧美| av中文乱码字幕在线| 国产精品,欧美在线| av视频在线观看入口| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 九色成人免费人妻av| 婷婷丁香在线五月| 波多野结衣高清无吗| 天天躁日日操中文字幕| 搡老熟女国产l中国老女人| 日本 av在线| 精品久久久久久久毛片微露脸| 欧美一区二区国产精品久久精品| 国产精品爽爽va在线观看网站| 琪琪午夜伦伦电影理论片6080| 免费大片18禁| 成人一区二区视频在线观看| 国产不卡一卡二| 久久久久九九精品影院| 国产精品电影一区二区三区| 1024香蕉在线观看| 国产成人欧美在线观看| 黄色 视频免费看| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 国内精品久久久久精免费| 九色国产91popny在线| 国产精品电影一区二区三区| 超碰成人久久| 九九热线精品视视频播放| 丰满人妻熟妇乱又伦精品不卡| 国内少妇人妻偷人精品xxx网站 | 欧美日韩瑟瑟在线播放| 久久久久久国产a免费观看| 亚洲精品乱码久久久v下载方式 | 成人欧美大片| 一级毛片女人18水好多| 男女那种视频在线观看| 国产成人av激情在线播放| 欧美乱色亚洲激情| 美女午夜性视频免费| 精品熟女少妇八av免费久了| 中文亚洲av片在线观看爽| 欧美性猛交黑人性爽| 国产久久久一区二区三区| 精品电影一区二区在线| 国产亚洲精品久久久com| 看片在线看免费视频| 免费在线观看影片大全网站| 日本五十路高清| 草草在线视频免费看| 国产三级黄色录像| 国模一区二区三区四区视频 | 天天添夜夜摸| 一级毛片精品| 久久精品国产清高在天天线| 国产激情久久老熟女| 97碰自拍视频| 欧美日韩一级在线毛片| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 亚洲成a人片在线一区二区| 91老司机精品| 中文字幕久久专区| 亚洲熟女毛片儿| 色噜噜av男人的天堂激情| 俺也久久电影网| 亚洲va日本ⅴa欧美va伊人久久| 国产黄a三级三级三级人| 久久伊人香网站| 欧美+亚洲+日韩+国产| 18美女黄网站色大片免费观看| 欧美日韩国产亚洲二区| 淫秽高清视频在线观看| 成人18禁在线播放| 久久国产精品影院| 我的老师免费观看完整版| 亚洲av成人av| 又大又爽又粗| 欧美一级毛片孕妇| 在线十欧美十亚洲十日本专区| 深夜精品福利| 少妇的丰满在线观看| 一区二区三区高清视频在线| 毛片女人毛片| 欧美日韩瑟瑟在线播放| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| 欧美日韩亚洲国产一区二区在线观看| 级片在线观看| 少妇熟女aⅴ在线视频| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| 久久久久久久午夜电影| 操出白浆在线播放| 少妇的逼水好多| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美免费精品| 国产伦一二天堂av在线观看| 亚洲性夜色夜夜综合| 一级毛片女人18水好多| 国产主播在线观看一区二区| 国产精华一区二区三区| 91麻豆av在线| 人人妻人人看人人澡| 身体一侧抽搐| 香蕉av资源在线| 99在线视频只有这里精品首页| 亚洲国产精品合色在线| 我要搜黄色片| 国产精品99久久久久久久久| 中文字幕熟女人妻在线| 9191精品国产免费久久| 草草在线视频免费看| 欧美色视频一区免费| 人人妻人人看人人澡| www.自偷自拍.com| 中文字幕人妻丝袜一区二区| 男女视频在线观看网站免费| 亚洲精品乱码久久久v下载方式 | 成在线人永久免费视频| 看黄色毛片网站| 岛国视频午夜一区免费看| 国产精品久久电影中文字幕| 日韩欧美精品v在线| bbb黄色大片| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 91在线观看av| 久久精品aⅴ一区二区三区四区| 久久精品综合一区二区三区| 午夜亚洲福利在线播放| 最近在线观看免费完整版| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 亚洲avbb在线观看| 精品国产三级普通话版| 亚洲avbb在线观看| 草草在线视频免费看| 午夜福利成人在线免费观看| 一区福利在线观看| 日本在线视频免费播放| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 美女免费视频网站| 午夜福利成人在线免费观看| www日本黄色视频网| 国内精品久久久久久久电影| 999精品在线视频| 毛片女人毛片| 成人av一区二区三区在线看| 最近在线观看免费完整版| 999久久久精品免费观看国产| 黄片大片在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 色综合婷婷激情| 久久久久久国产a免费观看| 国产激情欧美一区二区| 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| 国产精品九九99| 最新美女视频免费是黄的| 天天躁狠狠躁夜夜躁狠狠躁| 久久久色成人| 69av精品久久久久久| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 午夜a级毛片| 国内揄拍国产精品人妻在线| 男插女下体视频免费在线播放| 亚洲 欧美一区二区三区| 国产亚洲av高清不卡| 国产午夜精品久久久久久| 色视频www国产| 国内精品美女久久久久久| 69av精品久久久久久| 91老司机精品| 午夜福利欧美成人| 在线观看午夜福利视频| 黑人操中国人逼视频| 一区二区三区激情视频| 色在线成人网| 一个人免费在线观看的高清视频| 亚洲欧美日韩高清专用| 亚洲午夜理论影院| 最新中文字幕久久久久 | 美女高潮的动态| 国产精品国产高清国产av| 深夜精品福利| 欧美极品一区二区三区四区| 波多野结衣巨乳人妻| av在线蜜桃| 国产精品一区二区三区四区久久| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| 国产91精品成人一区二区三区| 国产麻豆成人av免费视频| 成人国产综合亚洲| 国产蜜桃级精品一区二区三区| 精品熟女少妇八av免费久了| 国内精品一区二区在线观看| 久久久久久久久久黄片| 免费在线观看成人毛片| 一个人看的www免费观看视频| 中文字幕人成人乱码亚洲影| 91久久精品国产一区二区成人 | 亚洲人成伊人成综合网2020| 国产激情偷乱视频一区二区| 91麻豆精品激情在线观看国产| 啪啪无遮挡十八禁网站| 99久久成人亚洲精品观看| 不卡一级毛片| 午夜影院日韩av| 亚洲精品中文字幕一二三四区| 操出白浆在线播放| 我的老师免费观看完整版| 日韩有码中文字幕| 午夜福利18| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 久久国产精品人妻蜜桃| 国产精品,欧美在线| 人妻丰满熟妇av一区二区三区| 99热只有精品国产| 精品国内亚洲2022精品成人| 国产精品九九99| 黑人操中国人逼视频| 男女之事视频高清在线观看| 久久国产精品影院| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 亚洲第一欧美日韩一区二区三区| 日本 av在线| 国产aⅴ精品一区二区三区波| 亚洲av成人av| 亚洲av成人一区二区三| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| 嫩草影视91久久| 国产成人欧美在线观看| 他把我摸到了高潮在线观看| 日日夜夜操网爽| 听说在线观看完整版免费高清| 天天一区二区日本电影三级| 18禁裸乳无遮挡免费网站照片| 身体一侧抽搐| 国产视频内射| 国产一区在线观看成人免费| 国产精品 欧美亚洲| 深夜精品福利| 黑人操中国人逼视频| 最近最新中文字幕大全免费视频| 亚洲中文字幕日韩| 中文字幕精品亚洲无线码一区| 欧美日本亚洲视频在线播放| 日韩有码中文字幕| 999精品在线视频| 中文字幕精品亚洲无线码一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久伊人香网站| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 91在线精品国自产拍蜜月 | 亚洲欧美日韩高清专用| 一区二区三区激情视频| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 中文字幕久久专区| 久久精品国产清高在天天线| 欧美3d第一页| 悠悠久久av| 一本一本综合久久| av天堂中文字幕网| a级毛片a级免费在线| 免费观看精品视频网站| 美女高潮喷水抽搐中文字幕| 成人一区二区视频在线观看| 我要搜黄色片| 女同久久另类99精品国产91| 麻豆成人午夜福利视频| 日韩欧美精品v在线| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 欧美激情在线99| 少妇熟女aⅴ在线视频| 舔av片在线| 看黄色毛片网站| 我要搜黄色片| 亚洲成人免费电影在线观看| 久99久视频精品免费| 美女免费视频网站| 亚洲人成网站高清观看| av在线天堂中文字幕| 激情在线观看视频在线高清| 真人一进一出gif抽搐免费| 最好的美女福利视频网| 黄色丝袜av网址大全| 一进一出好大好爽视频| 天堂影院成人在线观看| 久久人人精品亚洲av| 国内精品久久久久久久电影| 午夜视频精品福利| 一本久久中文字幕| 国产精品久久久久久久电影 | 青草久久国产| 久久欧美精品欧美久久欧美| 日韩欧美在线二视频| 床上黄色一级片| 国产精品乱码一区二三区的特点| 一本久久中文字幕| 国产av在哪里看| 黄色丝袜av网址大全| 欧美性猛交黑人性爽| 精品福利观看| 99国产精品一区二区蜜桃av| 亚洲av五月六月丁香网| 亚洲av熟女| 日韩国内少妇激情av| 我要搜黄色片| 国产亚洲精品一区二区www| or卡值多少钱| 一级毛片精品| 免费高清视频大片| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 国产精品一区二区免费欧美| 五月玫瑰六月丁香| 国产精品电影一区二区三区| 亚洲一区二区三区色噜噜| 久久精品综合一区二区三区| 一区二区三区国产精品乱码| 噜噜噜噜噜久久久久久91| 好看av亚洲va欧美ⅴa在| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 三级男女做爰猛烈吃奶摸视频| 国产成人影院久久av| 1000部很黄的大片| 在线观看日韩欧美| ponron亚洲| 一进一出抽搐动态| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 亚洲美女视频黄频| 国产久久久一区二区三区| 99久久精品热视频| 成人18禁在线播放| 国产精品一及| 国产综合懂色| 深夜精品福利| 午夜精品一区二区三区免费看| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看| 制服人妻中文乱码| 免费观看人在逋| 身体一侧抽搐| 亚洲国产中文字幕在线视频| 90打野战视频偷拍视频| 中文亚洲av片在线观看爽| 女人被狂操c到高潮| 亚洲av免费在线观看| 国产午夜精品论理片| www.www免费av| 12—13女人毛片做爰片一| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| av在线蜜桃| bbb黄色大片| 免费看a级黄色片| 精品日产1卡2卡| 国产伦精品一区二区三区视频9 | 精品久久久久久久人妻蜜臀av| 国产欧美日韩精品亚洲av| 国产激情偷乱视频一区二区| 黄色视频,在线免费观看| 天天一区二区日本电影三级| a级毛片在线看网站| 小说图片视频综合网站| а√天堂www在线а√下载| 色视频www国产| www.自偷自拍.com| 欧美丝袜亚洲另类 | 国产成人系列免费观看| 成人三级做爰电影| 九九久久精品国产亚洲av麻豆 | 女同久久另类99精品国产91| 在线观看午夜福利视频| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 宅男免费午夜| 成人高潮视频无遮挡免费网站| 亚洲人与动物交配视频| 久久中文看片网| 国内精品一区二区在线观看| 久久这里只有精品19| 亚洲精品色激情综合| 老熟妇乱子伦视频在线观看| 99久久精品国产亚洲精品| 88av欧美| 丁香六月欧美| 国产黄色小视频在线观看| 国产乱人伦免费视频| 高清毛片免费观看视频网站| 午夜福利在线观看免费完整高清在 | 亚洲第一电影网av| 国产精品女同一区二区软件 | 国产91精品成人一区二区三区| 日本一本二区三区精品| 日韩三级视频一区二区三区| 亚洲av成人一区二区三| 成人午夜高清在线视频|