• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-JPEG Compression Steganography Based on the High Tense Region Locating Method

    2019-04-29 03:21:34YangWuWeipingShangandJiahaoChen
    Computers Materials&Continua 2019年4期

    Yang Wu, Weiping Shang and Jiahao Chen

    Abstract: Robust data hiding techniques attempt to construct covert communication in a lossy public channel. Nowadays, the existing robust JPEG steganographic algorithms cannot overcome the side-information missing situation. Thus, this paper proposes a new robust JPEG steganographic algorithm based on the high tense region location method which needs no side-information of lossy channel. First, a tense region locating method is proposed based on the Harris-Laplacian feature point. Then, robust cover object generating processes are described. Last, the advanced embedding cost function is proposed. A series of experiments are conducted on various JPEG image sets and the results show that the proposed steganographic algorithm can resist JPEG compression efficiently with acceptable performance against steganalysis statistical detection libraries GFR (Gabor Filters Rich model) and DCTR (Discrete Cosine Transform Residual).

    Keywords: Robust data hiding, steganography, JPEG compression resistant, Harris-Laplacian feature.

    1 Introduction

    Steganography is now a fairly standard concept in computer science [Ker, Bas, B?hme et al. (2013)]. It focuses on establishing a stable and effective covert channel by using the public channel [Fridrich (2009)]. Thus, the secret information can be transmitted through public carrier with a supervising monitor by steganographic (stego) technology(especially in an enemy-controlled environment). At present, social and blog-like networks are gradually entering the daily life of human beings, and the images (most images are JPEG format in social networks) transmitted therein are of mass amount and spread widely. Thus, it is easy to cover up the stego images and the identities of covert communication users when the covert channel is established on such networks. However,such networks tend to use lossy compression algorithms to save computing power and network bandwidth in the transmitting process [Zhang, Luo, Yang et al. (2016)]. How to reduce the influence of such lossy operations on the embedded information is an essential problem of applying steganography in social networks.

    On this problem, Zhang et al. [Zhang, Luo, Yang et al. (2016)] first proposed the a steganography algorithm DCRAS (Discrete Cosine Relationship Adaptive Steangography)which is based on the relative relationship between DCT coefficients of adjacent8× 8 blocks in the same in-block position of JPEG images; Then, FRAS (Feature Region based Adaptive Steganography) algorithm [Zhang, Luo, Yang et al. (2017)] is proposed based on the invariant-feature-point region where the modified elements are concentrated in the hard-to-detect area to reach higher resisting performance against steganographic statistical detections [Pevny and Fridrich (2007); Kodovsky, Pevny and Fridrich (2010);Holub and Fridrich (2015); Denemark, Boroumand and Fridrich (2016); Ma, Luo, Li et al.(2018)]. In the JPEG compression channel, DCRAS and FRAS algorithms can extract the embedded information correctly with much higher probability than the traditional adaptive JPEG steganographic algorithms, such as NPQ (New Perturbed Quantization) [Huang, Luo,Huang et al. (2012)], UED (Uniform Embedding Distortion) [Guo, Ni and Shi (2012)], JUNIWARD (JPEG image UNIversal WAvelet Relative Distortion) [Holub, Fridrich and Denemark (2014)] and so on. It is worth noting that, as stated in the literature [Zhang, Luo,Yang et al. (2016); Zhang, Luo, Yang et al. (2017)], a necessary condition of the DCRAS and FRAS algorithms is that the sender needs to know the quality factor value of JPEG compression used in the lossy channel (named as side information). Furthermore, the generated stego image can only resist the JPEG compression whose quality factor value is same to the side information. When the side information is missing, the DCRAS and FRAS algorithms can hardly work properly in many compression situations [Zhang, Qin, Zhang et al. (2018); Bao, Luo, Zhang et al. (2018)].

    To improve the resistance against JPEG compression of steganography without the side information, an anti-JPEG compression steganography algorithm is designed in this manuscript. First, the region with strong anti-JPEG compression is proposed based on Harris-Laplacian transform. Second, the anti-JPEG cover generation method for borderless information and the corresponding embedding distortion function are given.Last, the concatenated error correction code is combined to elevate the extraction accuracy. The effectiveness of the proposed algorithm is verified by a series of comparative experiments on the standard steganalysis image library BOSSbase 1.01 against existing JPEG adaptive steganography, robust watermarking, DCRAS algorithm and FRAS algorithm for anti-JPEG compression and anti-statistical detection. The results imply that the proposed method can effectively resist JPEG compression under the condition of missing quality factor information with acceptable resistance performance to statistical detection.

    The paper has a simple structure. The knowledge of adaptive JPEG steganography and matrix embedding coding are introduced in Section 2 first. Then, Section 3 describes the details of proposed method. Last, the experimental results and conclusions are presented in Section 4 and Section 5 respectively.

    2 Related works

    In this section, the adaptive JPEG steganography and matrix embedding coding methods are briefly introduced in the following subsections.

    2.1 Adaptive JPEG steganography

    JPEG format is popular in the social networks for the high image quality and compression performance. Usually, most JPEG steganographic algorithms such as NPQ,UED and J-UNIWARD embed the secret message into the cover JPEG image by modifying the DCT (Discrete Cosine Transform) coefficients of it.

    In general, the original spatial image needs to perform color space conversion (from RGB domain to YUV domain) and down-sampling operation first. Then the three independent YUV sub-images are divided into continuous non-overlapping8× 8blocks respectively,and then independently perform discrete cosine transformation operation. The ready to stored DCT coefficients are gained after quantization and rounding processes. Because the inter-relationship between elements of U sub-image and V sub-image is sensitive, it is suggested to apply embedding process on Y sub-image to increase the security.Meanwhile, the Y sub-image store the luminance information, and researchers try to brief the JPEG image. Thus, the experiments of existing researches on JPEG steganography are focused on grayscale images which can ignore the effects of color space conversion and down-sampling processes. The experiments of this manuscript will also follow this setting and focus on grayscale images.

    At present, most popular JPEG adaptive steganographic algorithms consist of embedding cost function and steganographic embedding encoder. This framework is based on the minimum distortion model introduced by Fridrich et al. [Fridrich and Filler (2007)]. This architecture can concentrate the modifications caused by embedding on the DCT coefficients of smaller “cost value” in the embedding cost function. The anti-statistical detection capability of the algorithm is increased if the embedding cost function is well defined. Therefore, the anti-statistical detection capability of the JPEG steganographic algorithm under the framework is closely related to the embedding cost function. On this research, Holub et al. [Holub, Fridrich and Denemark (2014)] proposed the JPEG adaptive steganography algorithm J-UNIWARD, which is defined by The embedded distortion function is composed of decomposition coefficients of a plurality of twodimensional wavelets (two of which are perpendicular to each other), which can finely describe the smoothness of pixels in multiple directions, so that the embedded modification can be more concentrated to be difficult to detect. On the element, the embedded distortion function can be defined as:

    The symbolsXandYrepresent cover object and stego object respectively, the symbol J-1(.)represents the inverse DCT from the frequency domain to the spatial domain, and the symbolrepresents the uv-th decomposition coefficient of the r-th (r=1, 2, 3)wavelet (u and v represent the position of the two sub-waveletrespectively),ε>0is a constant value which is used to prevent the divisor from appearing 0, it is usually set to a small value, such asε=10-5.

    2.2 Robust steganography

    Zhang et al. [Zhang, Luo, Yang et al. (2016)] proposed a framework for designing robust steganography algorithm. This framework combines the traditional JPEG adaptive steganography algorithm with a famous robust watermarking algorithm, and tries to reach the goal of resisting the statistical detection and JPEG compression.

    Under this framework, on the sender:

    1 Determining the domain in which the robust steganographic embedding modification is performed.

    2 Determining the specific modification measurement on the domain in Step 1 to make the embedded information can effectively resist the lossy JPEG compression operation.

    3 Defining the embedding cost function according to the embedded modification measurement to reduce the influence on statistical aspect.

    4 Encoding the embedded secret information by using the error correction code to improve the robustness.

    5 Embedding secret information by STCs embedding algorithm and packaging the stego object to JPEG format.

    For the receiver, after receiving the JPEG image transmitted over the lossy channel:

    1 Reading the JPEG format image and the corresponding stego object in the domain.

    2 Extracting the information using the STCs extraction algorithm.

    3 Correcting the errors in the extracted information by the error correcting code, and finally obtaining the original embedded information.

    Under the framework above, the DCRAS and FRAS algorithms are proposed [Zhang,Luo, Yang et al. (2016); Zhang, Luo, Yang et al. (2017)], they can protect the embedded information against JPEG compression and statistical detection well. Nevertheless, the QF (quality factor) of JPEG compression used by the lossy channel should be known in advance (regard as side information) nor leading to significant decline in resisting JPEG compression, and the generated stego object can only resist the specific JPEG compression whose QF value is same to the pre-known QF.

    2.3 Harris-Laplacian feature

    At present, in the research of robust watermarking algorithms, the information embedding method for information protection through local image feature points has become one of its hot spots. The robust watermarking algorithm calculates the invariant feature points of the watermark carrier image, and then uses the feature point as a center point to generate a watermark embedded region and hides the information. The literature[Lu, Lu and Chung (2010)] uses filtering residuals to calculate and locate the feature points of the carrier image, and gives a normalization method for the regions delimited by the feature points, which can better guarantee the robustness of the embedded information. Using the idea of invariant feature points, a robust watermarking algorithm based on image Harris-Laplacian feature points are proposed in Tsai et al. [Tsai, Huang and Kuo (2011)]. It performs Harris-Laplacian transformation of the image and calculates its corresponding feature points, and selects feature regions to resist specific ones. Lossy operation improves the ability of the watermark information to resist multiple types of lossy attacks. At the same time, the literature [Tsai, Huang, Kuo et al. (2012)]demonstrates the effectiveness of such Harris-Laplacian transform image features in robust watermarking, and proposes a more robust and secure one based on the literature[Lu, Lu and Chung (2010)].

    3 Proposed method

    On the problem of eliminating QF side information in robust steganography and resisting JPEG compression with multiple QF values, a new anti-JPEG steganography based on a region location method is proposed in this section. Frist, the proposed region location method is proposed. Then, the improved cover generation method is described. Last, the proposed embedding cost function and the error correction method setting is briefly introduced.

    Notice that the proposed anti-JPEG steganography is under the framework in Section 2.2,and the diagram is shown in Fig. 1.

    Figure 1: Diagram of the proposed algorithm

    3.1 High tense region locating method based on Harris-Laplacian feature point

    A natural thought is that the complex-area of image will lose more information than the plain-area after processing JPEG compression. It is reasonable because the discrete cosine transform will concentrate the “energy” of image to the low frequency area, and the quantization and rounding processes cut the details of image to reach the goal of compression.

    However, in literature Lu et al. [Lu, Lu and Chung (2010)], a new idea is pointed that the edges of object in image owns strong robustness because they contains much more information about the corresponding object. Furthermore, the pixels of object edges in image are more suitable to be modified than the plain area pixels in most adaptive steganographic algorithms. Thus, this sub-section proposes a high tense region locating method based on the Harris-Laplacian feature point that can be rebuilt the embedding region after the stego image is compressed and the modified elements are concentrated in the complex-area.4

    The processes of the method are presented as follows:

    Step 1. Functions that convert image I into scale space L are defined as:

    where symbola=(i, j)denotes the spatial coordinates of a certain pixel of the image,function G denotes a standard Gaussian kernel function,σDdenotes a scale parameter of the kernel function, and “*” denotes a convolution calculation operation.

    Step 2. In order to characterize the local structure of the image in the scale space, the autocorrelation matrix is defined in the scale space obtained in Step 1:

    whereσIis the integral scale and Lxand Lyrepresent the first-order derivative function of the x-axis and y-axis directions, respectively, in the scale space.

    Step 3. An angle response functionc(a, σI, σD)is designed based on μ(a,σI,σD)to quantify the local curvature amplitude of the image(i, j)position pixel:

    where “det” represents matrix determinant, and symbol tr represents the trace of the matrix.The larger the value of the angle response function is, the greater the probability that the corresponding image pixel can be repositioned after being subjected to a lossy attack.

    Step 4. Laplacian-of-Gaussian operationLoG(a,σn)and combining the angle response functionc(a, σI, σD)are used to find the robust edgepixels of the object in multiple dimensions in the image. Selecting the pixels with the largest 1% value of the angle response functionc(a, σI, σD)in the image to be candidate points first. Then, the extreme point of the absolute value of the Gaussian-LaplacianLoG(a,σn)on σn∈{(1.1)i×1.5|i=1,2,...,n}is selected. The measure of determining the extreme points is: supposeσD=0.7, n=15 when f satisfies:

    The pixels selected by the above algorithm is named as “featurepixel with scale value σc=(1.1)i×1.5”, and form a sequence set C={a1,a2,...,ak}in order from left to right in the image from top to bottom.

    Step 5. The radius value r of several same-radius circles whose centers are the elements ofC={a1,a2,...,ak}are determined, and the embedding area are within the circles. The method of determining r iteratively is given by setting the initial value of r to 1 (the unit is the minimal distance between two pixels), and the t-th iteration steps are:

    (1) Counting the numberntof pixels within the circles whose centers are located by the feature pixels of the setCand the radius is the r of this literation.

    (2) If the length m of information to be embedded satisfies m ≥nt/3, then r=r+1 and enters the t+1 iteration.

    (3) If the length m of information to be embedded satisfies m

    This ensures that there are enough embedded points in the selected area.

    3.2 Generating cover object and modifying method

    To against the JPEG compression operation, a cover generating (Step 1 and Step 2) and the corresponding modifying method (Step 3 to Step 5) without side information is described as follows:

    Step 1. A set of non-overlapping8× 8DCT coefficient-blocks is obtained from the JPEG cover image. SymbolDk={Dk(i),i=1,2,...,64},k=1,2,...,mis used to denote the set where m is the number of DCT blocks, and scalars i and k denote the i-th coefficient in the k-th block (in order from left to right, up to bottom).

    Step 2. A n-element robust cover objectX={x1,x2,...,xn}is generated by:

    whereMkiis the rounded mean value of three neighbor-blocked DCT coefficients Dk1(i),Dk2(i),Dk3(i).

    Step 3. The robust virtual stego object Yobtained by modifying element values of cover objectX , and the mapping rule of applying the modifications to {Dk}1≤k≤Bis expressed by:

    Step 4. The stego object after suffering JPEG compression operation is denoted by symbol Y whose element,(1≤ j≤n)is:

    where the symbols D,Dk={(i),i=1,2,...,64} and {}k,irespectively denote the sets of DCT coefficients,8× 8blocks and neighboring mean values after JPEG compression.Step 5. The value ofσkiis obtained on:

    3.3 Design of embedding cost function and error correction method setting

    After the cover object is generated by Section 3.2, the embedding process and error correction method are applied to concentrate the modifications on the hard-to-detect area and increase the robustness.

    According to the typical steganographic scheme, the design of embedding cost function effects the detection resisting performance a lot because the embedding encoder STCs nearly reach the bound. The construction of embedding cost function used in Bao et al.[Bao, Luo, Zhang et al. (2018)] achieves good performance and it is expressed as:

    Even though xj=yj, the function value calculated by formula (10) is not “0” when xj=yj=1&Dk( i)<Mki+σkiand xj=yj=0&Dk( i)>Mki-σki.

    Because the STCs embedding encoder tries to concentrate the modifications on lowfunction-value elements, thus the element in the situations above cannot be fully used.Thus, a new embedding cost function DFpro(xj,yj)is proposed as follows:

    Then, error correction encoder RS (Reed and Solomon) is applied on secret information before using STCs algorithm. RS is set to parameter (40, 90) which means 40 input elements encoded to 90 output elements, and error diffusion method proposed in Bao et al.[Bao, Luo, Zhang et al. (2018)] are also used in this process to increase the robustness of cover object to against JPEG compression.

    4 Experiments

    In order to verify the effectiveness of the proposed method, experiments were conducted based on BOSSbase image library. First, the experimental setups and the used image database are introduced. Then, the anti-JPEG compression performance and anti-statistical detection performance of the proposed method are compared with the JPEG adaptive steganography algorithm J-UNIWARD [Holub, Fridrich and Denemark (2014)], robust watermarking algorithm [Chen, Ouhyoung and Wu (2000)], robust steganography algorithm DCRAS [Zhang, Luo, Yang et al. (2016)] and FRAS [Zhang, Luo, Yang et al. (2017)].

    4.1 Setups

    All the experiments presented in this section were performed on a personal computer equipped with Intel Core i7-8700 CPU (3.2 GHz) and Windows 10 system. The software used in the experiment is MATLAB R2017a, and the spatial image library used is BOSSbase 1.01 (proposed by Patrick Bas, Tomas Filler, Tomas Pevny on ICASSP 2013,the download address is: http://agents.fel.cvut.cz/stegodata/).

    In the experiment of anti-JPEG compression, the embedded information in the stego image is extracted after lossy compression of JPEG. The error rate of information extraction is used to measure the resistance of robust steganographic algorithm to JPEG compression. It is defined as the rate of error bits number in extracting information to the total bits number of embedded information.

    In the anti-detection performance experiment, two famous JPEG image statistical detection feature libraries GFR (Gabor Filters Rich model [Song, Liu, Yang et al. (2015)]) and DCTR (Discrete Cosine Transform Residual [Holub and Fridrich (2015)]) are used with ensemble classifier [Kodovsky, Fridrich and Holub (2012)]. Last, the test error of the ensemble classifier is used to measure the anti-detection performance of the steganography algorithm. The closer value to 50% means the stronger anti-detection performance.

    4.2 Anti-JPEG compression experiments

    In this section, the 10,000 JPEG images compressed with QF=75 is generated from BOSSbase 1.01 image database. The steganographic information is embedded by JUNIWARD [Holub, Fridrich and Denemark (2014)], robust watermarking algorithm[Chen, Ouhyoung and Wu (2000)], robust steganography algorithm DCRAS [Zhang, Luo,Yang et al. (2016)], FRAS [Zhang, Luo, Yang et al. (2017)] and the proposed method in this manuscript. The embedding rate is varied from 0.01 bpnzAC (bits per non-zero Alternating Current coefficient) to 0.10 bpnzAC with 0.01 interval on the BOSSbase library with the 5 different algorithms mentioned above. Each setting generates 10,000 stego images and they are JPEG compressed by quality factors of 65, 75 and 85. Then,the embedded information is extracted to count the error rate. It is worth noting that in order to simulate the lossy transmission of unbounded information, the side information used by the carrier generated by DCRAS algorithm in the experiment is QF=90. The error extraction rate counting results of JPEG compression attacks with QF=75, 85 and 95 are shown in Fig. 2.

    From the Figs. 2(a), 2(b), 2(c), we can see that the error rates of extracted information of J-UNIWARD, DCRAS and FRAS are about 50%. It means that they can hardly resist the damage on embedded information from JPEG compression. The DCRAS and FRAS lost the ability of resisting JPEG compressing when the side-information is missing. The proposed algorithm and the robust watermarking algorithm both have low error rate of information extraction under most JPEG compression conditions. Among different compression settings, the error extraction rates of the proposed algorithm in this manuscript can be reduced by 9.47% at most (JPEG compression attack with QF=65)compared with that of the watermarking algorithm. It is also noted that the error extraction rates decreases with the increase of the quality factor of JPEG compression attacks. In JPEG compression attacks with QF=75 and 85, the proposed algorithm can also guarantee the low error extraction rate. This is because the higher the quality factor of JPEG compression, the less image information lost during compression.

    Figure 2: Experimental results of anti-JPEG compression attack on different steganographic and robust watermarking algorithms: (a), (b) and (c) present the results under JPEG compression attack of quality factor=65, 75 and 85 respectively

    4.3 Statistical detection experiments

    In this section, a set of carrier images with a quality factor of 75 and 85 is generated from all 10,000 spatial images in the BOSSbase 1.01 image database, and then random secret information is embedded using robust watermarking algorithm [Chen, Ouhyoung and Wu(2000)], DCRAS [Zhang, Luo, Yang et al. (2016)], FRAS [Zhang, Luo, Yang et al.(2017)] algorihtmsand and the proposed algorithm. The embedding rate is varied from 0.01 bpnzAC to 0.10 bpnzAC with 0.01 interval, and 10,000 stego images are generated of each different embedding algorithms with different embedding rates. Then, we use two statistical detection features of GFR (contains 17,000 features) and DCTR (contains 8,000 features) to extract the features of the carrier and the carrier image. Then we use the extracted features from 5,000 random chosen cover-stego pairs to train the ensemble linear classifier, and then the trained classifier is applied on the remained 10,000 images(5,000 cover images and 5,000) in the image database. Distribution) is used to classify the ensemble classifier. The test error rates of classifier with GFR and DCTR features are shown in Tab. 1 and Tab. 2 respectively.

    Table 1: Experimental results of statistical detection under GFR feature library against different steganographic and robust watermarking algorithms (The QF of cover JPEG image=75 and 85, and the bolt numbers denotes the results under QF=85)

    Table 2: Experimental results of statistical detection under DCTR feature library against different steganographic and robust watermarking algorithms (The QF of cover JPEG image=75 and 85, and the bolt numbers denotes the results under QF=85)

    FRAS [Zhang, Luo, Yang et al. (2017)]0.4189 0.4328 0.3355 0.3543 0.2738 0.2821 0.2096 0.2245 0.1749 0.1803 Proposed Algorithm 0.3914 0.4108 0.1645 0.1539 Methods Embedding Rate (bpdzAC)0.2926 0.3104 0.2020 0.2177 0.1619 0.1765 0.06 0.07 0.08 0.09 0.1 Robust Watermarking Algorithm [Chen,Ouhyoung and Wu (2000)]0.0016 0.0016 0.0013 0.0014 0.0011 0.0013 0.001 0.0001 0.001 0.001 0.0517 0.0529 FRAS [Zhang, Luo, Yang et al. (2017)]DCRAS [Zhang, Luo, Yang et al. (2016)]0.1370 0.1448 0.1127 0.1202 0.0909 0.1001 0.0694 0.0721 0.0574 0.0627 Proposed Algorithm 0.1101 0.1143 0.1413 0.1487 0.1175 0.1259 0.0992 0.1051 0.0741 0.0793 0.0829 0.0903 0.0613 0.0676 0.0424 0.0471 0.0115 0.0109

    From the results of Tab. 1 and Tab. 2, it can be seen that the detection error rate of robust watermarking algorithm is very low. It is due to the primal design of watermarking is to make the embedded message can be detected even after suffering JPEG compression operation. Therefore, the stego image generated by the robust watermarking algorithm can be easily detected by statistical detection method. Compared with the side informed robust steganography algorithms DCRAS and FRAS, the proposed robust steganography algorithm loss little detection resistance at low embedding rate, while a sharp decline in detection resistance occurs at embedding rate higher than 0.05 bpnzAC. This phenomenon may be caused by the embedding regions selected by proposed method in 3.1 are nearly to the full image. It means that the region select strategy becomes useless in this case. Thus, to ensure security, the proposed robust steganography is suggested to work at a low embedding rate which owns strong anti-statistical detection ability.

    5 Conclusions

    In order to design robust steganography against JPEG compression without side information, this manuscript proposed a robust watermarking algorithm based on the high tense region method. The region locating method combines the LoG operator and robust steganography and cover generating method without side information is described. New embedding cost function is proposed on overcoming the defects of the existing function.Comparative experimental results show that the proposed algorithm can reach a high compression resistance on sacrifice a small part of the anti-statistical detection ability.How to overcome the resistance decline problem in high embedding rates and more kinds of lossy operation are our further researching interests.

    Acknowledgement:This work was supported by the National Key Research and Development Program (2016YFB0801601) and the Pilot Technology Transfer Innovation Reform of Xidian University (No. 90904180001).

    国产成人欧美在线观看| 网址你懂的国产日韩在线| 日韩欧美在线二视频| 老司机午夜十八禁免费视频| 国产v大片淫在线免费观看| 亚洲欧美精品综合久久99| 伦理电影免费视频| 亚洲在线观看片| 日本一本二区三区精品| 国产精品野战在线观看| 国产熟女xx| 欧美日韩精品网址| 亚洲成人免费电影在线观看| 亚洲一区二区三区色噜噜| 精品一区二区三区视频在线观看免费| 悠悠久久av| 在线永久观看黄色视频| 桃红色精品国产亚洲av| 久久人妻av系列| 亚洲最大成人中文| 美女大奶头视频| 偷拍熟女少妇极品色| 欧美日韩福利视频一区二区| 亚洲国产日韩欧美精品在线观看 | 国产伦精品一区二区三区视频9 | 亚洲欧美日韩高清专用| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 婷婷六月久久综合丁香| 国产精品久久久久久人妻精品电影| 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费人成视频x8x8入口观看| 黄色丝袜av网址大全| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 麻豆av在线久日| 校园春色视频在线观看| 在线国产一区二区在线| 日韩欧美精品v在线| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 搞女人的毛片| 日韩欧美精品v在线| 91av网站免费观看| 美女扒开内裤让男人捅视频| 欧美日韩综合久久久久久 | 成年免费大片在线观看| 欧美精品啪啪一区二区三区| 国产亚洲欧美在线一区二区| 亚洲色图 男人天堂 中文字幕| 法律面前人人平等表现在哪些方面| 在线观看舔阴道视频| 国产男靠女视频免费网站| 色综合站精品国产| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| 此物有八面人人有两片| 成在线人永久免费视频| 18禁黄网站禁片午夜丰满| 制服人妻中文乱码| 在线观看66精品国产| 亚洲美女视频黄频| 18禁美女被吸乳视频| 免费看日本二区| 特级一级黄色大片| 国产主播在线观看一区二区| 欧美xxxx黑人xx丫x性爽| 久久久国产成人精品二区| 国产成人av激情在线播放| 精品久久久久久久久久久久久| 给我免费播放毛片高清在线观看| 男插女下体视频免费在线播放| 亚洲精品中文字幕一二三四区| 淫秽高清视频在线观看| 亚洲精品久久国产高清桃花| 一进一出抽搐动态| 国产精品久久电影中文字幕| 亚洲成av人片在线播放无| 又紧又爽又黄一区二区| 久久欧美精品欧美久久欧美| 在线永久观看黄色视频| 观看美女的网站| a在线观看视频网站| 在线看三级毛片| 久久人妻av系列| 亚洲国产精品合色在线| 不卡一级毛片| 日韩欧美精品v在线| 国产高清视频在线观看网站| 国产成人精品无人区| 亚洲人与动物交配视频| 特级一级黄色大片| 在线永久观看黄色视频| 女警被强在线播放| 久久精品亚洲精品国产色婷小说| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 999精品在线视频| 久久久水蜜桃国产精品网| 18禁黄网站禁片午夜丰满| 国产亚洲精品av在线| 色在线成人网| a在线观看视频网站| 精品一区二区三区av网在线观看| 人妻夜夜爽99麻豆av| 国产成人福利小说| 国产69精品久久久久777片 | 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 国产午夜福利久久久久久| 欧美av亚洲av综合av国产av| 午夜免费观看网址| 日韩欧美免费精品| 午夜精品在线福利| 美女扒开内裤让男人捅视频| 小蜜桃在线观看免费完整版高清| 久久国产精品影院| 国产精品久久久久久亚洲av鲁大| 99热只有精品国产| 欧美zozozo另类| 精品一区二区三区视频在线 | 九色国产91popny在线| 亚洲自偷自拍图片 自拍| 亚洲一区二区三区色噜噜| 免费高清视频大片| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久av网站| 在线免费观看不下载黄p国产 | 精品久久久久久久末码| 免费一级毛片在线播放高清视频| 91av网一区二区| 日本 欧美在线| 国产在线精品亚洲第一网站| 精品久久久久久,| 亚洲av熟女| 国产精品永久免费网站| 午夜福利高清视频| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产 | 丝袜人妻中文字幕| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 99热精品在线国产| 91av网一区二区| 麻豆av在线久日| 国产激情欧美一区二区| 日韩欧美精品v在线| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频| 男女做爰动态图高潮gif福利片| 男插女下体视频免费在线播放| 一级毛片高清免费大全| 男女下面进入的视频免费午夜| 一本久久中文字幕| 一本综合久久免费| 欧美黑人欧美精品刺激| 色av中文字幕| 国产乱人视频| 国模一区二区三区四区视频 | 观看美女的网站| 精品久久久久久久久久久久久| 国产精品综合久久久久久久免费| 欧美黑人巨大hd| 脱女人内裤的视频| avwww免费| 久久久国产成人免费| 国产亚洲精品av在线| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 欧美日韩一级在线毛片| 久久精品亚洲精品国产色婷小说| 久久久久久久久久黄片| 欧美黄色淫秽网站| 午夜视频精品福利| 国产精品久久视频播放| 色综合婷婷激情| 少妇丰满av| 亚洲成av人片免费观看| 日韩精品中文字幕看吧| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 国产淫片久久久久久久久 | 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av| 亚洲精品美女久久av网站| 国产v大片淫在线免费观看| av福利片在线观看| 国产三级黄色录像| 午夜久久久久精精品| 91字幕亚洲| 国产精品 国内视频| 可以在线观看毛片的网站| 国产一区在线观看成人免费| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 九九热线精品视视频播放| 美女扒开内裤让男人捅视频| 此物有八面人人有两片| 亚洲五月天丁香| 中文字幕高清在线视频| 在线永久观看黄色视频| 久久草成人影院| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 国产高清三级在线| 日韩 欧美 亚洲 中文字幕| tocl精华| 日本成人三级电影网站| 亚洲av第一区精品v没综合| 伦理电影免费视频| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 视频区欧美日本亚洲| 国内毛片毛片毛片毛片毛片| 国内精品久久久久久久电影| 特级一级黄色大片| 男女下面进入的视频免费午夜| 久久精品91无色码中文字幕| 少妇的丰满在线观看| 在线国产一区二区在线| 欧美又色又爽又黄视频| 久久精品91蜜桃| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 久久久久久国产a免费观看| 一本一本综合久久| 特大巨黑吊av在线直播| 欧美激情在线99| 日本熟妇午夜| 亚洲国产精品sss在线观看| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 国产激情欧美一区二区| 久久精品人妻少妇| 亚洲精品粉嫩美女一区| www国产在线视频色| 亚洲电影在线观看av| 久久久国产精品麻豆| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 在线永久观看黄色视频| 很黄的视频免费| 日本熟妇午夜| 亚洲精品色激情综合| 国产精品亚洲av一区麻豆| 日本成人三级电影网站| 天堂动漫精品| 色综合婷婷激情| 999精品在线视频| 免费观看人在逋| 色av中文字幕| 国产精品一区二区免费欧美| 国产三级在线视频| 岛国在线免费视频观看| 丰满人妻熟妇乱又伦精品不卡| 中文亚洲av片在线观看爽| 国产一区二区三区在线臀色熟女| 狂野欧美激情性xxxx| 一个人看视频在线观看www免费 | 中文字幕av在线有码专区| 一a级毛片在线观看| 久久久久久久精品吃奶| 午夜成年电影在线免费观看| 九九在线视频观看精品| or卡值多少钱| www.熟女人妻精品国产| 成人av一区二区三区在线看| 久久久久久久久久黄片| 可以在线观看的亚洲视频| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 亚洲七黄色美女视频| 性欧美人与动物交配| 一个人看视频在线观看www免费 | 久久精品国产清高在天天线| 日韩高清综合在线| 啦啦啦观看免费观看视频高清| 日本免费一区二区三区高清不卡| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 免费高清视频大片| 在线免费观看不下载黄p国产 | 国产一区在线观看成人免费| 十八禁人妻一区二区| 日日夜夜操网爽| 国产熟女xx| 亚洲国产高清在线一区二区三| 观看美女的网站| 久久伊人香网站| 成年版毛片免费区| 亚洲精品色激情综合| 国模一区二区三区四区视频 | 无遮挡黄片免费观看| 国产高清有码在线观看视频| 欧美中文综合在线视频| 亚洲熟女毛片儿| 麻豆国产97在线/欧美| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩东京热| av欧美777| 真人一进一出gif抽搐免费| 亚洲成av人片在线播放无| 国产不卡一卡二| a在线观看视频网站| 日日摸夜夜添夜夜添小说| av国产免费在线观看| 91在线精品国自产拍蜜月 | 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 日韩欧美在线乱码| 国产伦在线观看视频一区| 成人18禁在线播放| 亚洲熟女毛片儿| 国产一区二区在线av高清观看| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 在线免费观看不下载黄p国产 | 日本免费一区二区三区高清不卡| а√天堂www在线а√下载| 亚洲人成网站高清观看| 亚洲精品在线观看二区| 亚洲国产精品成人综合色| 亚洲在线观看片| 午夜影院日韩av| 十八禁人妻一区二区| 少妇的逼水好多| 国产高清激情床上av| 国产真实乱freesex| 午夜两性在线视频| 成人无遮挡网站| 白带黄色成豆腐渣| 色精品久久人妻99蜜桃| 国产亚洲av高清不卡| 精品久久久久久久末码| 国产亚洲精品久久久久久毛片| 亚洲五月天丁香| 国产黄片美女视频| 母亲3免费完整高清在线观看| 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 国产精品98久久久久久宅男小说| 欧美黑人巨大hd| 欧美日韩精品网址| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 午夜精品在线福利| 一进一出抽搐gif免费好疼| 男人和女人高潮做爰伦理| 亚洲欧美精品综合一区二区三区| 免费人成视频x8x8入口观看| 免费无遮挡裸体视频| 性色av乱码一区二区三区2| 亚洲午夜理论影院| 国产精品日韩av在线免费观看| 免费观看精品视频网站| 美女高潮喷水抽搐中文字幕| 99热这里只有是精品50| 国产高清视频在线观看网站| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| 免费在线观看日本一区| 成年女人永久免费观看视频| 99热精品在线国产| 天堂√8在线中文| 国产高清三级在线| 十八禁网站免费在线| 天堂影院成人在线观看| 久久精品国产清高在天天线| 中文字幕最新亚洲高清| 1024香蕉在线观看| 日韩欧美国产在线观看| 亚洲18禁久久av| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久久久99蜜臀| 欧美大码av| 色综合亚洲欧美另类图片| 黄色丝袜av网址大全| 国产一区二区在线观看日韩 | 欧美另类亚洲清纯唯美| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 欧美色欧美亚洲另类二区| 变态另类成人亚洲欧美熟女| 女生性感内裤真人,穿戴方法视频| 欧美色欧美亚洲另类二区| 国产免费男女视频| 日本a在线网址| 高清在线国产一区| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 欧美日韩国产亚洲二区| 热99在线观看视频| 三级毛片av免费| 成人特级黄色片久久久久久久| 久久中文字幕一级| 亚洲精品乱码久久久v下载方式 | 国产精品一区二区精品视频观看| 天天添夜夜摸| 久久国产精品人妻蜜桃| 亚洲成人中文字幕在线播放| 女警被强在线播放| 精品福利观看| 黄频高清免费视频| 久久久久久久久中文| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 欧美又色又爽又黄视频| 欧美乱妇无乱码| 黄色成人免费大全| 最近视频中文字幕2019在线8| 一级毛片女人18水好多| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 男人舔女人下体高潮全视频| 久久热在线av| 成人特级av手机在线观看| 黑人操中国人逼视频| 日本免费a在线| 成人国产综合亚洲| 久久性视频一级片| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 久久婷婷人人爽人人干人人爱| 国产aⅴ精品一区二区三区波| 国产欧美日韩精品亚洲av| 成人精品一区二区免费| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| 欧美乱妇无乱码| 久久性视频一级片| 久久久久久人人人人人| 桃色一区二区三区在线观看| 国产精品香港三级国产av潘金莲| 观看免费一级毛片| 久久久久久久午夜电影| 成人高潮视频无遮挡免费网站| 中国美女看黄片| 三级国产精品欧美在线观看 | 国产高清激情床上av| 日本一本二区三区精品| 精品久久久久久久毛片微露脸| 在线十欧美十亚洲十日本专区| 成人无遮挡网站| 成人av一区二区三区在线看| 成人鲁丝片一二三区免费| 久久亚洲精品不卡| 99热这里只有是精品50| 亚洲性夜色夜夜综合| 国内精品一区二区在线观看| 亚洲成av人片免费观看| 亚洲精品一区av在线观看| 91麻豆av在线| 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合| 亚洲精品中文字幕一二三四区| 麻豆成人av在线观看| 别揉我奶头~嗯~啊~动态视频| 99国产极品粉嫩在线观看| 久久草成人影院| 午夜免费观看网址| 国产成人精品久久二区二区免费| 69av精品久久久久久| 欧美三级亚洲精品| x7x7x7水蜜桃| 99久久精品热视频| 真人做人爱边吃奶动态| 欧美激情在线99| 午夜福利在线观看免费完整高清在 | 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 宅男免费午夜| 国产成人精品久久二区二区免费| 母亲3免费完整高清在线观看| 老汉色∧v一级毛片| 欧美丝袜亚洲另类 | 脱女人内裤的视频| 一夜夜www| 日本黄色视频三级网站网址| 免费在线观看亚洲国产| 久久这里只有精品中国| 99热精品在线国产| 狠狠狠狠99中文字幕| 精品国产亚洲在线| 国产日本99.免费观看| avwww免费| 看免费av毛片| 日日干狠狠操夜夜爽| 精品国产亚洲在线| 首页视频小说图片口味搜索| 在线免费观看的www视频| 看黄色毛片网站| 色播亚洲综合网| 日韩欧美 国产精品| 欧美一级毛片孕妇| 亚洲av成人av| 超碰成人久久| 岛国在线免费视频观看| 久久久久国产精品人妻aⅴ院| 亚洲精品一区av在线观看| 免费高清视频大片| 国内精品久久久久精免费| 在线免费观看的www视频| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 搡老岳熟女国产| 中出人妻视频一区二区| 免费看a级黄色片| 国产视频内射| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美一区二区综合| www.www免费av| 国产精品国产高清国产av| 岛国在线免费视频观看| 免费看光身美女| cao死你这个sao货| 黄色日韩在线| 久久久久国内视频| 国产视频一区二区在线看| 男插女下体视频免费在线播放| 999精品在线视频| 操出白浆在线播放| 国产男靠女视频免费网站| 久久草成人影院| 午夜a级毛片| 99久久成人亚洲精品观看| 国产伦精品一区二区三区视频9 | 男女那种视频在线观看| 午夜亚洲福利在线播放| 三级国产精品欧美在线观看 | 国产高清视频在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美成狂野欧美在线观看| 搡老岳熟女国产| 99热精品在线国产| 亚洲国产精品成人综合色| 亚洲专区中文字幕在线| 日本三级黄在线观看| 成年女人永久免费观看视频| 免费av不卡在线播放| 在线看三级毛片| 在线免费观看的www视频| 搞女人的毛片| 后天国语完整版免费观看| 国产一区在线观看成人免费| 日日摸夜夜添夜夜添小说| 亚洲五月天丁香| 精品人妻1区二区| 欧美大码av| 性色av乱码一区二区三区2| 亚洲成人久久性| 欧美中文综合在线视频| a级毛片a级免费在线| av天堂中文字幕网| 桃色一区二区三区在线观看| 日本精品一区二区三区蜜桃| 国产毛片a区久久久久| 亚洲人成电影免费在线| 国产高清激情床上av| 黑人操中国人逼视频| 国产亚洲av嫩草精品影院| 91av网一区二区| 99久久精品一区二区三区| 国产精品 国内视频| 亚洲精品一区av在线观看| 亚洲在线观看片| 色播亚洲综合网| 婷婷精品国产亚洲av在线| 欧美大码av| 日本a在线网址| 成人av一区二区三区在线看| 亚洲精品乱码久久久v下载方式 | 亚洲欧美激情综合另类| 深夜精品福利| 又黄又爽又免费观看的视频| 欧美乱码精品一区二区三区| www.www免费av| 搡老岳熟女国产| 精品久久久久久久人妻蜜臀av| 一边摸一边抽搐一进一小说| 成人三级黄色视频| 国产1区2区3区精品| 高清毛片免费观看视频网站| 啦啦啦免费观看视频1| 丁香六月欧美| 18禁裸乳无遮挡免费网站照片| 亚洲真实伦在线观看| 久久午夜综合久久蜜桃| 日日干狠狠操夜夜爽| 此物有八面人人有两片| 亚洲人成网站高清观看| 男女视频在线观看网站免费| 国产av在哪里看| 一级毛片女人18水好多| 18美女黄网站色大片免费观看| 少妇人妻一区二区三区视频| 级片在线观看| 国产精品爽爽va在线观看网站| 白带黄色成豆腐渣|