• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures

    2019-04-29 03:21:20KhaderHamdiaHamidGhasemiXiaoyingZhuangNaifAlajlanandTimonRabczuk
    Computers Materials&Continua 2019年4期

    Khader M. Hamdia, Hamid Ghasemi, Xiaoying Zhuang , Naif Alajlan and Timon Rabczuk, ,

    Abstract: In this study, machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the flexoelectricity. We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters are selected to construct a deep neural network (DNN) model. They are the Young's modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric coefficients and the order of the shape function. The outputs of interest are the strain in the stress direction and the electric potential due flexoelectricity. The dataset are generated from the forward analysis of the flexoelectric model. 80% of the dataset is used for training purpose while the remaining is used for validation by checking the mean squared error. In addition to the input and output layers, the developed DNN model is composed of four hidden layers. The results showed high predictions capabilities of the proposed method with much lower computational time in comparison to the numerical model.

    Keywords: Flexoelectricity, Isogeometric analysis, Machine learning prediction, deep neural networks.

    1 Introduction

    In flexoelectric material, the coupling between polarization and strain gradient produces an electro electromechanical coupling due to a mechanical stress or an applied electric field. It exists in several materials. Though, flexoelectricity is possible in different dielectrics, including those with centrosymmetric crystal structures, and is thus a more general electromechanical coupling mechanism than piezoelectricity. Flexoelectricity in solids was introduced first in the 1950s by Mashkevich et al. [Mashkevich and Tolpygo(1957)] but received little attention. Recent developments, however, in nanotechnology have shed the light on flexoelectricity as a size dependent phenomenon due to the large strain gradients that are obtainable at small length scales. The effect of flecxoelectricty is much clear in nanostructures [Nguyen, Mao, Yeh et al. (2013); Krichen and Sharma(2016)]. In this regard, Micro-Nano electromechanical sensors and actuators are increasingly used in numerous applications providing high power density and allowing a broader range of material choice [Abdollahi and Arias (2015)] and hence micromechanical modeling is essential [Bek, Hamdia, Rabczuk et al. (2018)]. Among the emerging usage of flexoelectricity is the energy harvesters which promise to have one of the widest technological impact replacing the traditional batteries and showing a preferable environmentally alternative [Deng, Kammoun, Erturk et al. (2014)]. In particular, energy harvesters have been used to convert ambient mechanical energy into electrical energy [Priya and Inman (2009)].

    Despite the advantages offered by flexoelectricity, research in this field is still in its infancy.The well-known configurations to evaluate the effect of flexoelectricity by generating strain gradients in simple geometries are bending of thin cantilever beam and compression of truncated pyramids. Laboratory tests are limited in measuring, explaining and quantifying the key flexoelectric phenomena at specific conditions [Catalan, Lubk, Vlooswijk et al.(2011); Baskaran, He, Chen et al. (2011); Bhaskar, Banerjee, Abdollahi et al. (2016)].Besides, further theoretical basis studies have been presented to investigate the flexoelectric phenomena in various structures under different configurations [Sharma, Maranganti and Sharma (2007); Mao and Purohit (2015); Yang, Liang and Shen (2015)]. However,relatively few numerical works have been documented to simulate flexoelectricity. In this regard, fourth order partial differential equations (PDEs) of flexoelectricity has been solved in computational finite element (FE) methods [Abdollahi, Peco, Millán et al. (2014);Abdollahi, Millán, Peco et al. (2015); Mao, Purohit and Aravas (2016)]. A mixed finite element formulation is used to discretize the higher order equations of flexoelectricity[Nanthakumar, Zhuang, Park et al. (2017)]. Besides, mixed FE method was developed using Lagrangian multiplier method to relate the displacement field and its gradient [Deng,Deng, Yu et al. (2017); Deng, Deng and Shen (2018)]. A Non-Uniform Rational B-spline(NURBS) was adopted for the discretization of the solution of fourth order PDEs, where the flexoelectricity effect have been investigated by defining the enhancement in the energy conversion factor [Ghasemi, Park and Rabczuk (2017)].

    A distinct approach in this regard is the machine learning representation. Machine learning methods such as artificial neural networks (ANN) has recently proven to be a viable alternative approach to solve complex problems in material design. ANN is stochastic approach based on computational intelligence. It is based on correlating the inputs to the output/s parameters of interest by means of mathematics and statistics methods without the need to an explicit definition of the relationships between inputs and outputs. By using limited amount of training data, ANN has the ability to learn and identify the pattern rapidly. Also, future predictions of the problem can be predicted with much less effort. The classical ANN is composed of three layers: input, one hidden and output layers. Meanwhile, the architecture of deep neural network (DNN) is the same except it has more than two hidden layers. This allows DNN to provide a higher learning representation compared to the classical ANN.

    In this study, machine learning approach is presented to gain insight into better understanding the key phenomena governing the flexoelectricity in truncated pyramid structures. DNN is employed for the computational design to relate different input parameters with the predicted behavior aiming at finding low cost constitutive method.Using a set of data for the selected inputs, a numerical model is solved based on the NURBS-based IGA formulation. The input data and the corresponding flexoelectricity material responses form the dataset required to build the model. In the following section, a brief of the material and method used in this study are introduced. Then, Section 3 provides a discussion of the results. Finally, the paper is ended with summary in Section 4.

    2 Materials and method

    2.1 Numerical Modeling

    The linear continuum theory is well known for modeling flexoelectricity in which a fourth-order flexoelectric coupling tensor is proposed. The electric polarization is a sum of the effects from the dielectric and piezoelectric responses, and the linear polarization response due to the flexoelectricity [Yudin and Tagantsev (2013)]. Mathematically, the relation between the electric polarization, P and the associated strain, ?, due to mechanical stress is

    where E is the macroscopic electric field, κ is the second-order dielectric tensor, e is the third order piezoelectric tensor, ? is the strain tensor, μ is the fourth-order (including both direct and converse effects) flexoelectric tensor, and ?? is the spatial gradient of ?[Sharma, Maranganti and Sharma (2007); Catalan, Sinnamon and Gregg (2004)].Because of the high-order spatial derivatives term in Eq. (1), conventional finite elements cannot be applied to solve the system. Hence, a Non-Uniform Rational B-spline (NURBS)has been developed recently for discretization in order to solve the continuum equations of flexoelectricity in 2D [Ghasemi, Park and Rabczuk (2017)]. The truncated pyramid under compression load is one of the common configuration in determining the effect of flexoelectricity. We consider two-dimension truncated pyramid geometries with unit width (truncated triangle) by assuming an isotropic linear elasticity under plane strain conditions. Fig. 1 depicts the geometry and the boundary conditions. At the top surface, a uniformly distributed force, F is applied in the negative direction of Y-axis, while the bottom is mechanically fixed. The electric potential is fixed to zero at the top and is constant but unknown at the bottom.

    Figure 1: Geometry and boundary conditions for the truncated pyramid problem

    The upper face has a length of a1that is linearly increasing function of the depth up to a2.Due to the difference in the surface areas of the top and bottom surfaces, the applied force generates different tractions at the top and bottom surfaces, resulting in a strain gradients and accordingly a flexoelectric polarization is generated. A simple analytical formulation to estimate the effective piezoelectric constant accounting for the flexoelectricity in one-dimensional analysis (i.e., only the effect of the longitudinal flexoelectric coefficient, μ11) was presented by Cross and co-workers [Cross (2006); Zhu,Fu, Li et al. (2006)]. Nevertheless, in the purpose of this study we provide computational modeling based on two dimensional flexoelectricity effect.

    2.2 Machine learning representation

    To model the relation between the inputs and output parameters machine learning modeling can be designed through a predefined training process. The objective of is to build an approximation function (f) that maps the relation between the inputs (x) and the outputs (Y). Based on biological learning, ANN in the form of multilayer feedforward networks is adopted in this study. It contains a large number of interconnected processing units called neurons or nodes [Hamdia, Lahmer, Nguyen-Thoi et al. (2015); Hamdia,Arafa and Alqedra (2018)]. These units are grouped together into three or more layers where the neighboring layers are connected by weights forming a large network. The first layer receives information from the input parameters and transmits it to one or several hidden layers, and then evaluates the predictions through the output layer. The network learns by analyzing multiple datasets and adjusting connection weights [Haykin (1999)].We use neural network with multiple hidden layers called deep neural network (DNN). It uses gradient descent forms for training (updating the weights and bias) via the backward propagation algorithm. Inputs from previous layers are linked to a neuron by the corresponding weights and bias. The weighted sums are applied to an activation function to determine the neuron output, see Fig. 2. The neuron receives data from the preceding layer and consequently proceeds it to the next layer. The tan-sigmoid is considered as the activation function for the hidden layer because it has yielded higher prediction accuracy.The output signal for the j-th neuron is expressed as

    where, n is the number of neurons in the preceding layer and Oj-1is its output signal,while wijand bjare the connecting weights and the bias. Finally the signal from the neurons of the last hidden layer is passed to the output layer [Rafiq, Bugmann and Easterbrook (2001)]. The network learns iteratively from several datasets. The predicted outputs are compared with target outputs and accordingly the weights and bias of the neural network are updated to minimize the mean squared error (MSE). For training(updating the weights and bias) gradient descent forms are used with Levenberg-Marquardt training algorithm via the error back-propagation (BP) method.

    Figure 2: The structure of an artificial neuron

    3 Results

    In our analysis, we consider material parameters that fit the behavior of single crystals of barium titanate (BaTiO3). The length of the top and bottom faces are, respectively, a1=750 μm and a2=2250 μm discretized by 45×30 grid of B-spline elements. It is made of nonpiezoelectric material obtained through setting e31=0. The Poisson’s ratio (ν) is found to have insignificant effect [Hamdia, Ghasemi, Zhuang et al. (2018)] and hence fixed at 0.37,whereas Young’s modulus Efis taken into account as input parameter. There are also two dielectric permittivity constant κ11and κ33. The longitudinal and transversal flexoelectric coefficients μ11and μ12are considered. Their measurements have shown a high scatter in the experimental investigation which in turn greatly exceed theoretical estimates. We adopt a range of variation of [10-105] nC/m to define this scatter. In addition to these material parameters, the order of the shape function (p) in the x and y-directions is introduced.

    Accordingly, we have six input parameters to model the behaviour of flexoelectricity. The the input parameters and their variation are listed in Tab. 1.

    Table 1: The variation of the input parameters

    DNN is developed to construct a relation between the addressed input parameters and the corresponding behaviour in each element. The most accurate architecture (minimum mean squared error) is found to be composed of four hidden layers with 30 neurons, 25 neurons, 25 neurons, and 20 neurons, respectively. The DNN model has been constructed by assigning 80% of the data as training data set. The remaining is assigned for testing and validation purpose. Two outputs of are studied using the DNN. They are the distributions of strain in the direction of the applied stress, ?22, and the electric potential,θ. The computational results and the predictions of the DNN as well are shown in Figure 3 for a randomly selected sample. It illustrates, the distribution of the electric potential due to the mechanical load and the produced strain (?22).

    Figure 3: The computational results (a) and the DNN modeling predictions (b) for the Truncated pyramid problem in the distribution of the electric potential, θ, (left), and the strain, ?22, (right)

    The electric potential and the strain are vary along the entire geometry due to variation of strain gradient that caused by the applied uniform force. Sharp changes of the strain and electric potential near the corners are observed. At the surface subjected to the load(upper face), the electric potential is much lower than those away. The highest values of the electric potential are produced at the inclined surfaces. As expected, also, the upper surface is undergoing compressive strain and decays gradually as going away from it.The predictions of DNN and the computational results are in tune. Nevertheless, the DNN predicts the strain (?22) with higher accuracy. The reason could be that the distribution of the electric potential has higher gradients across the full domain. A more refined discretization for the B-spline elements may improve the results. In spite of the discrepancies in the distribution of the electric potential, the predicted behaviour and results, which have been obtained by a sufficiently fine discretization, are in good agreement with the benchmark example of Abdollahi et al. [Abdollahi, Peco, Millán et al.(2014)] from the point of view both the values and the field distribution.

    4 Summary

    In the flexoelectric materials, the polarization is related to not only the strain as in pizoelectric materials, but also to the gradient of strain that enhances their energy conversion efficiency. The truncated pyramid under compression is one of the common configuration to evaluate the flexoelectricity effect in nanostructures. In this set-up, significant strain gradients are generated due to the differences in the areas of the widths of the top and bottom surfaces. In this study, the governing equations of flexoelectricity were modeled by a NURBS-based IGA formulation as ground truth for machine learning representation. We investigated 2D system (truncated triangle) with an isotropic linear elasticity under plane strain conditions. It was discretized by 45×30 grid of B-spline elements.

    Subsequently, an on-demand property prediction model based deep neural networks(DNN) algorithm was developed to define a mapping between the input parameters and the output of interest. Six input parameters defining the material properties of barium titanate (BaTiO3) were selected to establish the database. Meanwhile the strain in stress direction and the electric potential due flexoelectricity have been evaluated.

    The database has been divided randomly into two groups: training and testing datasets.Among variety of architectures that has been trained, a DNN model composed by four hidden layers with 30 neurons, 25 neurons, 25 neurons, and 20 neurons, respectively was found to be the most accurate structure with minimum mean squared error. The predictions of DNN revealed high accuracy predictions compared to the corresponding actual highly demanding computational model. It has been found that at the top surface(with lower area), the electric potential was less than those away and its highest values were produced at the inclined surfaces.

    Acknowledgement:The authors extend their appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University for funding this work.

    国产精品女同一区二区软件| 成人一区二区视频在线观看| 最近2019中文字幕mv第一页| 最近的中文字幕免费完整| 国产精品美女特级片免费视频播放器| 亚洲国产精品国产精品| 麻豆一二三区av精品| 日韩精品中文字幕看吧| 欧美激情国产日韩精品一区| 免费在线观看影片大全网站| 亚洲成人精品中文字幕电影| 香蕉av资源在线| 成年女人永久免费观看视频| 色播亚洲综合网| 一个人观看的视频www高清免费观看| 成人午夜高清在线视频| 99国产精品一区二区蜜桃av| 俺也久久电影网| aaaaa片日本免费| 国产成人a区在线观看| 国产综合懂色| 国产亚洲精品av在线| 国产成人一区二区在线| 三级经典国产精品| 成人av一区二区三区在线看| 国产午夜精品久久久久久一区二区三区 | 亚洲精品影视一区二区三区av| 少妇的逼好多水| 综合色丁香网| 国产精品久久久久久久久免| 亚洲欧美日韩东京热| 久久久久国产网址| 欧美bdsm另类| 国产av不卡久久| 欧美zozozo另类| 国产精品久久久久久久久免| 波野结衣二区三区在线| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| 天堂av国产一区二区熟女人妻| 丰满的人妻完整版| 99riav亚洲国产免费| 国产av一区在线观看免费| 一个人看视频在线观看www免费| 亚洲一区二区三区色噜噜| 高清日韩中文字幕在线| 一本久久中文字幕| av黄色大香蕉| 不卡一级毛片| 91久久精品国产一区二区三区| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 男人舔奶头视频| a级毛片免费高清观看在线播放| 久99久视频精品免费| 联通29元200g的流量卡| 日产精品乱码卡一卡2卡三| 亚洲无线在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲在线观看片| 精品一区二区三区视频在线观看免费| 国产高清视频在线观看网站| 亚洲最大成人手机在线| 国产激情偷乱视频一区二区| 嫩草影视91久久| 久久久精品94久久精品| 男人狂女人下面高潮的视频| 看免费成人av毛片| 久久久久久久久大av| 一区二区三区免费毛片| 黄色欧美视频在线观看| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| 别揉我奶头 嗯啊视频| 人人妻人人澡人人爽人人夜夜 | 久久久久性生活片| 国产免费男女视频| 国产蜜桃级精品一区二区三区| 亚洲精品影视一区二区三区av| 久久精品国产亚洲av天美| 亚洲精品一卡2卡三卡4卡5卡| 在线观看一区二区三区| 国产精华一区二区三区| 成人精品一区二区免费| 91av网一区二区| 69人妻影院| 特大巨黑吊av在线直播| 女同久久另类99精品国产91| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 2021天堂中文幕一二区在线观| 超碰av人人做人人爽久久| 啦啦啦啦在线视频资源| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 国产激情偷乱视频一区二区| 少妇被粗大猛烈的视频| 久久午夜福利片| 国产大屁股一区二区在线视频| 你懂的网址亚洲精品在线观看 | 五月伊人婷婷丁香| 久久九九热精品免费| 亚洲丝袜综合中文字幕| 日韩中字成人| 一本一本综合久久| 91在线观看av| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 亚洲最大成人中文| 免费电影在线观看免费观看| 韩国av在线不卡| 尾随美女入室| 99热网站在线观看| 18禁在线无遮挡免费观看视频 | 久久久精品欧美日韩精品| 国产亚洲欧美98| 黄色一级大片看看| 亚洲熟妇中文字幕五十中出| 成人二区视频| 亚洲成人av在线免费| 色综合亚洲欧美另类图片| 日本欧美国产在线视频| 日韩一区二区视频免费看| 99国产极品粉嫩在线观看| 嫩草影院新地址| 亚洲国产精品久久男人天堂| 我的老师免费观看完整版| 久久精品综合一区二区三区| 夜夜夜夜夜久久久久| 免费看光身美女| 亚洲欧美成人综合另类久久久 | 99久久无色码亚洲精品果冻| 国产探花在线观看一区二区| eeuss影院久久| av在线播放精品| 国产乱人偷精品视频| 不卡一级毛片| 狠狠狠狠99中文字幕| 亚洲人成网站在线播| 在线观看免费视频日本深夜| 狂野欧美激情性xxxx在线观看| 欧美3d第一页| 精品一区二区三区视频在线观看免费| 欧美一区二区国产精品久久精品| 精品久久久久久成人av| 午夜福利高清视频| 欧美在线一区亚洲| 亚洲在线自拍视频| 国产精品无大码| 亚洲精品影视一区二区三区av| 成人美女网站在线观看视频| 国产一区二区三区av在线 | 99久久成人亚洲精品观看| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品| 直男gayav资源| 久久精品91蜜桃| 97在线视频观看| 一进一出抽搐动态| 成人欧美大片| 一a级毛片在线观看| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 成人特级黄色片久久久久久久| 国产精品久久久久久精品电影| 一区二区三区四区激情视频 | 又黄又爽又刺激的免费视频.| 黄色日韩在线| 婷婷六月久久综合丁香| 天天躁日日操中文字幕| 欧美成人精品欧美一级黄| 中国美白少妇内射xxxbb| 九九热线精品视视频播放| 亚洲精品国产av成人精品 | 午夜福利在线在线| 亚洲国产欧美人成| 可以在线观看的亚洲视频| 亚洲三级黄色毛片| 不卡视频在线观看欧美| 神马国产精品三级电影在线观看| 天堂动漫精品| 亚洲va在线va天堂va国产| 校园春色视频在线观看| 亚洲国产精品合色在线| 国产精品福利在线免费观看| 美女 人体艺术 gogo| 亚洲一区高清亚洲精品| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 亚洲精品粉嫩美女一区| 午夜福利视频1000在线观看| 蜜桃久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 一a级毛片在线观看| av卡一久久| 99久久成人亚洲精品观看| 日本成人三级电影网站| 少妇被粗大猛烈的视频| 搡老妇女老女人老熟妇| 国产美女午夜福利| 天堂av国产一区二区熟女人妻| 中文字幕av成人在线电影| 精品乱码久久久久久99久播| 一区福利在线观看| 91久久精品国产一区二区成人| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 中国美女看黄片| 看黄色毛片网站| 一区福利在线观看| 午夜激情福利司机影院| 看十八女毛片水多多多| 18禁在线播放成人免费| 午夜精品一区二区三区免费看| 午夜福利18| 最近手机中文字幕大全| 伦理电影大哥的女人| 国产亚洲91精品色在线| av黄色大香蕉| 亚洲美女黄片视频| 国产欧美日韩一区二区精品| 黄色一级大片看看| 九九热线精品视视频播放| 国内久久婷婷六月综合欲色啪| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 国产精品国产高清国产av| 久久精品影院6| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| 日日干狠狠操夜夜爽| 99精品在免费线老司机午夜| 99热网站在线观看| 最新在线观看一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 免费大片18禁| 日本在线视频免费播放| 变态另类成人亚洲欧美熟女| 在线观看一区二区三区| 日韩人妻高清精品专区| 国产精品久久久久久精品电影| 波多野结衣高清作品| or卡值多少钱| 99热全是精品| 国产伦一二天堂av在线观看| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 国产一区亚洲一区在线观看| 国产欧美日韩一区二区精品| 小蜜桃在线观看免费完整版高清| 神马国产精品三级电影在线观看| 九色成人免费人妻av| 乱系列少妇在线播放| av在线亚洲专区| 日韩精品有码人妻一区| 99久久无色码亚洲精品果冻| 尤物成人国产欧美一区二区三区| 熟女电影av网| 少妇的逼好多水| 欧美色欧美亚洲另类二区| 亚洲欧美成人精品一区二区| 最好的美女福利视频网| 最近中文字幕高清免费大全6| 校园春色视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲成人久久性| 中国国产av一级| 精品人妻熟女av久视频| 亚洲在线观看片| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 亚洲不卡免费看| av.在线天堂| 国产精品人妻久久久影院| 国产精品一区www在线观看| 国产精品不卡视频一区二区| 国产探花在线观看一区二区| videossex国产| 亚洲中文日韩欧美视频| 97人妻精品一区二区三区麻豆| 久久午夜亚洲精品久久| 国产成人a∨麻豆精品| 亚洲久久久久久中文字幕| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 可以在线观看的亚洲视频| 免费看光身美女| 日韩三级伦理在线观看| 欧美丝袜亚洲另类| 网址你懂的国产日韩在线| 国产高清激情床上av| videossex国产| 大又大粗又爽又黄少妇毛片口| 大型黄色视频在线免费观看| 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片| 成年女人看的毛片在线观看| 欧美性猛交黑人性爽| 午夜精品国产一区二区电影 | 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 久久6这里有精品| 国产大屁股一区二区在线视频| 免费在线观看影片大全网站| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 男女啪啪激烈高潮av片| av在线播放精品| 免费一级毛片在线播放高清视频| 色哟哟·www| 午夜精品一区二区三区免费看| 久久久久久伊人网av| 校园春色视频在线观看| 最新中文字幕久久久久| 中出人妻视频一区二区| 日本色播在线视频| 女的被弄到高潮叫床怎么办| av国产免费在线观看| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 男插女下体视频免费在线播放| 一个人看的www免费观看视频| 成人午夜高清在线视频| 搞女人的毛片| 搡老妇女老女人老熟妇| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 亚洲无线观看免费| 校园人妻丝袜中文字幕| 搞女人的毛片| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| 黄色视频,在线免费观看| 小蜜桃在线观看免费完整版高清| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 欧美一区二区国产精品久久精品| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 免费一级毛片在线播放高清视频| 丰满乱子伦码专区| 18+在线观看网站| 成人特级av手机在线观看| 日韩一区二区视频免费看| 长腿黑丝高跟| 成人一区二区视频在线观看| 成年女人永久免费观看视频| 人人妻人人看人人澡| 色综合站精品国产| 国产亚洲精品av在线| 日韩强制内射视频| 色5月婷婷丁香| 乱人视频在线观看| 内射极品少妇av片p| 一级毛片久久久久久久久女| 国产成人freesex在线 | 12—13女人毛片做爰片一| 午夜精品在线福利| av在线蜜桃| 1024手机看黄色片| 男女啪啪激烈高潮av片| 国产精品一二三区在线看| 午夜福利在线在线| 成人二区视频| 成人国产麻豆网| 国产91av在线免费观看| 久久精品国产亚洲av香蕉五月| 亚洲不卡免费看| 99久久精品热视频| 乱码一卡2卡4卡精品| 久久精品国产清高在天天线| 精品久久久噜噜| 国产男人的电影天堂91| 可以在线观看毛片的网站| 少妇的逼好多水| 99久久精品一区二区三区| 有码 亚洲区| 国产av麻豆久久久久久久| 国产精品三级大全| 中文字幕av在线有码专区| 亚洲最大成人av| av在线亚洲专区| 欧美日韩乱码在线| 国产精品国产高清国产av| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 一本久久中文字幕| 国产精品综合久久久久久久免费| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| a级毛色黄片| 亚洲成人精品中文字幕电影| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区| 一边摸一边抽搐一进一小说| 国产探花极品一区二区| 国产高清视频在线观看网站| 免费黄网站久久成人精品| 午夜影院日韩av| 热99re8久久精品国产| 国产亚洲精品av在线| 三级经典国产精品| 嫩草影院新地址| 国产午夜精品论理片| АⅤ资源中文在线天堂| 蜜桃久久精品国产亚洲av| 欧美日韩在线观看h| 午夜激情欧美在线| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 成人永久免费在线观看视频| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 久久精品人妻少妇| 99九九线精品视频在线观看视频| 国产91av在线免费观看| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 久久久久国产网址| 久久久精品欧美日韩精品| 国产色婷婷99| 国产蜜桃级精品一区二区三区| 中出人妻视频一区二区| 亚洲av中文av极速乱| 精品一区二区三区视频在线| 在线观看66精品国产| 狠狠狠狠99中文字幕| 久久久a久久爽久久v久久| 亚洲中文日韩欧美视频| 国产精品一及| 蜜桃亚洲精品一区二区三区| 亚洲美女黄片视频| 成人无遮挡网站| 欧美绝顶高潮抽搐喷水| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 久久精品国产清高在天天线| 又爽又黄a免费视频| 国产伦精品一区二区三区视频9| 亚洲av电影不卡..在线观看| 精品久久久久久久久亚洲| 日本黄色片子视频| 亚洲av中文av极速乱| 国产美女午夜福利| 午夜福利高清视频| 可以在线观看的亚洲视频| 亚洲一区二区三区色噜噜| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 亚洲五月天丁香| 免费av观看视频| 国产午夜精品论理片| 少妇的逼好多水| 最近最新中文字幕大全电影3| 久久99热这里只有精品18| 国产精品一二三区在线看| 91久久精品电影网| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 欧美性感艳星| 成人一区二区视频在线观看| 久久久成人免费电影| 成人鲁丝片一二三区免费| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 又黄又爽又刺激的免费视频.| 男女做爰动态图高潮gif福利片| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 日本a在线网址| 赤兔流量卡办理| 亚洲18禁久久av| 久久久久久久久久久丰满| 村上凉子中文字幕在线| 国产美女午夜福利| 亚洲真实伦在线观看| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 成年女人毛片免费观看观看9| 国产 一区精品| 国产精品一区www在线观看| 男人舔奶头视频| 三级毛片av免费| 免费看a级黄色片| 国产亚洲欧美98| 亚洲精品日韩av片在线观看| 国产精品伦人一区二区| 少妇人妻一区二区三区视频| 国产视频内射| 亚洲自拍偷在线| 干丝袜人妻中文字幕| 国产精品无大码| 欧美中文日本在线观看视频| 婷婷色综合大香蕉| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 欧美3d第一页| 亚洲欧美日韩无卡精品| 性欧美人与动物交配| 国产精品福利在线免费观看| 又爽又黄无遮挡网站| 日韩中字成人| 精品久久久久久成人av| 热99在线观看视频| 别揉我奶头 嗯啊视频| 久久久成人免费电影| 精品人妻一区二区三区麻豆 | 亚洲乱码一区二区免费版| 日本黄色片子视频| 亚洲精品成人久久久久久| 特大巨黑吊av在线直播| 久久精品久久久久久噜噜老黄 | 综合色av麻豆| 18+在线观看网站| 俄罗斯特黄特色一大片| 久久亚洲国产成人精品v| 亚洲最大成人av| 亚洲性久久影院| 亚洲av一区综合| 久久鲁丝午夜福利片| 69人妻影院| 变态另类成人亚洲欧美熟女| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 久久精品91蜜桃| 国产片特级美女逼逼视频| 身体一侧抽搐| 三级毛片av免费| av天堂在线播放| 亚洲成a人片在线一区二区| 亚洲真实伦在线观看| 夜夜夜夜夜久久久久| 少妇人妻一区二区三区视频| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 国产精品永久免费网站| www.色视频.com| 成人美女网站在线观看视频| 国产一区二区在线av高清观看| 黄色欧美视频在线观看| 久久久久久久午夜电影| 中文资源天堂在线| 一级毛片久久久久久久久女| 久久鲁丝午夜福利片| 亚洲婷婷狠狠爱综合网| 中文亚洲av片在线观看爽| 一级毛片我不卡| 色哟哟哟哟哟哟| 国产淫片久久久久久久久| 91午夜精品亚洲一区二区三区| 少妇熟女欧美另类| 一级a爱片免费观看的视频| 成年av动漫网址| 国产精品,欧美在线| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 国产精品不卡视频一区二区| 亚洲av熟女| 久久精品91蜜桃| 国产黄色视频一区二区在线观看 | 在线播放国产精品三级| 国产精品免费一区二区三区在线| 日韩大尺度精品在线看网址| 露出奶头的视频| 免费看光身美女| 亚洲五月天丁香| 国产女主播在线喷水免费视频网站 | 久久久久久国产a免费观看| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 成人高潮视频无遮挡免费网站| 久久天躁狠狠躁夜夜2o2o| 99久久久亚洲精品蜜臀av| 欧美3d第一页| 免费电影在线观看免费观看| 免费一级毛片在线播放高清视频| 国产精品女同一区二区软件| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 国产探花极品一区二区| 亚洲五月天丁香| 永久网站在线| 国产成人aa在线观看| 97碰自拍视频| 成人二区视频| 少妇丰满av| 久久精品国产鲁丝片午夜精品| 婷婷六月久久综合丁香| av在线老鸭窝| 激情 狠狠 欧美| 国产精品一区二区三区四区免费观看 | 欧美丝袜亚洲另类| 日韩中字成人| 久久久久久久亚洲中文字幕| 国产一区二区在线av高清观看| 伦精品一区二区三区| videossex国产| 22中文网久久字幕| 少妇熟女欧美另类| www日本黄色视频网| 亚洲天堂国产精品一区在线| 精品久久久久久久久av| 亚洲精华国产精华液的使用体验 | 午夜福利视频1000在线观看| 国产免费一级a男人的天堂| 在线看三级毛片| 亚洲欧美成人综合另类久久久 |