• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites

    2019-04-28 05:39:16MANTARIRAMOSMONGE
    CHINESE JOURNAL OF AERONAUTICS 2019年4期

    J.L. MANTARI , I.A. RAMOS, J.C. MONGE

    a Faculty of Mechanical Engineering, Instituto de investigacio′n en ingenier?′a naval (IDIIN), National University of Engineering (UNI), Lima 15333, Peru

    b Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, USA

    c Faculty of Mechanical Engineering, Universidad de Ingenier?′a y Tecnolog?′a (UTEC), Lima 15063, Peru

    KEYWORDS Analytical solution;Composite materials;CUF;ESL;Plate;Trigonometric functions;Zig-Zag effects

    Abstract The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions (SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called ‘‘r” and ‘‘s” and they are the argument of the trigonometric SSTFs introduced within the Carrera Unif ied Formulation(CUF). The Equivalent Single Layer (ESL) governing equations are obtained by employing the Principle of Virtual Displacement (PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unif ied trigonometrical theory with CUF bases conf irm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to f ind a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.

    1. Introduction

    Laminated composite materials are utilized in several areas,such as marine, aerospace, civil, biomedical and other industries.Their good mechanical properties (high specific stiffness,excellent fatigue strength, resistance to corrosion, etc.) have been the reason for an increase in demand and consequently the substitutes of traditional engineering materials such as

    Nomenclature

    CPT Classical Plate Theory

    CUF Carrera Unif ied Formulation

    ESL Equivalent Single Layer

    FSDT First-order Shear Deformation Theory

    GUF Generalized Unif ied Formulation

    HSDTs Higher-order Shear Deformation Theories

    LW Layerwise

    PVD Principle of Virtual Displacement

    SSDT Sinusoidal Shear Deformation Theory

    SSTFs Shear Strain Thickness Functions steel, aluminum, concrete, etc. Therefore, in order to understand the behavior of composite structures under different kinds of loads and boundary conditions, several theoretical and experimental studies were performed.

    Classical Plate Theory (CPT) for metallic structures based on the Kirchhoff’s assumptions, which neglects the shear deformation, was extended to laminated plates in order to study thin plates. First-order Shear Deformation Theory(FSDT)based on Reissner1and Mindlin2was introduced considering deformations in the section.A shear correction factor is used to correct the constant transverse shear strain component obtained with this theory.However,correction factor values depend on the material coefficients, geometry, boundary conditions and loading conditions,which are difficult to calculate. Therefore, Higher-order Shear Deformation Theories(HSDTs) were developed in order to overcome the limitation of FSDT.

    The HSDTs can be developed using polynomial Shear Strain Thickness Functions (SSTFs), which can be seen from,for example, the articles by Reddy and Liu3, Reddy4, Levinson5and Librescu6. Further, non-polynomial shape functions were developed by Levy7, Stein8, Touratier9, Soldatos10,Karama11, Mantari and Guedes Soares12, Zenkour13-16and Mantari et al.17-20. An optimization of a HSDT based on trigonometric function for the bending analysis of functionally graded shells was proposed by Mantari and Guedes Soares21,where parameters‘‘r”and‘‘s”were introduced in the displacement field in order to produce results close to 3D elasticity solutions.

    Several investigators developed HSDTs to study advanced composites. Houari et al.22presented a new simple higherorder theory with only three unknowns considering sinusoidal thickness function on the transverse shear stress for solving bending and free vibration problems.Belabed et al.23proposed a higher-order theory with 5 unknowns which considered the stretching effect based on hyperbolic shear strain shape functions.Belkorissat et al.24developed a new nonlocal hyperbolic model to study free vibration of functionally graded nano plates based on Mori-Tanaka scheme. Boukhari et al.25proposed a deformation theory for wave propagation of an infinite functionally graded plates in the presence of thermal environment. Bennoun et al.26presented five unknown variables based on a hyperbolic expansion to study functionally graded sandwich plates. Bourada et al.27studied a refined trigonometric higher-order beam theory with three unknown variables for the bending and free vibration of functionally graded beams. Mahi et al.28calculated the free vibration for functionally graded plates using orthogonal polynomials associated with Ritz method. Tounsi et al.29presented a new HSDT of three unknown variables for the study of buckling and free vibration of sandwich functionally graded plates.Ait Yahia et al.30presented an interesting approximate model for functionally graded plates with porosity phases to study the wave propagation of plates.In fact,this paper can be used as a reference for ultrasonic inspection techniques and structural health monitoring. Hebali et al.31improved the plate theory proposed by El Meiche et al.32by studying the effect of considering nonzero transverse normal strain.Draiche et al.33studied a sinusoidal higher-order deformation theory for studying the f lexure of angle and cross ply laminated composite plates.

    Carrera Unif ied Formulation (CUF) was developed for composite laminated plates and shells34-36using originally Taylor’s expansions of N-order.A Sinusoidal Shear Deformation Theory (SSDT) within the CUF framework was developed by Ferreira et al.37for static and free vibration analysis of laminated shells.Additionally,Generalized Unif ied Formulation (GUF), presented as a more general approach of CUF,was introduced for the first time by Demasi38for a single isotropic plate and extended for multilayered composite plate in Refs.39-43.Several non-polynomial expansions were developed by Filippi et al.44and Mantari et al.45. Furthermore, trigonometric expansion for laminated plate subject to thermal load was developed by Ramos et al.46. In order to obtain HSDTs with low computational cost, asymptotic/axiomatic technique was developed by Miglioretti et al.47,48and Carrera and Petrolo49,50, where the effectiveness of each term of the displacement field is evaluated by means of elimination and comparison to a reference solution. The genetic algorithm to evaluate the importance of each displacement variable for finite element plate models was developed by Carrera and Miglioretti51.

    Fig.1 Material coordinate(1,2,3)and plate coordinate(x,y,z).

    Table 1 Comparison between exact, LD4 and ED4 solution.

    The present work uses an optimized method52,53based on two different optimized parameters which are‘‘r”and‘‘s”that are related to the in-plane and transverse displacement,respectively.The described parameters are contained in the argument of trigonometric SSTFs in order to solve the analytical static problem of laminated plate by means of a compact formulation. Trigonometric expansion with Equivalent Single Layer(ESL) and Zig-Zag (Murakami) approach was introduced by using the Principle of Virtual Displacement (PVD) to obtainthe unif ied governing equations, which are solved by employing Navier method solution. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Improvement in the def lection and stresses results for low-order expansion are presented for especial values of the parameters(‘‘r”and‘‘s”)obtained by particular criteria of average error. However the optimization parameters depend on the plate geometry and the order of expansion of the utilized displacement field.

    Table 2 Average errors with their respective weight.

    2. Analytical modeling

    2.1. Model kinematics

    The through-the-plate-thickness unif ied displacement field developed by Carrera34for any order of expansion is expressed as follows:

    Fig. 2 Variation of percent errors for sin displacement as a function of parameters r and s (N=2,a/h=4).

    Fig. 3 Variation of percent errors for sin displacement as a function of parameters r and s (N=5,a/h=4).

    where FN,GNand HNare functions through the thickness and N is the order of expansion.These equations can be grouped as follows:

    and in compact form:

    where the subscript indicates summation according Einstein notation. Fτand uτare given as

    This paper studies an axiomatic compact theory with Zig-Zag effect by exploring trigonometrical shear strain shape function (see Refs.8-10for single and Ref.54for multilayered plates) in a systematic manner. The results are compared with polynomial axiomatic expansions.

    Polynomial, trigonometric, hyperbolic, exponential functions and different combinations of them are studied for beam in Ref.55and for plates in Refs.44,45within CUF framework.In the present work,optimized trigonometric functions have been implemented and compared with the classical Taylor expansion.

    Trigonometric expansion (sin) developed in Ref.46is modified as follows:

    In order to reduce the number of optimized parameters,only 2 optimization parameters (‘‘r” and ‘‘s”) are included in the trigonometric SSTFs, where the parameter ‘‘r” is related to in-plane deformation(x and y directions)and the parameter‘‘s” to the transverse deformation, i.e. thickness direction (z direction). The selection of these parameters within the SSTF was carried out with the idea to obtain close to 3D solution.

    Fig. 4 Variation of percent errors for sin Z displacement as a function of parameters r and s (N=2,a/h=4).

    Additionally, the Mukarami Zig-Zag function is implemented in the trigonometric displacement field (sin Z).

    where -1( )kζkis the Mukarami Zig-Zag function.

    2.2. Elastic stress-strain relations

    The stress σkand εkvectors of the k th layer are grouped according to CUF:

    where the subscript n is related to the in-plane components,while p to the out-of-plane components, and the straindisplacement relationships are given as

    The stress-strain relationships in the material coordinates(see Fig. 1) of the k th layer can be expressed as

    Fig. 5 Variation of percent errors for sin Z displacement as a function of parameters r and s (N=5,a/h=4).

    and

    According to Eq.(7),the material matrices can be grouped as

    2.3. Principle of virtual work

    Considering the static version of the principle of virtual works,the following expression holds:

    where εkand σkare the strain and the stress vectors of the k th layer and Nlstands for number of layers.

    Using Eqs. (3) and (8), the expression becomes

    The subscript z indicates partial derivation with respect to z. By applying integration by parts (see Eq. (17)) to Eq. (16)

    Table 3 Non-dimensionless results for optimized trigonometric expansion (sin).

    the plate boundary and internal governing equations for the case problem are obtained:

    On the other hand, the external virtual workdue to a load qzapplied on the top face (z =h/2) can be expressed in the following manner:

    where

    Finally, the governing equations are

    2.4. Analytical solution

    Navier type closed form solution can be applied in simply supported plates.So,the displacement variable and the distributed load can be expressed in the following Fourier series:

    Table 4 Non-dimensionless results for optimized trigonometric expansion (sin Z).

    where

    Therefore, the governing equation becomes

    where

    Fig.6 Through-the-thickness distribution of dimensionless stress for a(0°/90°)square laminated plate for sin displacement field and N=2, 3, 4, 5.

    The explicit expressions of the fundamental stiffness nuclei,, are unique for any combination of optimized parameter.In contrast to classical polynomial expansions,the exact Gauss integration in the thickness direction of the trigonometric expansion is not possible and the accuracy of this must necessarily be controlled. The formulation of the present stiffness nuclei was written in MATLAB and the integrations were obtained by quadrature function incorporated in MATLAB with 10-6as tolerance.

    3. Numerical results and discussion

    Benchmark proposed by Demasi43,which consists of two-layer asymmetric cross-ply simply supported plate (0°/90°), is utilized.Although the material properties do not have a practical use, the difficulty of this benchmark allows comparing several theories and evaluating different combinations of optimization parameters. A sinusoidal static load qz=sin αx( )sin βy( )applied at the top surface (m =n=1) of thick square plate(a/h=4,a=b) is considered in this paper. The mechanical properties of each layer are

    Layer 1 (Bottom):

    The following non-dimensional quantities are used:

    Table 1 presents ED4 results obtained by using polynomial ESL theory of order 4 and layerwise (LW) theory LD456, and these results are compared with exact 3D solution provided in Ref.43. LD4 values present very close results for def lection(z =h/4) and shear stress(z =h/4) with errors equal to 0.005% and 0.106%, respectively. Furthermore, for normal stressz=h/4( ), the obtained error is 0.914%. In order to facilitate the calculation, LD4 was employed as reference result.In Table 1,ED4 and LD4 problem results are calculated by using classical form of Hook’s law.

    The percent error of def lectionz=h/4( ), normal stressz=0( )and shear stress calculated by means of equilibrium equationat z=-h/4 are obtained for several parameters r and s introduced in the trigonometric SSTFs(Eqs.(5)and(6)).The errors were computed using the following formula:

    Fig.7 Through-the-thickness distribution of dimensionless stress σ-xz for a(0°/90°)square laminated plate for sin displacement field and N=2, 3, 4, 5.

    where R refers to def lection or stress and RLD4is the reference value obtained by LD4 theory. Additionally, average errors are given as

    where wiis arithmetic weights, i.e. def lection or stress values can be weighted (following a defined optimization criterion which needs to be further developed in future works)to impact or alleviate,depending on the case study,the average error and thus get the parameter of optimization r,s( ). Five assumed optimization criteria are presented in Table 2 with their respective weight to calculate the average error Av X( ), so X adopt values from 1 to 5.

    Parameters r and s were selected to get close to 3D solution of displacements and stresses,and in this way less percent error was produced according to weighted arithmetic means presented in Table 2. The weights depend on the relevance of the results to be evaluated.For example,normally,Av4(equal weights) is chosen in the literature to calculate the average errors.Averages‘‘Av1-Av3”represent independently the error of def lection, normal stressand shear stress, respectively. Such criterion perhaps can be of interest in some applications where, for example, it is just relevant to knowing def lections. Additionally, an optimization criterion, with arbitrary weights to calculate the average error(Av5),is presented.

    The variations of the average errors with the optimized parameters r and s considering an order of expansion of N=2 and N=5 for sin expansions are shown in Figs. 2 and 3, respectively. In the expansion N=2, a great influence of the parameter s on the def lectionerror(Av1)and average error (Av4) can be noticed. The low error values (blue zone)are for parameter s less than 5. The parameter r is important for the errors of the stressesand(Av2 and Av3). The areas with high errors(red zones)can be interpreted as incompatibility or instability of the SSTF. Fig. 3 shows low average error and a pronounced dependence on both optimized parameters. However, there are some instability areas with high percent error (see Av1 and Av2).

    Figs.4 and 5 show the variation of the various kinds of average error with the parameters r and s for sin Z expansion when N=2 and N=5, respectively. In contrast to sin theory of order N=2 (see Fig. 2), sinZ with order N=2 presents pronounced dependence on both optimized parameters.Additionally, it shows several zones with low (blue) and high (red)average error. Although sinZ of order N=2 presents lower percentage of errors than sin theory, the sinZ theory for N=2 presents some instabilities produced perhaps for low performance of the SSTFs.On the other hand,the parameter s presents a great influence on the errors for sinZ expansion for the order N=5 (see errors Av1, Av2and Av4 (average error) in Fig. 5). Additionally, stability and low percent error are obtained for values of parameter s less than 6.

    Fig. 8 Through-the-thickness distribution of dimensionless def lection for a (0°/90°) square laminated plate for sin displacement field and N=2, 3, 4, 5.

    Optimized parameters are presented in Tables 3 and 4,where ‘‘sin-opt Y” (Y adopts values from 1 to 5) is the theory and the parameters are obtained by average error ‘‘Av X”. In these tables, results of dimensionless def lectionz=h/4( ),normal stress(z =0) and shear stress(z =-h/4) are compared with LW theory by means of CUF (LD4)34for the side-to-thickness ratio a/h=4. The errors in def lection(Av1) is lower for sin-opt1, but the average errors, such as Av4 or Av5, do not present signif icant improvement, as can be observed for N=2. On the other hand, sin-opt4 and sinopt5 present low percent of average error, but these reduce the precision in the def lection, as can be seen for N=3 and 4.In Fig. 6,close values between LD4 and optimized trigonometric theory(opt4 and opt5),which overcome the Taylor and classical trigonometric displacement fields, are observed for N=3 and 4 for normal stressevaluated in z=0 (bottom layer). The through-the-thickness distribution of shear stress,calculated by means of equilibrium equation,does not present better approximation than the classical trigonometrical expansion (without optimized parameter) (see Fig. 7). On the other hand, the through-the-thickness distribution of def lectionsfor opt4 and opt5, showed in Fig. 8, present a light improvement for N=2 and 5, but these lose precision for N=3 and 4. Fortunately, the idea is to select a model with reduced number of known variables.

    Table 4 presents results for optimized trigonometric expansion with Zig-Zag model (sin Z-opt X) for different orders of expansion N compared with LD4 results. Moderate reduction of about 2% in the def lection error is obtained for sin Z-opt5 N=2( ) which is even less than Taylor and classical trigonometric expansion (without optimization); the reduction in average error (Av4) from approximately 5% to 1.8% can be achieved.Moreover,a considerable reduction in the Av4 from approximately 3.82% to 0.08% can be observed for N=3.Nevertheless, for N=4 and 5, very low reductions are achieved(up to 0.15%).The high number of SSTFs allows better accuracy in results,but these reduce the dependence on the optimization parameters r and s. Figs. 9-11 present the through-the-thickness distribution of normal stress, shear stressand def lection. A good improvement with respect to non-optimization trigonometrical expansion(sin Z)is shown for the def lectionwith sin Z-opt5 and sin Z-opt4 for N=2 and 3. However, minimal improvement of the def lection is obtained for N=4 and 5.

    The practical application of this work relies on the optimization strategy to select a theory that best suits what is desired to achieve in a case problem,i.e.displacements,stresses or both. The method consists of incorporating (according to what is desired to get in terms of accuracy) several arithmetic weights in transverse displacements, normal stress and transverse shear stress. Consequently, a shear deformation theory that best suits with a particular experimental case problem can be persuaded. For example, one could be just interested in obtaining vertical def lection or good accuracy in terms of shear stresses of advanced composite structures.This work can be a reference study to new numerical and experimental investigators by showing them that ‘‘case dependent problem” is a fact and so a shear deformation theory can be selected by weighting the desired output to best benef it the experiment validations through computational mechanics.

    Fig. 9 Through-the-thickness distribution of dimensionless stress for a (0°/90°) square laminated plate for sin Z displacement field and N=2, 3, 4, 5.

    Fig. 10 Through-the-thickness distribution of dimensionless stressfor a (0°/90°) square laminated plate for sin Z displacement field and N=2, 3, 4, 5.

    Fig. 11 Through-the-thickness distribution of dimensionless def lection for a (0°/90°) square laminated plate for sin Z displacement field and N=2, 3, 4, 5.

    4. Conclusions

    The present work introduces an optimized method in order to f ind reduced theories with better results than displacement field without optimization. Trigonometrical SSTFs with optimized parameters r and s contained in the in-plane and transverse displacements field are respectively developed by means of the CUF for analytical static problem of asymmetric laminated plate (0°/90°).

    Governing equations are obtained by employing the PVD and are solved using Navier method solution. Several values and combination of optimization parameters are evaluated and selected by different criteria of average error.

    A general displacement field was presented in this paper to use different displacement expansions,where Fτ,Gτand Hτare the SSTFs for the displacements in all the directions. In order to reduce the number of optimized parameters, trigonometrical displacement field with parameter r in×and y directions and parameter s in z direction are taken into account. Future studies are necessary in order to evaluate the influence of different non-polynomial SSTFs for the displacements in all the directions.

    Improvement in the def lection and stress results for low order of expansions N are obtained by using an optimization procedure. However the optimization parameters depend on the plate geometry and the utilized order of expansion.Analytical axiomatic/asymptotic evaluation of the non-polynomial SSTFs needs to be performed to obtain reduced theories and evaluate the sensibility of the results by the variation of the optimized parameters r and s.

    Acknowledgement

    This paper was written in the context of the project:‘‘Disen~o y optimizacio′n de dispositivos de drenaje para pacientes con glaucoma mediante el uso de modelos computacionales de ojos” founded by Cienciactiva, CONCYTEC, under the contract number N° 008-2016-FONDECYT. The authors of this manuscript appreciate the f inancial support from the Peruvian Government.

    精品久久久久久成人av| 久久精品91蜜桃| 日本成人三级电影网站| 美女免费视频网站| 国产一区二区三区在线臀色熟女| 成年人黄色毛片网站| 特大巨黑吊av在线直播| 欧美精品啪啪一区二区三区| 亚洲自拍偷在线| 久久久久久国产a免费观看| 嫁个100分男人电影在线观看| 久久草成人影院| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 国产成人福利小说| 午夜免费激情av| 日本三级黄在线观看| 不卡av一区二区三区| 波多野结衣高清无吗| 中文字幕人成人乱码亚洲影| 亚洲aⅴ乱码一区二区在线播放| 国产日本99.免费观看| 国产激情欧美一区二区| 一个人看视频在线观看www免费 | 欧美一区二区国产精品久久精品| 国产激情欧美一区二区| 黄色视频,在线免费观看| 国产精品免费一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 天天一区二区日本电影三级| 亚洲第一电影网av| 成人三级做爰电影| 国产久久久一区二区三区| 欧美日韩一级在线毛片| 高清毛片免费观看视频网站| 国产三级在线视频| 亚洲 欧美 日韩 在线 免费| 精品不卡国产一区二区三区| 国产99白浆流出| 国产高潮美女av| 好男人电影高清在线观看| 99久久久亚洲精品蜜臀av| 国产野战对白在线观看| 99re在线观看精品视频| 99久久精品热视频| 啪啪无遮挡十八禁网站| 亚洲第一电影网av| 我的老师免费观看完整版| 99热只有精品国产| 中亚洲国语对白在线视频| 色av中文字幕| 三级男女做爰猛烈吃奶摸视频| 欧美在线黄色| 亚洲国产精品成人综合色| 中出人妻视频一区二区| 成人国产综合亚洲| 精品电影一区二区在线| 亚洲九九香蕉| 国产亚洲欧美98| 国产亚洲精品一区二区www| 999久久久国产精品视频| 长腿黑丝高跟| 精品一区二区三区四区五区乱码| 小蜜桃在线观看免费完整版高清| 婷婷精品国产亚洲av| 午夜免费成人在线视频| 老熟妇仑乱视频hdxx| 欧美国产日韩亚洲一区| 这个男人来自地球电影免费观看| 男女做爰动态图高潮gif福利片| 日本五十路高清| 欧美又色又爽又黄视频| 国产爱豆传媒在线观看| 亚洲精品在线美女| av在线蜜桃| 悠悠久久av| 亚洲国产高清在线一区二区三| 亚洲欧美日韩东京热| 在线a可以看的网站| 欧美黄色淫秽网站| 淫秽高清视频在线观看| 黄色视频,在线免费观看| 日韩三级视频一区二区三区| 成年女人永久免费观看视频| www.www免费av| 又爽又黄无遮挡网站| 少妇的丰满在线观看| 日韩欧美在线乱码| www日本黄色视频网| 成人午夜高清在线视频| 级片在线观看| 久久久久久九九精品二区国产| 日韩欧美在线二视频| 国产精品一区二区三区四区免费观看 | 观看免费一级毛片| 午夜福利在线观看免费完整高清在 | 日本一本二区三区精品| 好男人电影高清在线观看| 嫩草影院精品99| 免费看日本二区| 婷婷亚洲欧美| www.999成人在线观看| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 国产精品九九99| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 国产免费av片在线观看野外av| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| av国产免费在线观看| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 91字幕亚洲| 噜噜噜噜噜久久久久久91| 99久久精品国产亚洲精品| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 亚洲美女黄片视频| 久久天躁狠狠躁夜夜2o2o| 日本在线视频免费播放| 熟女电影av网| 久久婷婷人人爽人人干人人爱| 男插女下体视频免费在线播放| 国产高清videossex| 在线视频色国产色| а√天堂www在线а√下载| tocl精华| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 天天一区二区日本电影三级| 啪啪无遮挡十八禁网站| 一个人免费在线观看电影 | 99riav亚洲国产免费| 欧美色视频一区免费| 午夜激情欧美在线| 午夜福利视频1000在线观看| 久久伊人香网站| 亚洲人成网站高清观看| 黑人欧美特级aaaaaa片| 毛片女人毛片| 蜜桃久久精品国产亚洲av| 成人三级做爰电影| 欧美高清成人免费视频www| 免费在线观看影片大全网站| 国产一区在线观看成人免费| 婷婷六月久久综合丁香| 精品乱码久久久久久99久播| 久久久国产精品麻豆| 搡老妇女老女人老熟妇| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 亚洲国产看品久久| 亚洲熟女毛片儿| 欧美最黄视频在线播放免费| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| www.www免费av| 国产1区2区3区精品| 日韩欧美国产一区二区入口| 男人的好看免费观看在线视频| 脱女人内裤的视频| 日本免费一区二区三区高清不卡| 嫩草影院精品99| 久久久国产成人精品二区| 99热精品在线国产| 色综合婷婷激情| 黄色日韩在线| 神马国产精品三级电影在线观看| 国产精品98久久久久久宅男小说| 黄色 视频免费看| 不卡一级毛片| 国产一区在线观看成人免费| 嫩草影院精品99| 这个男人来自地球电影免费观看| 哪里可以看免费的av片| 91在线精品国自产拍蜜月 | tocl精华| 欧美xxxx黑人xx丫x性爽| 国产成人精品无人区| 后天国语完整版免费观看| xxxwww97欧美| xxxwww97欧美| 久久草成人影院| 99精品在免费线老司机午夜| av黄色大香蕉| 真实男女啪啪啪动态图| 国产乱人伦免费视频| 国产一级毛片七仙女欲春2| 亚洲 国产 在线| 美女高潮喷水抽搐中文字幕| 久久久久久久久免费视频了| www日本黄色视频网| 久久午夜亚洲精品久久| 亚洲国产精品合色在线| 噜噜噜噜噜久久久久久91| 亚洲国产精品久久男人天堂| 2021天堂中文幕一二区在线观| 国产精品 国内视频| 成人18禁在线播放| 亚洲欧美日韩无卡精品| 男人的好看免费观看在线视频| 99久久99久久久精品蜜桃| 国产免费av片在线观看野外av| 黄色片一级片一级黄色片| netflix在线观看网站| 波多野结衣高清无吗| 精品一区二区三区视频在线 | 白带黄色成豆腐渣| 十八禁人妻一区二区| 国产久久久一区二区三区| 又黄又爽又免费观看的视频| 成人国产综合亚洲| 亚洲国产高清在线一区二区三| 色噜噜av男人的天堂激情| 黄色女人牲交| 国产又色又爽无遮挡免费看| 深夜精品福利| a级毛片a级免费在线| 狠狠狠狠99中文字幕| 色av中文字幕| 亚洲一区二区三区不卡视频| 国产毛片a区久久久久| 日韩中文字幕欧美一区二区| 亚洲国产看品久久| 一个人观看的视频www高清免费观看 | 熟妇人妻久久中文字幕3abv| ponron亚洲| 免费观看的影片在线观看| av在线天堂中文字幕| 中亚洲国语对白在线视频| 免费在线观看成人毛片| 国产人伦9x9x在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产99白浆流出| 亚洲美女视频黄频| 久久久久久久午夜电影| 久久精品91无色码中文字幕| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添小说| 在线观看免费视频日本深夜| 国产又色又爽无遮挡免费看| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类 | 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸| 欧美中文日本在线观看视频| 免费在线观看影片大全网站| 美女cb高潮喷水在线观看 | 禁无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 亚洲九九香蕉| 9191精品国产免费久久| 亚洲av成人av| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 精品一区二区三区四区五区乱码| 欧美三级亚洲精品| 亚洲欧美一区二区三区黑人| 午夜日韩欧美国产| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 国产不卡一卡二| 精品熟女少妇八av免费久了| 999精品在线视频| 久久久久久久精品吃奶| 欧美绝顶高潮抽搐喷水| 综合色av麻豆| 国产1区2区3区精品| 久久精品国产清高在天天线| 欧美另类亚洲清纯唯美| 精华霜和精华液先用哪个| 亚洲人成电影免费在线| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 欧美日本视频| 亚洲av成人av| 久久久久久久久免费视频了| 久久中文看片网| 校园春色视频在线观看| 欧美日本亚洲视频在线播放| 热99re8久久精品国产| 熟女电影av网| 亚洲精品久久国产高清桃花| 成人国产综合亚洲| 最近最新中文字幕大全免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av免费在线观看| 午夜精品久久久久久毛片777| 在线永久观看黄色视频| 精品乱码久久久久久99久播| 亚洲av第一区精品v没综合| 国产午夜福利久久久久久| 亚洲av免费在线观看| 啪啪无遮挡十八禁网站| 国产成人欧美在线观看| 成年版毛片免费区| 在线观看一区二区三区| 一本久久中文字幕| 丁香六月欧美| 精品国产超薄肉色丝袜足j| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 9191精品国产免费久久| 亚洲精品在线观看二区| 欧美日韩乱码在线| 免费在线观看亚洲国产| 香蕉国产在线看| 免费观看精品视频网站| 日韩精品青青久久久久久| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 搡老熟女国产l中国老女人| 国产一区二区在线观看日韩 | 人人妻人人澡欧美一区二区| 19禁男女啪啪无遮挡网站| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 欧美一区二区国产精品久久精品| 三级毛片av免费| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清专用| 丁香六月欧美| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放| 欧美最黄视频在线播放免费| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 一区二区三区国产精品乱码| 国产一区二区在线观看日韩 | 亚洲av成人av| 女人被狂操c到高潮| 亚洲精品在线美女| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 少妇人妻一区二区三区视频| 黄片大片在线免费观看| 亚洲av中文字字幕乱码综合| 美女免费视频网站| 亚洲色图 男人天堂 中文字幕| 日本熟妇午夜| 天堂√8在线中文| 欧美中文综合在线视频| 国内少妇人妻偷人精品xxx网站 | 国产亚洲精品一区二区www| 99精品欧美一区二区三区四区| 久久久久性生活片| 免费无遮挡裸体视频| 深夜精品福利| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 日本a在线网址| 国产探花在线观看一区二区| 最好的美女福利视频网| 桃红色精品国产亚洲av| 久久久精品大字幕| 美女免费视频网站| 国产精品美女特级片免费视频播放器 | 亚洲成人免费电影在线观看| 舔av片在线| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 国产高清有码在线观看视频| 观看免费一级毛片| 日韩欧美精品v在线| 日韩高清综合在线| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 又大又爽又粗| 亚洲中文日韩欧美视频| 欧美日韩综合久久久久久 | 美女午夜性视频免费| av视频在线观看入口| 男女那种视频在线观看| 又粗又爽又猛毛片免费看| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 久久人人精品亚洲av| 美女cb高潮喷水在线观看 | 国产一区二区在线av高清观看| 中出人妻视频一区二区| 999久久久精品免费观看国产| 午夜福利免费观看在线| 久久人妻av系列| 久久欧美精品欧美久久欧美| 精品久久久久久久末码| 午夜日韩欧美国产| 国内揄拍国产精品人妻在线| 一级作爱视频免费观看| 久久久久国产精品人妻aⅴ院| 精品国产美女av久久久久小说| 亚洲一区高清亚洲精品| 欧美三级亚洲精品| 日韩欧美免费精品| 国产高清三级在线| 婷婷精品国产亚洲av在线| 亚洲国产欧美一区二区综合| 看黄色毛片网站| 九九久久精品国产亚洲av麻豆 | 欧洲精品卡2卡3卡4卡5卡区| 中文资源天堂在线| 日韩欧美精品v在线| 后天国语完整版免费观看| 国产成+人综合+亚洲专区| 色综合亚洲欧美另类图片| 1024手机看黄色片| 757午夜福利合集在线观看| 日韩 欧美 亚洲 中文字幕| 欧美色视频一区免费| 无限看片的www在线观看| 亚洲av美国av| 很黄的视频免费| 一二三四在线观看免费中文在| 成年女人永久免费观看视频| 首页视频小说图片口味搜索| 欧美乱码精品一区二区三区| 国产一区二区在线观看日韩 | 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| 中文字幕最新亚洲高清| 精品电影一区二区在线| 久久久国产精品麻豆| 性欧美人与动物交配| 午夜福利在线观看免费完整高清在 | 特级一级黄色大片| 88av欧美| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| av视频在线观看入口| 九色国产91popny在线| 中文亚洲av片在线观看爽| 国产成人一区二区三区免费视频网站| 熟妇人妻久久中文字幕3abv| 床上黄色一级片| 欧美中文综合在线视频| av在线蜜桃| 中国美女看黄片| 国产成人av激情在线播放| 亚洲精品在线观看二区| 中文字幕人成人乱码亚洲影| 一夜夜www| 午夜久久久久精精品| 在线视频色国产色| 在线观看日韩欧美| 麻豆成人av在线观看| АⅤ资源中文在线天堂| 少妇的丰满在线观看| 久久久久久九九精品二区国产| 麻豆av在线久日| 一个人看视频在线观看www免费 | 999精品在线视频| 日本精品一区二区三区蜜桃| 熟女少妇亚洲综合色aaa.| 亚洲美女黄片视频| 国产麻豆成人av免费视频| 动漫黄色视频在线观看| 日本a在线网址| 人人妻人人看人人澡| 国产精品免费一区二区三区在线| 免费看十八禁软件| 国产亚洲精品一区二区www| 国产高清激情床上av| 熟女人妻精品中文字幕| 在线观看免费视频日本深夜| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 两个人的视频大全免费| or卡值多少钱| xxx96com| 热99在线观看视频| 国产单亲对白刺激| 久久久久亚洲av毛片大全| 亚洲精华国产精华精| 亚洲欧洲精品一区二区精品久久久| 久久国产乱子伦精品免费另类| a在线观看视频网站| 在线国产一区二区在线| 97超视频在线观看视频| 国产成人啪精品午夜网站| 亚洲欧美日韩无卡精品| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 久久天躁狠狠躁夜夜2o2o| 日本在线视频免费播放| 在线视频色国产色| 亚洲一区高清亚洲精品| 国产精品影院久久| 青草久久国产| 在线a可以看的网站| 国产一区二区三区在线臀色熟女| 国产成人欧美在线观看| 国产一级毛片七仙女欲春2| 亚洲欧美一区二区三区黑人| 国产欧美日韩精品一区二区| 久久精品国产清高在天天线| 国产成人啪精品午夜网站| 国产不卡一卡二| 中出人妻视频一区二区| 99视频精品全部免费 在线 | 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 国产 一区 欧美 日韩| 18禁国产床啪视频网站| 亚洲欧洲精品一区二区精品久久久| 热99在线观看视频| 欧美另类亚洲清纯唯美| 欧美日韩精品网址| 波多野结衣高清作品| 在线播放国产精品三级| 亚洲乱码一区二区免费版| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 成人国产一区最新在线观看| 桃红色精品国产亚洲av| 九九在线视频观看精品| 麻豆av在线久日| 免费av不卡在线播放| 嫩草影院精品99| 男女那种视频在线观看| 久久亚洲精品不卡| 国产久久久一区二区三区| 亚洲国产看品久久| 精品久久久久久成人av| 午夜福利欧美成人| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 啪啪无遮挡十八禁网站| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 日本撒尿小便嘘嘘汇集6| 两个人的视频大全免费| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 国产av在哪里看| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 美女高潮的动态| 激情在线观看视频在线高清| 舔av片在线| 免费在线观看日本一区| 成年女人永久免费观看视频| 怎么达到女性高潮| 精品国产美女av久久久久小说| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 九色国产91popny在线| 中文字幕人妻丝袜一区二区| www.精华液| 日韩欧美一区二区三区在线观看| 禁无遮挡网站| 一区二区三区激情视频| 哪里可以看免费的av片| 免费在线观看日本一区| a级毛片a级免费在线| 欧美精品啪啪一区二区三区| 欧美成人一区二区免费高清观看 | or卡值多少钱| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 成人亚洲精品av一区二区| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点| 在线观看美女被高潮喷水网站 | 日韩免费av在线播放| 国内毛片毛片毛片毛片毛片| 一本综合久久免费| 精品国产乱码久久久久久男人| 婷婷亚洲欧美| 丝袜人妻中文字幕| 国产一级毛片七仙女欲春2| 国产淫片久久久久久久久 | 搞女人的毛片| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 在线观看美女被高潮喷水网站 | 欧美三级亚洲精品| 成年人黄色毛片网站| 日本免费一区二区三区高清不卡| 久久久久性生活片| 国产精品久久久av美女十八| 亚洲国产精品久久男人天堂| avwww免费| 精品久久蜜臀av无| avwww免费| 男女那种视频在线观看| 亚洲av日韩精品久久久久久密| 欧美绝顶高潮抽搐喷水| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 国产麻豆成人av免费视频| 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 久久国产精品影院| 久久久国产成人免费|