• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Content Determination of Trace Elements in Several Vegetables by Atomic Absorption Spectrophotometry

    2019-04-25 03:00:40,
    Asian Agricultural Research 2019年3期

    ,

    College of Life Science, Cangzhou Normal University, Cangzhou 061001, China

    Abstract The contents of Mn, Zn and Cu, three essential trace elements for human body, in Laminaria japonica, Auricularia auricula (L.ex Hook.) Underwood, Porphyra, Cucurbita pepo L., Spinacia oleracea L. and Coriandrum sativum were determined by atomic absorption spectrophotometry. Vegetable samples were processed by wet digestion. The results showed that among the six vegetables, Mn had the highest content in A. auricula (26.60 μg/g) and the lowest content in C. pepo (1.22 μg/g); Zn had the highest content in Porphyra (38.07 μg/g) and the lowest content in L. japonica (10.32 μg/g); and Cu had the highest content in Porphyra (10.35 μg/g) and the lowest content in S. oleracea (0.61 μg/g). Each determination was repeated five times. The value of RSD was less than 10%, indicating high accuracy.

    Key words Atomic absorption spectrophotometry, Vegetable, Mn, Zn, Cu

    1 Introduction

    Vegetables are indispensable foods in life and contain many different trace elements[1]. Trace elements are closely related to human health, intelligence, beauty,etc. They play a key role in regulating the life process[2]. With the development of modern industry and the improvement of people’s living standards, the content of elements in vegetables is getting more and more attention. Flame atomic absorption spectrophotometry has the advantages of quickness, high sensitivity, high accuracy, good selectivity, less interference and easy operation. It is widely used in the determination of trace elements in different samples[3]. The domestic TAS-990 atomic absorption spectrophotometer is easy to operate, and its test accuracy and sensitivity can meet the requirements of chemical analysis[4]. In this paper, the content of trace elements in six common vegetables was determined by flame atomic absorption spectrophotometry and graphite furnace atomic absorption spectrophotometry.

    2 Materials and methods

    2.1MaterialsFresh samples ofCucurbitapepoL.,CoriandrumsativumandSpinaciaoleraceaL. and dry samples ofLaminariajaponica,PorphyraandAuriculariaauricula(L.ex Hook.) Underwood were collected as test materials.

    2.2InstrumentsandequipmentTAS-990 atomic absorption spectrophotometer (Beijing Purkinje General Instrument Co., Ltd.); KDN-06 intelligent digital digestion furnace (Shanghai Xinjia Electronic Co., Ltd.); hollow cathode lamps of Mn, Zn and Cu elements; electronic balance.

    2.3InstrumentworkingconditionsThe content of Mn and Zn were determined by flame atomic absorption spectrophotometry(FAAS), and the content of Cu was determined by graphite furnace atomic absorption spectrophotometry(GFAAS). The instrument working conditions are shown in Table 1.

    2.4SampletreatmentFreshC.pepo,C.sativumandS.oleraceawere cleaned with tap water, rinsed with deionized water, and dried naturally. The edible portion of each of the vegetables was cut with knife and scissors and ground into slurry with a mortar. A certain amount (1 g) of the slurry of each vegetable was placed in a conical flask, added with 30 mL of mixed acid (concentrated nitric acid∶perchloric acid=4∶1), sealed and stood for 12 h[5].L.japonica,PorphyraandA.auriculawere cut off with a knife and ground into powder separately. A certain amount (1 g) of the powder of each vegetable was poured into a conical flask, added with 30 mL of mixed acid (concentrated nitric acid∶perchloric acid=4∶1), sealed and stood for 12 h. Then, each sample was poured into a digestive tract. The conical flask was washed with a small amount of deionized water which was poured into the digestive tract too. Heating and digestion was performed under the voltage of 220 V in an intelligent digital digestion furnace. When a large amount of brown gas was generated, the voltage was adjusted to about 100 V, and the micro-boiling state was maintained until the brown gas disappeared, white smoke was generated, and the solution became clear. After cooling, the solution in each digestive tract was transferred to a 50-mL volumetric flask. Each of the digestive tracts was washed several times with a small amount of deionized water, and the washing solution was poured into corresponding 50-mL volumetric flask. The solution in each volumetric flask was diluted to 50 mL with deionized water and mixed for use[6].

    3 Results and analysis

    3.1StandardcurvesDifferent volumes of Mn, Zn and Cu stock solutions were diluted with 1% nitric acid solution to 50 mL, respectively. Thus, the standard solutions of Mn, Zn and Cu with different concentrations were prepared (Table 2).

    Table1Workingconditionsofinstruments

    Trace elementLamp currentmAWavelengthnmSpectral bandwidthnmBurning heightmmAcetylene flowmL/minHeating procedure∥℃DryingAshingAtomizationClearanceMn(FAAS)2.0279.50.26.01 700Zn(FAAS)2.0213.90.46.01 000Cu(GFAAS)2.0324.70.41206002 0002 100

    The content of Mn, Zn and Cu in the standard solutions was determined under the set working conditions. The standard curve equation wasy=bx+a. The concentration of trace elements in the samples to be tested was calculated as follows:x=(y-a)/b. In the formula,xrepresents mass concentration of trace elements,yrepresents spectral intensity or absorbance,ais the intercept of standard curve, andbis the slope of the standard curve. The linear regression equation of the concentration of each element against its absorbance is shown in Table 3.

    The linear equation of Mn wasy=0.349 5x+0.015 5 (R2=0.999 46), the linear equation of Zn wasy=0.489 3x+0.015 2 (R2=0.999 12), and the linear equation of Cu wasy=1.269 3x+0.029 7 (R2=0.998 86). It was indicated that the Mn, Zn and Cu standard solutions had a good linear relationship between concentration and absorbance for both the determination methods of flame atomic absorption spectrophotometry and graphite furnace atomic absorption spectrophotometry.

    Table2Contentoftraceelementsinstandardsolutionsμg/g

    TraceelementStandardsolution 1Standardsolution 2Standardsolution 3Standardsolution 4Mn0.250.501.002.00Zn0.100.200.400.60Cu0.010.030.050.10

    Table3Linearregressionequationsandcorrelationcoefficients

    Trace elementLinear equationCorrelation coefficientMny=0.349 5x+0.015 00.999 46Zny=0.489 3x+0.015 20.999 12Cuy=1.269 3x+0.029 70.998 86

    3.2 Content of different trace elements in six vegetables

    3.2.1Content of different trace elements inL.japonica. As shown in Table 4, the content of Mn, Zn and Cu in the five samples ofL.japonicawere not much different (RSD<10%). The data was more accurate. The content of Cu inL.japonicawas lower, and the content of Zn was higher. The content of Zn was about 5 times that of Cu.

    3.2.2Content of different trace elements inA.auricula. As shown in Table 5, the content of Mn, Zn and Cu in the five samples ofA.auriculawas close. InA.auricula, the content of Zn was highest, followed by that of Mn, and the content of Cu was lowest.

    3.2.3Content of different trace elements inPorphyra. As shown in Table 6, the absorbance and determined value of the same trace element were not much different from each other inPorphyra. TheRSDvalues of Mn and Zn were less than 1%. The content of the three trace elements was all relatively high inPorphyra. Among them, the content of Zn was highest (38.40 μg/g), and the content of Mn and Cu was lower, but it is also above 10 μg/g.

    Table4ContentofdifferenttraceelementsinLaminariajaponica

    Sample No.(determined element)AbsDeterminedvalue∥μg/mLRSD∥%Contentμg/gSample 1 (Mn)0.0600.1220.806 36.10Sample 2 (Mn)0.0610.1252.227 66.25Sample 3 (Mn)0.0610.1261.524 46.30Sample 4 (Mn)0.0620.1280.469 46.40Sample 5 (Mn)0.0600.1246.059 66.20Sample 1 (Zn)0.1170.2083.307 810.40Sample 2 (Zn)0.1140.2030.917 510.15Sample 3 (Zn)0.1130.2000.407 110.00Sample 4 (Zn)0.1160.2062.458 210.30Sample 5 (Zn)0.1200.2150.447 510.75Sample 1 (Cu)0.0760.0376.363 61.85Sample 2 (Cu)0.0830.0436.457 72.15Sample 3 (Cu)0.0820.0422.820 22.10Sample 4 (Cu)0.0780.0392.882 31.95Sample 5 (Cu)0.0790.0401.891 62.00

    Table5ContentofdifferenttraceelementsinAuriculariaauricula(L.exHook.)Underwood

    Sample No.(determined element)AbsDeterminedvalue∥μg/mLRSD∥%Contentμg/gSample 1 (Mn)0.1980.5290.163 226.45Sample 2 (Mn)0.1990.5310.668 226.55Sample 3 (Mn)0.2000.5320.513 026.60Sample 4 (Mn)0.2000.5340.337 426.70Sample 5 (Mn)0.2000.5340.935 526.70Sample 1 (Zn)0.3140.6090.711 630.45Sample 2 (Zn)0.3090.5991.609 929.95Sample 3 (Zn)0.3080.5970.585 829.85Sample 4 (Zn)0.3100.6000.863 130.00Sample 5 (Zn)0.3030.5871.119 029.35Sample 1 (Cu)0.0880.0461.733 12.30Sample 2 (Cu)0.0940.0514.450 82.55Sample 3 (Cu)0.0940.0512.305 52.55Sample 4 (Cu)0.0960.0532.584 32.65Sample 5 (Cu)0.0930.0512.789 22.55

    Table6ContentofdifferenttraceelementsinPorphyra

    Sample No.(determined element)AbsDeterminedvalue∥μg/mLRSD∥%Contentμg/gSample 1 (Mn)0.1680.4400.323 922.00Sample 2 (Mn)0.1700.4450.000 022.25Sample 3 (Mn)0.1680.4410.359 022.05Sample 4 (Mn)0.1690.4430.237 022.15Sample 5 (Mn)0.1700.4460.731 722.30Sample 1 (Zn)0.3940.7640.273 838.20Sample 2 (Zn)0.3960.7680.105 638.40Sample 3 (Zn)0.3920.7600.322 938.00Sample 4 (Zn)0.3920.7590.678 337.95Sample 5 (Zn)0.3900.7560.165 537.80Sample 1 (Cu)0.3080.2042.644 410.20Sample 2 (Cu)0.3130.2072.523 410.35Sample 3 (Cu)0.3150.2096.087 310.45Sample 4 (Cu)0.3120.2072.799 110.35Sample 5 (Cu)0.3130.2082.528 610.40

    3.2.4Content of different trace elements inC.pepo. As shown in Table 7, the absorbance and determined value of the same trace element differed slightly inC.pepo, with smallRSDvalue. The content of Mn and Cu inC.pepowas relatively low, around 1.0 μg/g. The content of Zn inC.pepowas relatively high, about 21.0 μg/g.

    Table7ContentofdifferenttraceelementsinCucurbitapepoL.

    Sample No.(determined element)AbsDeterminedvalue∥μg/mLRSD∥%Contentμg/gSample 1 (Mn)0.0270.0250.923 11.25Sample 2 (Mn)0.0270.0250.667 31.25Sample 3 (Mn)0.0260.0230.723 21.15Sample 4 (Mn)0.0270.0261.445 01.30Sample 5 (Mn)0.0260.0231.191 41.15Sample 1 (Zn)0.2170.4150.630 720.75Sample 2 (Zn)0.2190.4190.127 020.95Sample 3 (Zn)0.2200.4200.404 921.00Sample 4 (Zn)0.2180.4170.104 820.85Sample 5 (Zn)0.2180.4160.225 420.80Sample 1 (Cu)0.0660.0292.141 61.45Sample 2 (Cu)0.0610.0255.096 81.25Sample 3 (Cu)0.0700.0320.133 31.60Sample 4 (Cu)0.0560.0216.038 91.05Sample 5 (Cu)0.0670.0293.338 91.45

    3.2.5Content of different trace elements inS.oleracea. As shown in Table 8, the absorbance and determined values of Mn and Zn inS.oleraceawere similar withRSDvalues less than 2%. The same trace element was not much different. TheRSDvalues of Cu differed greatly, but they were all less than 10%. InS.oleracea, the content of Zn was higher, and there was almost no Cu.

    3.2.6Content of different trace elements inC.sativum. As shown in Table 9, the absorbance and determined values of Mn and Zn inC.sativumwere not much different. However, the values of Cu differed greatly. The content of Zn was relatively high. The content of Cu was relatively low, about 2.1 μg/g. TheRSDvalues of Mn and Zn were all less than 2%.

    Table8ContentofdifferenttraceelementinSpinaciaoleraceaL.

    Sample No.(determined element)AbsDeterminedvalue∥μg/mLRSD∥%Contentμg/gSample 1 (Mn)0.0410.0670.951 63.35Sample 2 (Mn)0.0410.0661.557 13.30Sample 3 (Mn)0.0420.0690.986 93.45Sample 4 (Mn)0.0410.0670.748 03.35Sample 5 (Mn)0.0420.0690.715 83.45Sample 1 (Zn)0.1480.2730.761 713.65Sample 2 (Zn)0.1480.2750.703 413.75Sample 3 (Zn)0.1490.2750.528 613.75Sample 4 (Zn)0.1480.2731.184 713.65Sample 5 (Zn)0.1470.2710.924 813.55Sample 1 (Cu)0.0490.0157.192 70.75Sample 2 (Cu)0.0350.0032.873 80.67Sample 3 (Cu)0.0470.0136.644 60.65Sample 4 (Cu)0.0460.0129.795 40.60Sample 5 (Cu)0.0430.0093.013 60.45

    Table9ContentofdifferenttraceelementsinCoriandrumsativum

    Sample No.(determined element)AbsDeterminedvalue∥μg/mLRSD∥%Contentμg/gSample 1 (Mn)0.0550.1091.358 95.45Sample 2 (Mn)0.0540.1060.140 35.30Sample 3 (Mn)0.0540.1060.419 95.30Sample 4 (Mn)0.0550.1090.347 05.45Sample 5 (Mn)0.0550.1090.682 05.45Sample 1 (Zn)0.2300.4420.631 622.10Sample 2 (Zn)0.2310.4440.610 622.20Sample 3 (Zn)0.2310.4430.501 322.15Sample 4 (Zn)0.2290.4390.425 221.95Sample 5 (Zn)0.2300.4410.479 722.05Sample 1 (Cu)0.0720.0339.197 81.65Sample 2 (Cu)0.0830.0425.269 32.10Sample 3 (Cu)0.0860.0451.701 92.25Sample 4 (Cu)0.1130.0678.341 63.35Sample 5 (Cu)0.1130.0663.665 13.30

    3.2.7Statistics of contents of different trace elements in six vegetables. Based on the above data, the average content of Mn, Zn and Cu in the six vegetables,L.japonica,A.auricula,Porphyra,C.pepo,S.oleraceaandC.sativumwas calculated. As shown in Table 10, among the six vegetables, the content was Mn was highest inA.auricula(26.60 μg/g) and lowest inC.pepo(1.22 μg/g); the content of Zn was highest inPorphyra(38.07 μg/g) and lowest inL.japonica(10.32 μg/g); and the content of Cu was highest inPorphyra(10.35 μg/g) and lowest inS.oleracea(0.62 μg/g). The content of same trace element differed greatly among different vegetables.

    Table10Contentofdifferenttraceelementsinsixvegetablesμg/g

    Trace elementL. japonicaA. auriculaPorphyraC. pepoS. oleraceaC. sativumMn6.2526.6022.151.223.385.39Zn10.3229.9238.0720.8713.6722.09Cu2.012.5210.351.360.622.53

    4 Conclusions and discussions

    The content of Mn, Zn and Cu inL.japonica,A.auricula,Porphyra,C.pepo,S.oleraceaandC.sativumpurchased from a vegetable market in Cangzhou City was determined by atomic absorption spectrophotometry. The linear regression equations were established. The correlation coefficient was between 0.998-0.999. The relative standard deviation of most data was less than 3%. The experimental method is simple and rapid, and has good precision and can be used for the determination of elements in general vegetables. Zhang Shaojunetal.[7]determined the content of Cu, Zn and Pb in vegetables purchased from Sanmenxia City by flame atomic absorption spectrophotometry. The method is simple and rapid. TheRSDwas less than 1.4%, and the sampling recovery was between 92.3%-97.2%, indicating that the method is feasible. Pang Xin’an[8]determined the content of eight mineral elements in almond, fig, oleaster and pomegranate using air-acetylene flame atomic absorption spectrophotometry. The linear range of the determination method is wide. The correlation coefficient was between 0.996-0.999. The relative standard deviation was all less than 2%. He Fengqin[9]determined the content of Fe in spinach and cucumber by atomic absorption spectrophotometry. The samples were repeatedly determined, and the standard deviations of the means were ≤ 2.1%, in line with national standards. Dong Bingkunetal.[10]determined the content of Cu in tomato, zucchini and cabbage by flame atomic absorption spectrophotometry. The results were in line with national standards. The Cu content in vegetables was greater than that in fruits.

    The six vegetables ofL.japonica,A.auricula,Porphyra,C.pepo,S.oleraceaandC.sativumall contained certain amounts of Mn, Zn and Cu, but there were certain differences. The overall analysis showed that the average content of Zn in the six vegetables was much higher than that of Cu, and the average content of Zn was seven times that of Cu. The content of trace elements in vegetables has a lot to do with fertilizer, soil, environment,etc. The determination results differed among different regions. There were some differences in the determined results among different regions. Zn is an essential trace element in the human body. The recommended daily intake for adults is 10-15 mg per capita. The recommended daily intake of Mn is 2.0-3.0 mg per capita. The recommended daily intake of Cu is 2.0 mg per capita. Based on the daily intake of trace elements, according to experimental conclusions, healthy adults should reduce the intake of vegetables with high content of elements. For those who lack Mn, Zn, and Cu, they can appropriately increase the consumption ofA.auriculaandPorphyra. It is noted that excessive intake will cause poisoning.

    亚洲激情在线av| 国产又爽黄色视频| 国产精品一区二区免费欧美| 一进一出抽搐动态| 最近最新中文字幕大全免费视频| www.999成人在线观看| 亚洲成人久久性| 搡老熟女国产l中国老女人| 成人影院久久| 国产单亲对白刺激| 亚洲五月天丁香| 亚洲久久久国产精品| 亚洲自拍偷在线| 国产视频一区二区在线看| xxxhd国产人妻xxx| 无人区码免费观看不卡| 99国产综合亚洲精品| 日韩欧美一区二区三区在线观看| 日韩免费av在线播放| 国产成人av激情在线播放| 精品午夜福利视频在线观看一区| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 久久久久久久久久久久大奶| 亚洲精品美女久久久久99蜜臀| 色在线成人网| 亚洲专区国产一区二区| xxx96com| bbb黄色大片| 亚洲精华国产精华精| 国产有黄有色有爽视频| 女生性感内裤真人,穿戴方法视频| 国产精品久久久av美女十八| 悠悠久久av| 国产精品98久久久久久宅男小说| 黄色毛片三级朝国网站| 精品久久蜜臀av无| 亚洲国产欧美一区二区综合| 亚洲av成人av| 免费av毛片视频| 国产三级在线视频| 不卡一级毛片| 手机成人av网站| 日韩大尺度精品在线看网址 | 母亲3免费完整高清在线观看| 国产欧美日韩精品亚洲av| 一a级毛片在线观看| 女人高潮潮喷娇喘18禁视频| 午夜激情av网站| 99精品在免费线老司机午夜| 久久伊人香网站| svipshipincom国产片| 久久久国产成人精品二区 | 在线观看www视频免费| 九色亚洲精品在线播放| 不卡av一区二区三区| 99久久99久久久精品蜜桃| 午夜91福利影院| 免费一级毛片在线播放高清视频 | 99riav亚洲国产免费| 满18在线观看网站| 国产伦人伦偷精品视频| 免费在线观看完整版高清| 久久中文看片网| 美女大奶头视频| 黑人巨大精品欧美一区二区蜜桃| 少妇粗大呻吟视频| 日本黄色视频三级网站网址| 老司机亚洲免费影院| 免费不卡黄色视频| 极品教师在线免费播放| 国产高清激情床上av| 伊人久久大香线蕉亚洲五| 动漫黄色视频在线观看| 亚洲五月色婷婷综合| 美女福利国产在线| 91大片在线观看| 校园春色视频在线观看| 精品久久蜜臀av无| 亚洲人成电影免费在线| 久久午夜亚洲精品久久| 日韩欧美三级三区| 在线永久观看黄色视频| 国产精品国产av在线观看| 久久精品国产亚洲av香蕉五月| 国产av一区二区精品久久| 婷婷精品国产亚洲av在线| 亚洲伊人色综图| 黄色 视频免费看| 久久国产精品影院| 久久精品亚洲熟妇少妇任你| 99久久99久久久精品蜜桃| 亚洲欧美一区二区三区久久| 黄色毛片三级朝国网站| 亚洲欧美日韩高清在线视频| 在线播放国产精品三级| 国产区一区二久久| 两人在一起打扑克的视频| 日本wwww免费看| 国产欧美日韩一区二区精品| 这个男人来自地球电影免费观看| 99国产综合亚洲精品| 黄色视频,在线免费观看| 黄色视频,在线免费观看| 18禁美女被吸乳视频| 丝袜美腿诱惑在线| 亚洲精品中文字幕一二三四区| videosex国产| 亚洲中文av在线| 五月开心婷婷网| 国产精品九九99| 啦啦啦 在线观看视频| 黄色视频不卡| 啦啦啦 在线观看视频| 欧美黄色片欧美黄色片| 日韩欧美一区视频在线观看| 欧美午夜高清在线| 国产精品国产av在线观看| 国产av一区二区精品久久| 国产三级在线视频| 免费少妇av软件| 免费看a级黄色片| 久久人人精品亚洲av| 新久久久久国产一级毛片| 涩涩av久久男人的天堂| 天天影视国产精品| 男女下面进入的视频免费午夜 | 亚洲精品久久成人aⅴ小说| 国产xxxxx性猛交| 精品一区二区三卡| 男人舔女人下体高潮全视频| 国产不卡一卡二| 久热这里只有精品99| 少妇被粗大的猛进出69影院| 欧美黑人欧美精品刺激| 欧美黑人欧美精品刺激| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区三区四区久久 | 电影成人av| 亚洲av熟女| 亚洲一码二码三码区别大吗| 久久精品国产亚洲av高清一级| а√天堂www在线а√下载| 国产精品久久视频播放| 欧美在线一区亚洲| 久久久久久久久久久久大奶| 高清黄色对白视频在线免费看| 久久天躁狠狠躁夜夜2o2o| 久久精品亚洲av国产电影网| 一区二区三区精品91| 亚洲一卡2卡3卡4卡5卡精品中文| 操出白浆在线播放| 人人妻人人澡人人看| 99香蕉大伊视频| 中国美女看黄片| 在线观看午夜福利视频| 高清毛片免费观看视频网站 | 日本vs欧美在线观看视频| 精品久久久久久电影网| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区mp4| 免费观看精品视频网站| 亚洲欧美日韩高清在线视频| 脱女人内裤的视频| 亚洲av片天天在线观看| 成年版毛片免费区| 午夜精品国产一区二区电影| 亚洲国产精品999在线| av中文乱码字幕在线| 免费少妇av软件| 免费在线观看完整版高清| 女性生殖器流出的白浆| 免费看十八禁软件| 女警被强在线播放| 校园春色视频在线观看| 人人妻人人添人人爽欧美一区卜| 欧美日韩国产mv在线观看视频| 91九色精品人成在线观看| 成年版毛片免费区| 欧美日韩亚洲高清精品| 国产又色又爽无遮挡免费看| 免费高清视频大片| 久久人妻熟女aⅴ| 久久99一区二区三区| 一级,二级,三级黄色视频| 人人妻人人澡人人看| 精品日产1卡2卡| 最近最新中文字幕大全电影3 | 999久久久精品免费观看国产| 嫩草影视91久久| 巨乳人妻的诱惑在线观看| 婷婷六月久久综合丁香| 日本精品一区二区三区蜜桃| 午夜亚洲福利在线播放| 男人操女人黄网站| 国产亚洲欧美98| 精品第一国产精品| 欧美 亚洲 国产 日韩一| 999久久久精品免费观看国产| 涩涩av久久男人的天堂| 一二三四社区在线视频社区8| 一夜夜www| 高清毛片免费观看视频网站 | 成人18禁高潮啪啪吃奶动态图| 亚洲中文日韩欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产三级黄色录像| cao死你这个sao货| 中文字幕人妻丝袜制服| 国产av精品麻豆| 波多野结衣一区麻豆| 人妻久久中文字幕网| 国产日韩一区二区三区精品不卡| 国产人伦9x9x在线观看| 电影成人av| 精品一区二区三区四区五区乱码| 黄色怎么调成土黄色| 在线观看舔阴道视频| 国产高清videossex| 国产成人欧美在线观看| 欧美大码av| 久久精品亚洲熟妇少妇任你| 亚洲 国产 在线| 久热这里只有精品99| 嫩草影院精品99| 男人的好看免费观看在线视频 | 国产精品 国内视频| 久久久国产成人免费| 午夜久久久在线观看| 免费一级毛片在线播放高清视频 | 正在播放国产对白刺激| 成人18禁高潮啪啪吃奶动态图| 中文字幕高清在线视频| 亚洲人成网站在线播放欧美日韩| 精品人妻1区二区| 两个人免费观看高清视频| 99精国产麻豆久久婷婷| 国产精品成人在线| 中文字幕色久视频| 真人做人爱边吃奶动态| 色老头精品视频在线观看| 国产无遮挡羞羞视频在线观看| 悠悠久久av| 天天躁狠狠躁夜夜躁狠狠躁| 他把我摸到了高潮在线观看| 身体一侧抽搐| 亚洲 欧美 日韩 在线 免费| 国产不卡一卡二| 久久精品人人爽人人爽视色| 亚洲精华国产精华精| 精品久久久久久电影网| 夜夜躁狠狠躁天天躁| 一二三四在线观看免费中文在| 久久久久久人人人人人| 午夜影院日韩av| 欧美黑人精品巨大| 久久精品人人爽人人爽视色| 亚洲五月天丁香| 最新在线观看一区二区三区| 看免费av毛片| 99国产精品一区二区三区| 99久久人妻综合| 一进一出好大好爽视频| 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片 | 成人亚洲精品av一区二区 | 波多野结衣av一区二区av| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| x7x7x7水蜜桃| 亚洲色图综合在线观看| 国产成人欧美| avwww免费| 欧美激情高清一区二区三区| 国产欧美日韩一区二区精品| 十分钟在线观看高清视频www| 50天的宝宝边吃奶边哭怎么回事| 国产精品98久久久久久宅男小说| 男女下面进入的视频免费午夜 | 性少妇av在线| 亚洲精品久久午夜乱码| 国产亚洲精品久久久久久毛片| 亚洲第一av免费看| 国产精品自产拍在线观看55亚洲| 波多野结衣一区麻豆| 丰满人妻熟妇乱又伦精品不卡| 热99国产精品久久久久久7| 精品人妻1区二区| 免费高清视频大片| 久久久久国内视频| 久久影院123| 黄色成人免费大全| 在线观看一区二区三区| 亚洲av电影在线进入| 国产欧美日韩综合在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 中文亚洲av片在线观看爽| av视频免费观看在线观看| 免费搜索国产男女视频| 女人被狂操c到高潮| 亚洲国产欧美网| 日韩免费av在线播放| 亚洲精品美女久久av网站| 国产av又大| 中文字幕高清在线视频| 日韩精品青青久久久久久| 成人亚洲精品一区在线观看| 青草久久国产| www.精华液| 九色亚洲精品在线播放| 亚洲第一av免费看| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9| 亚洲av成人一区二区三| 99久久人妻综合| 久久中文字幕一级| 在线av久久热| 久久精品亚洲熟妇少妇任你| 在线观看一区二区三区激情| 51午夜福利影视在线观看| 99久久综合精品五月天人人| 在线十欧美十亚洲十日本专区| 色在线成人网| 亚洲国产精品一区二区三区在线| 亚洲avbb在线观看| 国产精品免费视频内射| 另类亚洲欧美激情| 又大又爽又粗| 久久人妻av系列| 丰满饥渴人妻一区二区三| 99热只有精品国产| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| 国产精品日韩av在线免费观看 | 操美女的视频在线观看| 高清欧美精品videossex| 男人舔女人下体高潮全视频| 99国产精品一区二区蜜桃av| 午夜成年电影在线免费观看| 久久久久国产精品人妻aⅴ院| 久久亚洲精品不卡| 后天国语完整版免费观看| 中文字幕高清在线视频| 成人国产一区最新在线观看| 叶爱在线成人免费视频播放| 久久久国产成人精品二区 | 丝袜美腿诱惑在线| 久久久久久亚洲精品国产蜜桃av| 一级a爱视频在线免费观看| 亚洲av美国av| 99久久国产精品久久久| 国产成人精品久久二区二区免费| 欧美日本亚洲视频在线播放| 狠狠狠狠99中文字幕| 国内久久婷婷六月综合欲色啪| 九色亚洲精品在线播放| 99re在线观看精品视频| 国产成人精品无人区| 男女高潮啪啪啪动态图| 久久国产精品影院| 国产又爽黄色视频| 午夜免费激情av| 国产97色在线日韩免费| 在线国产一区二区在线| 18禁国产床啪视频网站| 国产一区二区激情短视频| 很黄的视频免费| 国产单亲对白刺激| 欧美乱色亚洲激情| 一二三四在线观看免费中文在| 国产精品免费一区二区三区在线| 日韩人妻精品一区2区三区| 国产精品久久电影中文字幕| 国产在线精品亚洲第一网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲 欧美 日韩 在线 免费| 久久精品aⅴ一区二区三区四区| 麻豆av在线久日| 欧美中文日本在线观看视频| 男女下面插进去视频免费观看| 亚洲人成电影观看| 久久 成人 亚洲| 在线观看66精品国产| 日本欧美视频一区| 亚洲精品美女久久久久99蜜臀| 99久久国产精品久久久| 成人影院久久| 色老头精品视频在线观看| 在线永久观看黄色视频| 久久人妻福利社区极品人妻图片| 欧美成狂野欧美在线观看| 久久午夜亚洲精品久久| 天堂影院成人在线观看| 黄色毛片三级朝国网站| 精品午夜福利视频在线观看一区| 亚洲欧美一区二区三区久久| 亚洲成人免费电影在线观看| 88av欧美| 国产精品成人在线| 免费在线观看黄色视频的| 中出人妻视频一区二区| 午夜影院日韩av| 9热在线视频观看99| 欧美黑人精品巨大| 美女高潮喷水抽搐中文字幕| 少妇裸体淫交视频免费看高清 | 在线观看www视频免费| 亚洲全国av大片| 国内毛片毛片毛片毛片毛片| 国产麻豆69| 天堂影院成人在线观看| 午夜精品国产一区二区电影| 日韩av在线大香蕉| av片东京热男人的天堂| 最近最新中文字幕大全电影3 | 久久久久久久久免费视频了| 成人永久免费在线观看视频| 精品人妻1区二区| 亚洲黑人精品在线| 亚洲免费av在线视频| 看片在线看免费视频| 日本欧美视频一区| av网站免费在线观看视频| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| 久久人妻福利社区极品人妻图片| 欧美丝袜亚洲另类 | av国产精品久久久久影院| 伊人久久大香线蕉亚洲五| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色 | 成年版毛片免费区| 亚洲成av片中文字幕在线观看| 精品福利永久在线观看| 日本wwww免费看| 97人妻天天添夜夜摸| 亚洲精品一区av在线观看| 久久久久久大精品| 国产精品久久视频播放| 成人精品一区二区免费| 老汉色∧v一级毛片| 国产精品一区二区三区四区久久 | 国产乱人伦免费视频| 亚洲精品中文字幕在线视频| 亚洲男人天堂网一区| 日本a在线网址| 欧美日韩福利视频一区二区| 高清av免费在线| 成人永久免费在线观看视频| 在线观看一区二区三区激情| 亚洲狠狠婷婷综合久久图片| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 香蕉丝袜av| 欧美成人免费av一区二区三区| 久久婷婷成人综合色麻豆| 岛国视频午夜一区免费看| 一边摸一边抽搐一进一小说| 亚洲欧美激情综合另类| 国产亚洲精品综合一区在线观看 | 国产又爽黄色视频| 青草久久国产| 麻豆一二三区av精品| 精品人妻在线不人妻| 一区二区三区精品91| 中文字幕精品免费在线观看视频| 国产精品香港三级国产av潘金莲| 欧美色视频一区免费| 欧美最黄视频在线播放免费 | 老熟妇乱子伦视频在线观看| 久久 成人 亚洲| 亚洲三区欧美一区| 亚洲av成人不卡在线观看播放网| 欧美激情 高清一区二区三区| 91国产中文字幕| 狂野欧美激情性xxxx| 777久久人妻少妇嫩草av网站| 午夜a级毛片| 久久久精品国产亚洲av高清涩受| 91精品国产国语对白视频| 在线永久观看黄色视频| 高清黄色对白视频在线免费看| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区黑人| 久久热在线av| 午夜久久久在线观看| 老汉色∧v一级毛片| 国产精品 国内视频| 欧美最黄视频在线播放免费 | 久热这里只有精品99| 欧美激情高清一区二区三区| 精品久久久久久成人av| 热99国产精品久久久久久7| 欧美黑人欧美精品刺激| √禁漫天堂资源中文www| 国产精品1区2区在线观看.| 久久中文看片网| 99久久综合精品五月天人人| 天堂俺去俺来也www色官网| 最近最新中文字幕大全免费视频| 亚洲精品国产色婷婷电影| 国产在线观看jvid| 麻豆av在线久日| 757午夜福利合集在线观看| 一进一出好大好爽视频| 免费久久久久久久精品成人欧美视频| 老汉色∧v一级毛片| 国产免费av片在线观看野外av| a级毛片在线看网站| 亚洲精品国产色婷婷电影| www.自偷自拍.com| 中文欧美无线码| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 亚洲人成电影观看| 在线观看舔阴道视频| av欧美777| 精品午夜福利视频在线观看一区| 咕卡用的链子| 日本黄色日本黄色录像| 老司机午夜福利在线观看视频| 欧美乱色亚洲激情| 午夜福利一区二区在线看| 真人一进一出gif抽搐免费| 美国免费a级毛片| 欧美午夜高清在线| 久久九九热精品免费| 亚洲国产欧美网| 国产又爽黄色视频| 欧美激情高清一区二区三区| 99久久综合精品五月天人人| 欧美日韩av久久| 亚洲精品美女久久久久99蜜臀| 免费搜索国产男女视频| 午夜免费鲁丝| 午夜精品国产一区二区电影| 青草久久国产| 在线国产一区二区在线| 亚洲久久久国产精品| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 又大又爽又粗| 欧美日韩精品网址| 在线天堂中文资源库| 久久久久久亚洲精品国产蜜桃av| 亚洲全国av大片| 叶爱在线成人免费视频播放| 久久人妻av系列| 久久中文看片网| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| av在线天堂中文字幕 | av超薄肉色丝袜交足视频| 99国产精品一区二区三区| 另类亚洲欧美激情| 成人亚洲精品av一区二区 | 日本精品一区二区三区蜜桃| 久久人妻av系列| 97人妻天天添夜夜摸| 国产精品日韩av在线免费观看 | 久久中文字幕人妻熟女| 久久精品国产99精品国产亚洲性色 | 亚洲专区字幕在线| 99精国产麻豆久久婷婷| 精品久久蜜臀av无| 久久婷婷成人综合色麻豆| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| 亚洲avbb在线观看| 好男人电影高清在线观看| 国内毛片毛片毛片毛片毛片| 国产精品乱码一区二三区的特点 | а√天堂www在线а√下载| 在线av久久热| 久久久久久免费高清国产稀缺| 久久香蕉激情| 人人妻,人人澡人人爽秒播| 女人精品久久久久毛片| 欧美激情久久久久久爽电影 | 久久精品国产清高在天天线| 欧美中文综合在线视频| 搡老岳熟女国产| 人妻久久中文字幕网| 国产蜜桃级精品一区二区三区| 国产高清国产精品国产三级| 午夜福利,免费看| 可以在线观看毛片的网站| 国产精品爽爽va在线观看网站 | 亚洲国产看品久久| 熟女少妇亚洲综合色aaa.| 欧美黑人精品巨大| 国产精品 欧美亚洲| 欧美激情 高清一区二区三区| xxxhd国产人妻xxx| 久久香蕉国产精品| 亚洲av成人一区二区三| 国产亚洲精品久久久久5区| 午夜激情av网站| 制服诱惑二区| 日本免费一区二区三区高清不卡 | 精品无人区乱码1区二区| 久久人人精品亚洲av| 欧美成人免费av一区二区三区| 99re在线观看精品视频| 久久久久精品国产欧美久久久| 99国产精品免费福利视频| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 99国产精品一区二区三区| 国产精品久久视频播放| 一区二区三区激情视频| 亚洲人成伊人成综合网2020|