• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic variations in plant architecture traits in cotton(Gossypium hirsutum)revealed by a genomewide association study

    2019-04-17 01:33:48TinwngWenBoshengDiToWngXinxinLiuChunyunYouZhongxuLin
    The Crop Journal 2019年2期

    Tinwng Wen,Bosheng Di,To Wng,Xinxin Liu,Chunyun You*,Zhongxu Lin,*

    a National Key Laboratory of Crop Genetic Improvement,College of Plant Science and Technology,Huazhong Agricultural University,Wuhan 430070,Hubei,China

    b Huanggang Academy of Agricultural Sciences,Huanggang 438000,Hubei,China

    c Cotton Research Institute,Shihezi Academy of Agriculture Science,Shihezi 832003,Xinjiang,China

    Keywords:Brown-fiber cotton Plant architecture traits GWAS QTL Genetic variation

    A B S T R A C T Plant architecture traits influence crop yield.An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultivars.We collected 121 cotton accessions including 100 brownfiber and 21 white-fiber accessions,genotyped them by whole-genome resequencing,and phenotyped them in multiple environments.This genome-wide association study(GWAS)identified 11 quantitative trait loci(QTL)for two plant architecture traits:plant height and fruit spur branch number.Negative-effect alleles were enriched in the elite cultivars.Based on these QTL,gene annotation information,and published QTL,candidate genes and natural genetic variations in four QTL were identified.Ghir_D02G017510 and Ghir_D02G017600 were identified as candidate genes for qD02-FSBN-1,and a premature start codon gain variation was found in Ghir_D02G017510.Ghir_A12G026570,the candidate gene of qA12-FSBN-2,belongs to the pectin lyase-like superfamily,and a significantly associated SNP,A12_105366045(T/C),in this gene represents an amino acid change.The QTL,candidate genes,and associated natural variations in this study are expected to lay a foundation for studying functional genes and developing breeding programs for desirable architecture in brown-fiber cotton.

    1.Introduction

    It is important to improve yield and quality by modifying plant architecture traits in crops[1].In wheat and rice breeding,the deployment of dwarfing genes led to the success of the Green Revolution,and the major genes have been cloned[2,3].With the development of molecular genetics,QTL(quantitative trait loci),major-effect genes,and the molecular mechanisms underlying diverse plant morphologies have been identified [4-8].Numerous classical genes (e.g.,FRUITFULL,WUSCHEL,and CAULIFLOWER)conditioning plant architecture have been characterized at the molecular and network regulatory level[9],among them CLAVATA,which influences shoot meristem development[10-12].

    Cotton(Gossypium spp.),an important economic crop,is the largest source of textile fiber[13].Plant architecture traits strongly influence fiber yield and quality[14].The aerial architecture of the cotton plant is determined by numerous traits.Genetic mapping has been used to fine-map QTL associated with plant architecture traits[15-18].A study of cotton plant architecture traits including fruit branch length,plant height,and branch angle has been conducted by Wang et al.[15].Song and Zhang[16]constructed a population derived from an interspecific cross between G.hirsutum and G.barbadense to study plant architecture traits.

    With the proliferation of genotyping markers and the collection of germplasm resources,association mapping is another strategy for dissecting the genetic basis of plant architecture traits[19-21].Simple-sequence repeat(SSR)markers are abundant in the cotton genome[22]and sufficiently numerous for genetic mapping,but not for association mapping in populations with many more recombination events.The publication of a reference genome[22]has allowed the use of single-nucleotide polymorphisms(SNPs)for genotyping populations.Huang et al.[20]identified numerous QTL influencing plant architecture traits using the CottonSNP63K array with 503 Chinese upland cotton accessions.Recently,Su et al.[21]performed GWAS in upland cotton using genotyping by specific-locus amplified-fragment sequencing to fine-map QTL underlying plant agronomic traits and candidate gene influencing plant height,Gh_D03G0922.As the genome of upland cotton has been assembled and the cost of whole-genome resequencing(WGR)has decreased,genotyping association-mapping populations by WGR has become feasible.WGR supports the use of mass sequencing reads,generating millions of SNPs and leading to high mapping resolution to dissect the genetic basis of traits[23,24].

    We investigated two plant architecture traits,plant height(PH)and fruit spur branch number(FSBN),by WGR genotyping in brown-and white-fiber accessions.We aimed to(1)use two association methods to map QTL for cotton architecture traits with low heritability;(2)illustrate breeding strategies for architecture traits in elite brown-fiber cotton cultivars;and(3)predict candidate genes underlying the QTL and characterize genetic variation in the candidate genes.This study will provide a genetic basis for studying functional genes and developing breeding programs to achieve a desirable architecture in brown-fiber cotton.

    2.Materials and methods

    2.1.Materials and phenotypic evaluation

    A panel of 121 cotton accessions including 100 brown-and 21 white-fiber accessions(Table S1)was used and has previously[24]been studied for fiber traits.Field experiments were performed with the accessions in multiple environments including E1(Huanggang,Hubei province,China;30.44°N,114.87°E)in 2015,E2 and E3(Shihezi,Xinjiang province,China;44.27°N,85.94°E)in 2015 and 2016;and Ezhou,Hubei province,China(30.23°N,114.52°E)in 2016(destroyed by flooding and waterlogging).Field trials followed a completely randomized block design in each environment.The accessions were planted in E1 with 10 plants per accession and two replicates in plots 5 m in length and 1 m in width with 0.45 m spacing between plants,with 10 plants in each row;in E2 and E3,plots were 5 m in length and(0.40+0.50+0.46)m in width with 0.1 m spacing between plants and 100 plants in each double row.During the boll-opening phase,two plant architecture traits,PH and FSBN,were recorded.Statistics were calculated and analysis of variance(ANOVA)for the phenotype data was fitted using R 3.4.3 function and scripts.

    2.2.Genotyping and SNP data analysis

    To genotype the 121 accessions,the panel was resequenced at approximately sixfold depth.The sequence data were deposited in the NCBI databank after the previous study[24].Clean reads obtained by filtering the raw sequencing data were aligned against the upland cotton reference genome[25]and SNP calling was performed as described previously[24].A total of 2,620,639 SNPs were obtained after applying TASSEL 5.0[26]to control SNP quality with the parameters(-homozygous-filterAlign-filterAlignMinFreq 0.05).The statistics of the SNP markers were calculated with Plink 1.07[27]and their polymorphism information content(PIC)values were calculated with R following Bolaric et al.[28].

    2.3.Linkage decay(LD)and population structure analysis

    A set of 50,000 high-quality SNPs randomly selected from the whole-genome SNPs were used to estimate the linkage disequilibrium decay in the panel using Plink(parameter:-ldwindow-r2 0-ld-window 99999-ld-window-kb 1000).The kinship among the accessions was calculated with SPAGeDi 1.4b[29],and a principal component analysis and phylogenetic tree were constructed with TASSEL.To evaluate the population structure of the panel using the 50,000 SNPs,the number of subgroups(K)from 1 to 7 was computed with five independent repeats by STRUCTURE 2.3.4[30].The delta K value was obtained from STRUCTURE HARVESTER[31],and the optimal K was selected according to the highest delta K value[32].Lastly,CLUMPP[33]was used to integrate the five repeats.

    2.4.Genome-wide association analysis

    Genome-wide association analysis was performed between the high-quality SNPs and traits using TASSEL with a mixed linear model(MLM),and the optimal structure subgroups(Q)and kinship(K)were employed to correct for stratification[34].GEMMA[35]was also applied to perform association analysis with a linear mixed model(LMM),and the relatedness matrix calculated by GEMMA was applied to correct stratification.The threshold line of association analysis was set at-lg(1/N)(N is the number of SNP markers).Finally,the results from the two association methods were combined,considering the LD decay in the population.The LD block of associated QTL was drawn using R package(LDheatmap).

    The QTL nomenclature starts with “q”,followed by the name of the chromosome,an abbreviation for the trait name,and the number of the QTL affecting the trait on the chromosome[15].

    2.5.Annotation of genetic variations and electronic PCR markers

    The effects of the genome-wide SNPs were annotated and predicted with snpEff[36].Published QTL markers were downloaded from CottonQTLdb(http://www2.cottonqtldb.org:8081/traits).Electronic PCR(e-PCR)[37]was performed using the following sequence(1)building a famap,./famaptN-bgenome.famap./cotton.fa;(2)creating a genome hash,./fahash-bgenome.hash-w12-f3./famap;and(3)aligning the marker sequences within the reference genome TM-1,./re-PCR-Sgenome.hash-d50-5000-n1-g1-m3-oPrimer_location.txt./Primer_sequence.txt.

    3.Results

    3.1.Statistics of the two cotton architecture traits

    Box plots for the phenotypes of PH and FSBN showed differences between E1 and E2/E3(Fig.1-a,b).The correlation coefficient between PH and FSBN is 0.37(P<0.01).Both environment and genotype influenced the plant architecture traits(P<0.001),with genotype-by-environment interaction influencing PH(P<0.01)(Table S2).High phenotypic variation was observed in the 121-accession panel and skewness statistics showed that these two traits were not normally distributed.The heritability of these two traits was low and PH showed the higher heritability(H2=0.68)of the two traits(Table S3).

    3.2.Population structure and linkage disequilibrium

    In total,2,620,639 SNPs distributed randomly on 26 chromosomes were identified from the genome-wide resequencing data of the 121-accession panel.The average marker density was 1.17 SNPs kb-1and the average PIC was 0.33(Table 1).

    Table 1-Summary of SNPs and PIC on 26 chromosomes.

    Population diversity,structure and kinship can affect the results of association mapping.The delta K result suggested that the 121-accession panel was divided into two subgroups(Fig.2-a),meaning that population structure was observed(Fig.S1).Principal component analysis(PCA)and the phylogenetic tree also split the panel into two groups.The 21 whitefiber accessions were grouped together(Fig.2-b,c).The histogram of the kinship value distribution showed that 90%of the relationship coefficients were lower than 0.1(Fig.2-d).To evaluate the association resolution,the linkage disequilibrium(LD)decay in the panel was calculated with SNP pairs,and the estimated values of LD decay were 145 kb(r2=0.2)and 900 kb(r2=0.1)(Fig.2-e).

    Fig.1-Phenotypes of PH and FSBN in three environments.(a)Variation boxplots of PH in three environments.(b)Variation boxplots of FSBN in three environments.PH,plant height;FSBN,fruit spur branch number.

    Fig.2-Population structure,diversity,and linkage disequilibrium(LD)in the 121 accessions.(a)Delta K value of population structure plotted from 2 to 7.(b)Principal component analysis of the 121 accessions.(c)Phylogenetic tree of the 121-accession panel.(d)Distribution of pairwise kinship value between accessions.(e)Genome-wide LD decay in the 121 accessions.

    3.3.GWAS and QTL analyses of elite brown-fiber cotton accessions

    Five QTL for PH and six QTL for FSBN were identified by the two association models(Table 2,Figs.S2 and S3).qD02-FSBN-1 was associated with FSBN by both LMM and MLM.The QTL identified by GWAS were compared with previously reported QTL,and the reported QTL markers were anchored to the reference genome[25]by e-PCR.Numerous QTL were within reported QTL regions,and the qA03-PH-1 region was similar to a region identified by GWAS in 503 Chinese upland cotton accessions[20].

    Eighteen elite brown-fiber accessions were selected to examine the distribution of favorable alleles among 11 associated QTL.The QTL alleles were classified as positive or negative alleles according to their association with high or low trait values at significantly associated marker loci.Most of the negative-effect QTL alleles were found in 17 elite cultivars.In contrast,Zhongmian 81 harbored eight positive and only three negative alleles.Interestingly,16 elite accessions harbored positive alleles from qA01-PH-1.These results suggest that cultivars with attributes of moderate PH and FSBN have tended to be selected in brown-fiber cotton breeding(Table S4).

    Table 2-Genome-wide significant association of SNPs with two plant architecture traits.

    3.4.Prediction of candidate genes and exploration of causative natural genetic variation

    Candidate genes were predicted depending on significant association SNPs,LD value(145 kb,r2=0.2)(Fig.2-e),and functional annotation of the genes.Causative candidate genes were identified for four QTL(Table S5),though no likely candidate genes were identified for the other seven QTL.Table S5 describes the sequence variation in the candidate genes.

    The significantly associated SNPs around qD02-FSBN-1 were analyzed in the candidate region.An LD block was defined between 60.30 and 60.55 Mb on chromosome D02(Fig.3).This region includes 12 genes and significantly associates with FSBN(P<0.05)(Fig.4-a).The D02_60493591 SNP in the candidate gene,Ghir_D02G017510,is a premature start codon gain variant(Table S5).In another candidate gene,Ghir_D02G017600,two missense variants were found.Ghir_D02G017600 belongs to the CLAVATA gene family and influences meristem development.Of 24 genes in the genome that have been annotated as CLAVATA family genes(Fig.S4),only Ghir_D02G017600 harbored the missense variants in its sequence.

    Ghir_A12G026570,the candidate gene for qA12-FSBN-2,is a pectin lyase-like superfamily gene (Table S5). The A12_105366045(C/T)missense SNP variant was significantly associated with FSBN (Table 2).Accessions harboring A12_105366045-CC(n=13)showed higher FSBN than those harboring A12_105366045-TT(n=107)(P<0.001)(Fig.4-b).

    In Ghir_A01G015560(the qA01-PH-1 candidate gene),A01_100712277(G/A)represented the loss of a stop codon and other variations were present in the untranslated region(UTR)(Table S5).In Ghir_A03G005160(qA03-PH-1 candidate gene),A03_8815955(C/T)represented a missense and splice region variant(Table S5).

    4.Discussion

    4.1.Selection of association mapping methods

    In the era of cotton functional genomics[38],GWAS is a preferred tool to dissect the genetic basis of cotton traits[20,23,39,40],and several software and association models can be applied to study genome-wide associations[41].Because inadequate association models will result in false positive associations(Type I error)or false negative association(Type II error)[42,43],the selection of an association method is important.We applied TASSEL and an MLM model to perform the association analysis,but the association results were not ideal,because the Q-Q plot showed that the plots were below the theoretical Q-Q line at the start position,suggesting that this model was not suitable for associating all the traits in multiple environments.For this reason,we selected GEMMA and the LMM model to perform the association analysis.Many more loci were fine-mapped and the locus of qFSBN-D02-1 was mapped by both MLM and LMM.Among the QTL,we identified responsible candidate genes for four QTL.This result suggests that selecting the appropriate association models will identify more loci,but that we need to confirm the association results with supporting information(e.g.,biological experiments and published references)and consider Type I and Type II error.

    4.2.Heritability and breeding of plant architecture traits in cotton

    Broad-sense heritability,defined as the ratio of genetic to phenotypic variance,influences the efficiency of association mapping studies[44,45].In this study,the broad-sense heritability of the traits(Table S2)was lower than those previously[24]reported for fiber traits.This phenomenon was also observed for the 503 Chinese upland cotton accessions[20].An explanation may be that fibers develop in an enclosed space,whereas branches,stems,and bolls in the cotton plant architecture are exposed to the outside environment and affected by artificial modifications.Plant architecture is the result of dynamic interactions between endogenous plant growth processes and the exogenous environment[46].

    Fig.3-Linkage disequilibrium(LD)block and genetic variants of candidate genes in qD02-FSBN-1.

    Fig.4-Boxplots of FSBN for variant SNP genotypes.(a)Boxplot of FSBN for genotypes of SNP D02_60467480.(b)Boxplot of FSBN for genotypes of A12_105366045 SNP.FSBN,fruit spur branch number.

    For yield,biological resistance such as pest resistance,and field-utilization efficiency,an ideal plant architecture type is important[47,48].Cotton has an indeterminate growth habit[49],and the plant architecture can affect the cotton canopy,density,and yield[50].In cotton,a superior plant architecture type includes a compact plant type,dwarf plant height,and short internodes and branches[16].Considering the low heritability of cotton architecture traits,thus,breeding an ideal plant architecture type in cotton is difficult and cultivation practice is important for modifying plant architecture(Table S2),and it is necessary to remove the excessive apical buds and branches in lateral development,although this will need more labor[51].

    Breeding for a cotton plant architecture adapted to cultivation is also important.In the history of plant architecture breeding,several major genes(e.g.,sd1,TB1,and MOC1)influencing branching have played a crucial role[52-54].A few genes influencing plant architecture have been exploited in cotton.The nulliplex-branch gene(gb_nb1)and okra(L-D1)genes influencing plant and canopy architecture have been characterized[55,56].Recently[21],Gh_D03G0922,which influences plant height,has been identified by genome-wide association mapping.Although most studies about the genetic basis of plant architecture traits in cotton still stay at QTL level via linkage and association mapping[16,19],currently,these QTL can be considered in marker-assisted breeding to improve plant architecture traits.

    4.3.Identification of candidate genes and genetic variation

    In this study,eleven QTL were identified by association mapping(Table 2),and five candidate genes and causative genetic variations were characterized(Table S5).Further biological experiments are the best way to identify the functions of the candidate genes and validate the functional alleles described in Table S5.In Arabidopsis,the CLAVATA 3 gene regulates the activity of shoot meristem development[10],and the precise editing of CLAVATA genes in Brassica induced multilocular silique development[57].We also identified genetic variations of two candidate genes annotated as CLAVATA and protein kinase superfamily genes in the qD02-FSBN-1 locus.The function of these genes and genetic variations are being validated by the CRISPR-Cas9 system in our laboratory.Ghir_A03G005160,a GRAS gene,may affect plant height.Given that the GRAS protein has been identified[58]as playing an important role in meristem maintenance and development,it is desirable to validate the A03_8815955(C/T)functional allele in Ghir_A03G005160(Table S5).

    Conflict of interest

    The authors declare no conflict of interest

    Acknowledgments

    This work was supported by the Fundamental Research Funds for the Central Universities(2662015PY097)and the Breeding of New Early Maturing and High-quality Coloured Cotton Varieties(2016HZ09).We appreciate help from laboratory members in the cotton molecular genetics and breeding group in the National Key Laboratory of Crop Genetic Improvement,Wuhan,Hubei,China.

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2018.12.004.

    成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 欧美日韩乱码在线| 国产精品美女特级片免费视频播放器| 久久精品国产鲁丝片午夜精品| 在线播放无遮挡| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 亚洲最大成人av| .国产精品久久| 日韩欧美在线乱码| 日韩成人伦理影院| 少妇人妻精品综合一区二区 | 国产欧美日韩精品一区二区| 国产精品一区二区三区四区免费观看 | 国产午夜精品久久久久久一区二区三区 | av视频在线观看入口| aaaaa片日本免费| 人妻丰满熟妇av一区二区三区| 亚洲经典国产精华液单| 日韩精品中文字幕看吧| 日本五十路高清| 国产国拍精品亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲经典国产精华液单| 国产精品久久久久久精品电影| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 亚洲,欧美,日韩| av中文乱码字幕在线| 久久精品综合一区二区三区| 少妇人妻精品综合一区二区 | 特级一级黄色大片| 色在线成人网| 亚洲av一区综合| 日本撒尿小便嘘嘘汇集6| 午夜视频国产福利| 午夜福利高清视频| 男女边吃奶边做爰视频| 热99re8久久精品国产| 美女被艹到高潮喷水动态| 亚洲第一区二区三区不卡| 一进一出好大好爽视频| 成人无遮挡网站| 别揉我奶头 嗯啊视频| 婷婷亚洲欧美| 国产精品久久久久久精品电影| 毛片一级片免费看久久久久| 极品教师在线视频| 日本熟妇午夜| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 国产精品久久电影中文字幕| 人人妻人人澡人人爽人人夜夜 | 日韩高清综合在线| 真实男女啪啪啪动态图| 欧美三级亚洲精品| 国产亚洲91精品色在线| 亚洲欧美日韩高清专用| 啦啦啦韩国在线观看视频| 国产免费一级a男人的天堂| 亚州av有码| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 国产成人精品久久久久久| 五月玫瑰六月丁香| 国产成人aa在线观看| 亚洲在线观看片| 国内精品美女久久久久久| 国产男人的电影天堂91| 老司机影院成人| 午夜精品一区二区三区免费看| 免费观看在线日韩| 有码 亚洲区| 欧美色视频一区免费| 天堂网av新在线| 国产免费一级a男人的天堂| 有码 亚洲区| 三级毛片av免费| 午夜日韩欧美国产| av在线观看视频网站免费| 欧美性感艳星| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 99久久精品热视频| 毛片女人毛片| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 少妇熟女欧美另类| 两性午夜刺激爽爽歪歪视频在线观看| 午夜a级毛片| 国模一区二区三区四区视频| 日韩大尺度精品在线看网址| av天堂在线播放| 在线观看美女被高潮喷水网站| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点| 色综合亚洲欧美另类图片| 日本一二三区视频观看| 看片在线看免费视频| 日韩欧美 国产精品| 精品久久国产蜜桃| 欧美3d第一页| 在线观看66精品国产| 丰满人妻一区二区三区视频av| avwww免费| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 精品福利观看| 99热只有精品国产| 国产中年淑女户外野战色| av在线亚洲专区| 日韩中字成人| 禁无遮挡网站| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 超碰av人人做人人爽久久| 久久草成人影院| 三级经典国产精品| 在线免费观看的www视频| 国产片特级美女逼逼视频| 成人综合一区亚洲| 自拍偷自拍亚洲精品老妇| а√天堂www在线а√下载| 亚洲不卡免费看| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 中出人妻视频一区二区| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 少妇人妻精品综合一区二区 | 插逼视频在线观看| 有码 亚洲区| 美女高潮的动态| 老熟妇乱子伦视频在线观看| 免费电影在线观看免费观看| 日韩 亚洲 欧美在线| 噜噜噜噜噜久久久久久91| 蜜桃亚洲精品一区二区三区| 日本-黄色视频高清免费观看| 女生性感内裤真人,穿戴方法视频| 久久99热6这里只有精品| 又黄又爽又免费观看的视频| 免费高清视频大片| 99热全是精品| 婷婷精品国产亚洲av| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 亚洲性久久影院| 久久亚洲精品不卡| 男人的好看免费观看在线视频| 日韩一区二区视频免费看| 午夜影院日韩av| 天天躁日日操中文字幕| 欧美最黄视频在线播放免费| 精华霜和精华液先用哪个| 日韩高清综合在线| 久久亚洲国产成人精品v| 男人舔女人下体高潮全视频| 成人av在线播放网站| 国产精品亚洲美女久久久| 国产伦精品一区二区三区视频9| 亚洲高清免费不卡视频| 成人一区二区视频在线观看| 少妇丰满av| 久久国内精品自在自线图片| 日韩欧美在线乱码| 国产精品av视频在线免费观看| 午夜福利视频1000在线观看| 国产成人一区二区在线| 99热只有精品国产| 一级av片app| 三级男女做爰猛烈吃奶摸视频| 免费高清视频大片| 成人亚洲精品av一区二区| 亚洲电影在线观看av| 狂野欧美激情性xxxx在线观看| 亚洲av电影不卡..在线观看| 国产高清视频在线播放一区| 亚洲aⅴ乱码一区二区在线播放| 日本一本二区三区精品| 男人舔奶头视频| 国产成人a∨麻豆精品| 啦啦啦观看免费观看视频高清| 国产午夜精品久久久久久一区二区三区 | 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线 | 草草在线视频免费看| 日韩亚洲欧美综合| 看免费成人av毛片| 亚洲熟妇熟女久久| 一卡2卡三卡四卡精品乱码亚洲| 日本-黄色视频高清免费观看| 欧美性猛交╳xxx乱大交人| 国产乱人偷精品视频| 午夜福利高清视频| 精品久久久久久久末码| 尾随美女入室| 国产成年人精品一区二区| 成人鲁丝片一二三区免费| 你懂的网址亚洲精品在线观看 | 美女黄网站色视频| 一级av片app| 不卡一级毛片| 欧美zozozo另类| 成人欧美大片| 国产成人91sexporn| 国产中年淑女户外野战色| 亚洲精品一卡2卡三卡4卡5卡| 床上黄色一级片| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 成人午夜高清在线视频| 赤兔流量卡办理| 精品国产三级普通话版| 欧美色欧美亚洲另类二区| 在线观看66精品国产| 中文字幕熟女人妻在线| 国产成人a区在线观看| 色在线成人网| 熟女人妻精品中文字幕| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区久久| 亚洲不卡免费看| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 国产伦在线观看视频一区| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 精品久久久久久久末码| 亚洲无线观看免费| 国产精品三级大全| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 日本一二三区视频观看| 国产成人freesex在线 | 成年版毛片免费区| 久久综合国产亚洲精品| 99久久成人亚洲精品观看| 国产av在哪里看| 99久久精品国产国产毛片| 久久鲁丝午夜福利片| 国产精品日韩av在线免费观看| 亚洲图色成人| 亚洲成人中文字幕在线播放| 久久人人爽人人片av| 高清午夜精品一区二区三区 | 久久草成人影院| 国产精品综合久久久久久久免费| 亚洲精品国产av成人精品 | 日本一二三区视频观看| 波野结衣二区三区在线| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 亚州av有码| 成熟少妇高潮喷水视频| 午夜影院日韩av| 简卡轻食公司| 欧美三级亚洲精品| 日韩欧美精品免费久久| 看十八女毛片水多多多| 一夜夜www| 国产伦精品一区二区三区四那| 久久久久久伊人网av| 老司机午夜福利在线观看视频| 久久热精品热| 麻豆国产av国片精品| 亚洲经典国产精华液单| 欧美激情在线99| 18+在线观看网站| 亚洲国产欧洲综合997久久,| 国产大屁股一区二区在线视频| 精品人妻视频免费看| 国产真实乱freesex| 成人亚洲欧美一区二区av| 日韩欧美免费精品| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 丝袜喷水一区| 日日撸夜夜添| 国内久久婷婷六月综合欲色啪| 亚洲精品在线观看二区| 国产美女午夜福利| 国产爱豆传媒在线观看| 亚洲欧美中文字幕日韩二区| 色哟哟哟哟哟哟| 久久6这里有精品| 人人妻人人看人人澡| 亚州av有码| 国产精品永久免费网站| 成人国产麻豆网| 免费看av在线观看网站| 人人妻人人澡欧美一区二区| 麻豆乱淫一区二区| 久久精品人妻少妇| 国产成人aa在线观看| 黄色一级大片看看| 两个人视频免费观看高清| 日日摸夜夜添夜夜添av毛片| 一级毛片电影观看 | 久久韩国三级中文字幕| 色综合色国产| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 成人漫画全彩无遮挡| 国产欧美日韩精品一区二区| 国产高清激情床上av| a级毛色黄片| 精品一区二区三区视频在线观看免费| 国产成人影院久久av| 亚洲av五月六月丁香网| 毛片一级片免费看久久久久| 又黄又爽又免费观看的视频| 欧美zozozo另类| 欧美绝顶高潮抽搐喷水| 亚洲av第一区精品v没综合| 日韩成人伦理影院| 亚洲精品国产成人久久av| 亚洲丝袜综合中文字幕| 国产一区二区亚洲精品在线观看| 中文字幕久久专区| 国产国拍精品亚洲av在线观看| 国产色爽女视频免费观看| 日韩欧美一区二区三区在线观看| 亚洲不卡免费看| 在线观看一区二区三区| 精品久久久久久成人av| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 国产真实伦视频高清在线观看| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 日本欧美国产在线视频| 日韩欧美 国产精品| 国产精品嫩草影院av在线观看| 欧美日韩一区二区视频在线观看视频在线 | 中国国产av一级| 日韩一区二区视频免费看| 久久精品影院6| 欧美一级a爱片免费观看看| 国产精品免费一区二区三区在线| 十八禁国产超污无遮挡网站| 久久久久久久久久黄片| 亚洲三级黄色毛片| 久久久久久久午夜电影| 天堂av国产一区二区熟女人妻| 天堂动漫精品| 日日摸夜夜添夜夜添小说| 国产国拍精品亚洲av在线观看| 午夜精品一区二区三区免费看| 亚洲自偷自拍三级| 亚洲欧美日韩高清在线视频| 午夜福利18| 欧美色视频一区免费| 国内精品美女久久久久久| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 成人精品一区二区免费| 欧美性猛交╳xxx乱大交人| 欧美日本视频| 18禁在线播放成人免费| 成人永久免费在线观看视频| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 婷婷精品国产亚洲av| 亚洲精品影视一区二区三区av| 婷婷亚洲欧美| 日韩欧美精品免费久久| 午夜福利在线观看免费完整高清在 | 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 成人av在线播放网站| 国产高潮美女av| 最近2019中文字幕mv第一页| 国产av在哪里看| 美女高潮的动态| 国产三级在线视频| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区av在线 | 久久久久免费精品人妻一区二区| 男女之事视频高清在线观看| 在线播放无遮挡| 偷拍熟女少妇极品色| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜爽天天搞| 免费观看在线日韩| 在线免费十八禁| 日韩精品青青久久久久久| 少妇熟女欧美另类| 婷婷色综合大香蕉| 日韩欧美国产在线观看| 99在线人妻在线中文字幕| 欧美潮喷喷水| av在线天堂中文字幕| 特级一级黄色大片| 亚洲婷婷狠狠爱综合网| av.在线天堂| 毛片女人毛片| 我的老师免费观看完整版| 最近在线观看免费完整版| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久亚洲| 日本在线视频免费播放| 亚洲av美国av| 国产精品野战在线观看| 综合色丁香网| 久久久久久久久久成人| 欧美成人a在线观看| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 成人av一区二区三区在线看| aaaaa片日本免费| 一级a爱片免费观看的视频| 晚上一个人看的免费电影| 最新中文字幕久久久久| 色尼玛亚洲综合影院| 99久久精品热视频| 青春草视频在线免费观看| 亚洲精品国产成人久久av| 欧美+日韩+精品| 久久韩国三级中文字幕| 日本黄大片高清| 99久国产av精品国产电影| 国产乱人视频| 欧美成人精品欧美一级黄| 99久久精品热视频| 久久久精品大字幕| 亚洲精品色激情综合| 精品一区二区三区av网在线观看| 日韩强制内射视频| 99久久九九国产精品国产免费| 高清毛片免费观看视频网站| 久久精品人妻少妇| 国产不卡一卡二| 欧美中文日本在线观看视频| 日韩制服骚丝袜av| 成人美女网站在线观看视频| 听说在线观看完整版免费高清| 日韩在线高清观看一区二区三区| 亚洲欧美日韩卡通动漫| 免费观看在线日韩| 久久久久性生活片| 国产一区二区在线观看日韩| 十八禁国产超污无遮挡网站| or卡值多少钱| 欧美不卡视频在线免费观看| 99久国产av精品国产电影| 日韩精品青青久久久久久| 91精品国产九色| 久久久久久伊人网av| 成人一区二区视频在线观看| 男女之事视频高清在线观看| 全区人妻精品视频| 久久久久性生活片| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩高清在线视频| 久久综合国产亚洲精品| 免费av不卡在线播放| 久久久国产成人免费| 国产男靠女视频免费网站| 欧美极品一区二区三区四区| 波多野结衣高清作品| 免费av观看视频| 亚洲av熟女| 国产白丝娇喘喷水9色精品| 久久九九热精品免费| 亚洲精品在线观看二区| 亚洲图色成人| 亚洲精品粉嫩美女一区| 国产免费男女视频| 男插女下体视频免费在线播放| 男女啪啪激烈高潮av片| 女的被弄到高潮叫床怎么办| 国产高清视频在线观看网站| 亚洲无线观看免费| 99riav亚洲国产免费| 亚洲激情五月婷婷啪啪| 中文字幕免费在线视频6| 国产伦在线观看视频一区| 免费人成视频x8x8入口观看| 人妻夜夜爽99麻豆av| 色视频www国产| 99久久精品热视频| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 插逼视频在线观看| 久久精品国产亚洲网站| 搡女人真爽免费视频火全软件 | 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久精免费| 俄罗斯特黄特色一大片| 插逼视频在线观看| 99热这里只有是精品在线观看| 久久精品国产亚洲av香蕉五月| 亚洲三级黄色毛片| 狠狠狠狠99中文字幕| 亚洲欧美精品自产自拍| 国产精品伦人一区二区| 日本精品一区二区三区蜜桃| 特级一级黄色大片| 99久久精品国产国产毛片| 最好的美女福利视频网| 99热这里只有精品一区| АⅤ资源中文在线天堂| 人妻制服诱惑在线中文字幕| 久久久久国内视频| 婷婷精品国产亚洲av在线| 欧美国产日韩亚洲一区| 91久久精品国产一区二区三区| 白带黄色成豆腐渣| 一进一出抽搐动态| 精品国产三级普通话版| 国产在线男女| 18禁在线无遮挡免费观看视频 | 成人亚洲精品av一区二区| 欧美精品国产亚洲| 久久久久国产精品人妻aⅴ院| 麻豆国产av国片精品| 欧美日韩精品成人综合77777| 人妻丰满熟妇av一区二区三区| 日本爱情动作片www.在线观看 | 国产69精品久久久久777片| 亚洲一级一片aⅴ在线观看| 欧美日韩国产亚洲二区| 国内精品宾馆在线| www日本黄色视频网| 精品国内亚洲2022精品成人| av视频在线观看入口| 国产高清视频在线播放一区| 国产精品久久电影中文字幕| 欧美一区二区国产精品久久精品| 国产精品1区2区在线观看.| 狂野欧美白嫩少妇大欣赏| 久久婷婷人人爽人人干人人爱| 午夜视频国产福利| 一边摸一边抽搐一进一小说| 国产精品福利在线免费观看| 又黄又爽又刺激的免费视频.| 一个人免费在线观看电影| 国内精品美女久久久久久| 女的被弄到高潮叫床怎么办| 色哟哟·www| 国产精品国产高清国产av| 国产精品美女特级片免费视频播放器| 搡女人真爽免费视频火全软件 | 十八禁网站免费在线| 一个人看视频在线观看www免费| 午夜精品在线福利| eeuss影院久久| 国产激情偷乱视频一区二区| 天天躁日日操中文字幕| av天堂在线播放| 日本一本二区三区精品| 亚洲七黄色美女视频| 久久久久久九九精品二区国产| 久久精品国产亚洲av天美| a级毛片a级免费在线| 亚洲人成网站在线播放欧美日韩| 欧美中文日本在线观看视频| 亚洲熟妇熟女久久| .国产精品久久| 桃色一区二区三区在线观看| 亚洲av免费在线观看| 亚洲最大成人中文| 亚洲人与动物交配视频| 亚洲av.av天堂| 搞女人的毛片| 久99久视频精品免费| 国产成人91sexporn| 欧美+日韩+精品| 在线免费十八禁| 日韩制服骚丝袜av| 成人永久免费在线观看视频| 亚洲国产色片| 日韩制服骚丝袜av| 久久久久久久久久成人| 简卡轻食公司| 日日撸夜夜添| 亚洲欧美日韩东京热| 最近2019中文字幕mv第一页| 免费电影在线观看免费观看| 成人高潮视频无遮挡免费网站| 国产精品一区www在线观看| 亚洲综合色惰| 色5月婷婷丁香| 99在线视频只有这里精品首页| 男女做爰动态图高潮gif福利片| 国产精品人妻久久久久久| 国产亚洲精品久久久com| 午夜a级毛片| 色5月婷婷丁香| 国产人妻一区二区三区在| 久久精品国产清高在天天线| 国产成人freesex在线 | 成人国产麻豆网| 久久久久免费精品人妻一区二区| 99在线视频只有这里精品首页| 国产蜜桃级精品一区二区三区|