• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于MT-BCS的可分離DOA估計算法

      2019-04-04 03:17:40萬連城黑蕾王迎斌
      現(xiàn)代電子技術(shù) 2019年6期
      關(guān)鍵詞:壓縮感知貝葉斯分辨率

      萬連城 黑蕾 王迎斌

      關(guān)鍵詞: 二維DOA估計; 壓縮感知; 貝葉斯; 多任務(wù)貝葉斯壓縮感知; 分辨率; 算法復(fù)雜度

      中圖分類號: TN951?34 ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)06?0010?04

      Abstract: The constant development of the compressed sensing theory provides a new idea for the problem of 2?D direction of arrival (DOA) estimation. The traditional 2?D DOA estimation method is only the extension of the 1?D DOA estimation, and the modeling method of the 2?D DOA estimation is the same as that of the 1?D DOA estimation, which leads to problems of high computation complexity and low resolution in solving. The multitask Bayesian compressive sensing (MT?BCS) theory is applied to the 2?D DOA estimation problem by remodeling of the 2?D DOA model, so as to propose a separable 2?D DOA estimation algorithm based on MT?BCS. A comparative experiment was carried out. The results demonstrate that the proposed algorithm has the advantages of high resolution and low complexity.

      Keywords: 2?D DOA estimation; compressed sensing; Bayesian; MT?BCS; resolution; algorithm complexity

      基于稀疏表示[1?3]的二維DOA(Direction of Arrival)估計算法大多是基于一維DOA估計的擴(kuò)展,算法建模時也是將二維矩陣展開為向量,仿照一維DOA估計的建模方法進(jìn)行建模。這類算法主要有:基于[lp]范數(shù)的POCUSS算法[2?4],經(jīng)典的高分辨[lp?SVD]算法[5],MP[6],OMP[7?8]等貪婪算法和基于貝葉斯壓縮感知的DOA估計算法[9]。

      然而,這類仿照一維DOA的二維DOA建模方法導(dǎo)致稀疏基矩陣的維度過大,求解時算法的時間復(fù)雜度過高,難以滿足實時性的要求。為了降低算法的時間復(fù)雜度,本文提出了可分離的二維DOA建模新方法,并使用MT?BCS(Multitask Bayesian Compressive Sensing)算法[10]進(jìn)行求解,成功解決了二維DOA估計算法時間復(fù)雜度高、分辨率低的缺點。

      由表1可知,由于本文所提出的方法將矩陣[A∈CML×PQ] 分離為俯仰維導(dǎo)向矢量基矩陣[Ψ∈CM×L]和方位維[Ψ]導(dǎo)向矢量基矩陣[Θ∈CP×Q],從而有效地減少了算法的時間復(fù)雜度,使算法更適合工業(yè)應(yīng)用。

      4 ?結(jié) ?語

      對于傳統(tǒng)二維DOA估計分辨率低、精度低、算法復(fù)雜度高等問題,本文提出基于MT?BCS算法的可分離二維DOA估計算法。該算法巧妙地將陣列流形矩陣A分解為俯仰維和方位維兩個獨立的低維導(dǎo)向矢量基矩陣,從而大大降低了算法的時間復(fù)雜度。而且算法對俯仰維、方位維進(jìn)行獨立估計大大提高了二維DOA估計的分辨率。由于不涉及對噪聲方差的估計,算法的魯棒性也很高。在后續(xù)工作中將進(jìn)一步提高算法的分辨率,并降低其時間復(fù)雜度。

      參考文獻(xiàn)

      [1] GORODNITSKY I F, GEORGE J S, RAO B D. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm [J]. Electroencephalography and clinical neurophysiology, 2015, 95(4): 231?251.

      [2] GORODNITSKY I F, RAO B D. Sparse signal reconstruction from limited data using FOCUSS: a re?weighted minimum norm algorithm [J]. IEEE transactions on signal processing, 1997, 45(3): 600?616.

      [3] GORODNITSKY I F, RAO B D, GEORGE J. Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1992: 167?171.

      [4] COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE transactions on signal processing, 2005, 53(7): 2477?2488.

      [5] MALIOUTOV D, ?ETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE transactions on signal processing, 2005, 53(8): 3010?3022.

      [6] MALLAT S G, ZHANG Z. Matching pursuit with time?frequency dictionaries [J]. IEEE transactions on signal processing, 2013, 41(12): 3397?3415.

      [7] DAVIS G, MALLAT S G, ZHANG Z. Adaptive time?frequency decompositions [J]. Optical engineering, 1994, 33(7): 2183?2191.

      [8] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1993: 40?44.

      [9] JI S, DUNSON D, CARIN L. Multitask compressive sensing [J]. IEEE transactions on signal processing, 2009, 57(1): 92?106.

      [10] CARLIN M, ROCCA P, OLIVERI G, et al. Directions?of?arrival estimation through Bayesian compressive sensing strategies [J]. IEEE transactions on antennas & propagation, 2013, 61(7): 3828?3838.

      [11] 劉自成.基于稀疏表示的雷達(dá)目標(biāo)角度與距離估計[D].西安:西安電子科技大學(xué),2014.

      LIU Zicheng. Estimation of target′s angle and range in radar based on sparse representation [D]. Xian: Xidian University, 2014.

      [12] Candès E J. Compressive sampling [C]// Proceedings of the International Congress of Mathematics. Madrid: European Mathematical Society, 2006: 1433?1452.

      [13] 馬文潔.貝葉斯壓縮感知在DOA估計中的應(yīng)用研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2014.

      MA Wenjie. DOA estimation through Bayesian compressive sensing algorithm [D]. Harbin: Harbin Institute of Technology, 2014.

      猜你喜歡
      壓縮感知貝葉斯分辨率
      EM算法的參數(shù)分辨率
      原生VS最大那些混淆視聽的“分辨率”概念
      基于深度特征學(xué)習(xí)的圖像超分辨率重建
      貝葉斯公式及其應(yīng)用
      一種改進(jìn)的基于邊緣加強(qiáng)超分辨率算法
      基于匹配追蹤算法的乳腺X影像的壓縮感知重構(gòu)
      淺析壓縮感知理論在圖像處理中的應(yīng)用及展望
      基于ADM的加權(quán)正則化的塊稀疏優(yōu)化算法
      基于貝葉斯估計的軌道占用識別方法
      壓縮感知在無線傳感器網(wǎng)絡(luò)中的應(yīng)用
      科技視界(2016年10期)2016-04-26 08:29:08
      渝中区| 福清市| 南召县| 扶绥县| 龙陵县| 建昌县| 长葛市| 湖口县| 博湖县| 拜泉县| 扶绥县| 永寿县| 铜山县| 绥中县| 晋州市| 苏州市| 安乡县| 阿克苏市| 鲜城| 无为县| 安阳市| 墨脱县| 昌平区| 泗阳县| 五河县| 虎林市| 宁安市| 丘北县| 封开县| 兴业县| 台州市| 射阳县| 平南县| 明水县| 大理市| 东阿县| 汝阳县| 治多县| 阳朔县| 富蕴县| 如东县|