傅文婷 江惠華 鐘興明等
[摘要] Wnt信號(hào)通路是一種高度保守的信號(hào)通路,它在多種人體發(fā)育進(jìn)程及維持成人組織穩(wěn)態(tài)中起著根本性的作用。經(jīng)典的Wnt信號(hào)通路與細(xì)胞的發(fā)育分化密切相關(guān)。Wnt信號(hào)通路在維持雄性哺乳動(dòng)物精子形態(tài)與功能正常中發(fā)揮了重要作用,該通路異常與男性不育和睪丸癌有關(guān)。本文綜述了Wnt信號(hào)通路在男性生殖系統(tǒng)中的作用及其與男性不育的關(guān)系等方面的最新進(jìn)展,以進(jìn)一步了解Wnt信號(hào)通路的作用機(jī)制,為男性不育的治療提供參考。
[關(guān)鍵詞] Wnt信號(hào)通路;男性生殖;男性不育;精子形態(tài)
[中圖分類號(hào)] R698.2? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)02(a)-0072-03
[Abstract] Wnt signaling pathway is a highly conserved signaling pathway, which plays a fundamental role in various human development processes and in maintaining adult tissue homeostasis. The classical Wnt signaling pathway is closely related to the development and differentiation of cells. Wnt signaling pathway plays an important role in maintaining sperm morphology and function in male mammals. The abnormal Wnt signaling pathway is related to male infertility and testicular cancer. This article reviews the latest progress in the role of Wnt signaling pathway in male reproductive system and its relationship with male infertility, in order to further understand the mechanism of Wnt signaling pathway and provide reference for the treatment of male infertility.
[Key words] Wnt signaling pathway; Male Reproduction; Male infertility; Sperm morphology
據(jù)世界衛(wèi)生組織(WHO)調(diào)查,全球有10%~15%育齡夫婦不育,其中50%與男性有關(guān)[1-2]。無(wú)精癥是男性不育癥的主要病因之一,占男性不育的10%~15%[3]。臨床上常根據(jù)有無(wú)輸精管道梗阻將無(wú)精癥分為兩種,即梗阻性無(wú)精癥和非梗阻性無(wú)精癥;其中,非梗阻性無(wú)精癥患者占整體的60%[4]。男性非阻塞性無(wú)精癥主要病因是睪丸生精障礙,即不能產(chǎn)生精子或只產(chǎn)生極少量的精子,導(dǎo)致精子不能到達(dá)卵母細(xì)胞和/或正常穿透。非梗阻性無(wú)精癥病因不明,這給臨床診療帶來(lái)了很大的困難,且目前尚缺乏根本、有效的預(yù)防和治療手段[5]。
1 Wnt信號(hào)通路的概況
1982年在乳腺癌小鼠中發(fā)現(xiàn)了Wnt基因[6],此基因激活依賴小鼠乳腺癌相關(guān)病毒基因的插入,故被命名為Int1基因。Int1基因在小鼠正常胚胎發(fā)育中起重要作用,其與果蠅的無(wú)翅(Wingless)基因[7]類似,可控制胚胎的軸向發(fā)育。此外,Int1基因在神經(jīng)系統(tǒng)胚胎發(fā)育中的重要性,故將Wingless與Int1結(jié)合并命名為Wnt基因。人Wnt基因定位于12q13。在胚胎發(fā)育中,Wnt基因調(diào)控的重要信號(hào)傳導(dǎo)系統(tǒng)即為Wnt通路。
Wnt信號(hào)通路是一種高度保守的信號(hào)通路,Wnt基因家族編碼了大量的分泌信號(hào)糖蛋白,這些糖蛋白參與了包括胚胎發(fā)育、成人組織穩(wěn)態(tài)、祖細(xì)胞類型的維持、細(xì)胞命運(yùn)的確定等許多生物過(guò)程。Wnt通路的組成部分主要包括細(xì)胞外的配體蛋白、細(xì)胞膜上的Frizzled家族蛋白及低密度脂蛋白受體相關(guān)蛋白(LRP)、細(xì)胞質(zhì)中的Dsh/Dvl蛋白和細(xì)胞核內(nèi)的β-連環(huán)蛋白(β-catenin)、糖原合成酶激酶3β(GSK-3β)、Axin/Conductin、息肉膠原蛋白等。目前,在人類中共發(fā)現(xiàn)了19種Wnt配體蛋白,不同的配體與存在于細(xì)胞膜上的受體結(jié)合后可激活不同的信號(hào)途徑[8],主要包括經(jīng)典的Wnt/β-catenin信號(hào)通路、平面細(xì)胞極性通路、Wnt/Ca2+通路和調(diào)節(jié)紡錘體的方向和非對(duì)稱細(xì)胞分裂的胞內(nèi)通路等[9]。研究較多的則是經(jīng)典Wnt/β-catenin信號(hào)通路。
經(jīng)典Wnt信號(hào)通路是Wnt蛋白通過(guò)Frizzled家族特異受體和LRP5/LRP6輔助受體結(jié)合,觸發(fā)細(xì)胞內(nèi)的信號(hào)傳導(dǎo),使β-catenin聚集的級(jí)聯(lián)反應(yīng)過(guò)程。細(xì)胞內(nèi)的β-catenin是經(jīng)典Wnt信號(hào)通路的核心組成部分,它分布于細(xì)胞核內(nèi),可調(diào)控靶基因的轉(zhuǎn)錄,被認(rèn)為能夠指示W(wǎng)nt信號(hào)通路的激活狀態(tài)[10-11]。β-catenin同時(shí)具有細(xì)胞膜黏附作用[12-13]。在缺少Wnt配體(如Wnt3、Wnt3a、Wnt5a、Wnt7a和Wnt8b等)的情況下,細(xì)胞質(zhì)內(nèi)β-catenin處于復(fù)合體松散的游離狀態(tài),復(fù)合體被分解為多種蛋白,如息肉膠原蛋白、軸蛋白、蛋白激酶酪蛋白激酶1(CK1),以及糖原合成酶激酶3(GSK3)。β-catenin被磷酸化,導(dǎo)致蛋白降解[11]。當(dāng)Wnt配體與膜相關(guān)受體復(fù)合體[由跨膜受體家族成員及一個(gè)低密度脂蛋白受體(LDLR)相關(guān)蛋白(LRP)]相結(jié)合后,Wnt信號(hào)通路就被迅速激活,這導(dǎo)致被破壞的復(fù)合體解體,并引起胞漿內(nèi)的β-catenin第一次發(fā)生積聚,進(jìn)而導(dǎo)致信號(hào)異常活化[13]。
2 Wnt基因的研究進(jìn)展
Wnt基因家族由一些編碼分泌信號(hào)蛋白的結(jié)構(gòu)相關(guān)基因組成。這些蛋白參與了多種發(fā)育進(jìn)程,包括調(diào)控胚胎發(fā)育期的細(xì)胞命運(yùn)和構(gòu)造,同時(shí)也參與了腫瘤生成。人類Wnt3基因是Wnt基因家族的一員,其編碼的98%蛋白質(zhì)與小鼠Wnt3蛋白同源,也與84%的人類Wnt3蛋白同源,Wnt3參與了小鼠原始軸形成[14]。Wnt3基因可能通過(guò)激活Wnt-β-catenin-TCF信號(hào)通路,在人類乳腺癌、直腸癌、肺癌和胃癌中發(fā)揮決定性作用[15]。
人類Wnt5a基因也是Wnt基因家族的一員,其編碼的蛋白質(zhì)同時(shí)參與了經(jīng)典與非經(jīng)典Wnt信號(hào)通路。Wnt5a編碼的蛋白質(zhì)參與形成了跨膜受體卷曲蛋白-5和酪氨酸激酶孤兒受體2的配體[16]。Wnt5a可促進(jìn)精原干細(xì)胞自我更新[17]。
Wnt7a定位于3號(hào)染色體短臂2區(qū)5帶。其組織特異性表達(dá)局限于胎盤、腎臟、睪丸、子宮、胎兒肺、胎兒和成人的大腦。換而言之,Wnt7a在男性睪丸是高表達(dá)的[18]。小鼠Wnt7a基因編碼的蛋白與人類該基因編碼的蛋白有97%的同源性。Wnt7a基因在苗勒管的分化和頭向尾縱向發(fā)育過(guò)程中起到關(guān)鍵作用,該基因參與了胚腔上皮特異性分化為苗勒管細(xì)胞的過(guò)程,并使苗勒管與性腺相連,可以促使苗勒管延長(zhǎng)[19]。同時(shí),Wnt7a基因突變的小鼠會(huì)出現(xiàn)各種苗勒管發(fā)育異常的癥狀:雙側(cè)敲除的小鼠,其生殖系統(tǒng)較前兩者短,宮腔狹窄[20]。Wnt7a基因突變與小鼠的精子形成具有相關(guān)性[21]。中國(guó)人群大樣本非梗阻性無(wú)精癥的全基因組關(guān)聯(lián)分析(GWAS)研究中發(fā)現(xiàn)了2例非梗阻性無(wú)精癥患者的Wnt7a基因存在26 kb的缺失[22]。
3 Wnt信號(hào)通路與男性不育的關(guān)系
Wnt信號(hào)在出生后睪丸功能的重要性已經(jīng)在幾個(gè)小鼠模型中得到了研究[23]。在唯支持細(xì)胞和減數(shù)分裂后期生殖細(xì)胞中,Wnt通路的干擾作用將影響其功能。雖然唯支持細(xì)胞中的β-catenin缺失對(duì)睪丸的發(fā)育沒(méi)有影響,但Wnt信號(hào)是精子發(fā)生的多個(gè)階段必需的[24]。Wnt信號(hào)通路異?;罨头墙?jīng)典的Wnt信號(hào)通路的激活對(duì)細(xì)胞的影響,已被證明與經(jīng)典的Wnt信號(hào)通路的激活存在一定差別,甚至是差異非常大。嚴(yán)重?cái)_亂模型小鼠經(jīng)典Wnt信號(hào)通路,以探索調(diào)節(jié)Wnt通路活性對(duì)成年雄性小鼠正常生殖細(xì)胞發(fā)育的重要性,發(fā)現(xiàn)在24 h內(nèi),每個(gè)細(xì)胞都表現(xiàn)出明顯的分裂性的精子形成,并持續(xù)了4 d,其結(jié)果包括生殖細(xì)胞凋亡和快速丟失,雄性小鼠的生育能力減退,并改變血睪丸屏障蛋白的分布和形態(tài)[21]。這表明Wnt信號(hào)控制對(duì)成人精子形成是至關(guān)重要的,即它的破壞可能是某些男性不育的基礎(chǔ)。然而,關(guān)于在睪丸內(nèi)的Wnt配體的特性、其影響的位點(diǎn)及其對(duì)精子在體內(nèi)的進(jìn)展的特異性影響的信息很少。
Kohn等[25]在小鼠睪丸中發(fā)現(xiàn)一種與已知Wnt信號(hào)拮抗劑家族Dickkopf(DkkL1)同源的蛋白,在精子形成過(guò)程中最初出現(xiàn)在精子形成細(xì)胞中,然后出現(xiàn)在成熟精子頭部的頂體上。每個(gè)精子發(fā)生階段的基因表達(dá)由不同的驅(qū)動(dòng)因素控制,這些因素可能促進(jìn)功能受體的合成,以維持在精子發(fā)生過(guò)程中持續(xù)的Wnt活動(dòng)。另外,兩種受體之間可能存在功能上的差異,這反映了它們?cè)诓煌臣?xì)胞類型中的主要表達(dá)??偟膩?lái)說(shuō),精子細(xì)胞和精子需要Wnt信號(hào)的正常調(diào)控,這些發(fā)現(xiàn)進(jìn)一步證明了在有絲分裂生殖細(xì)胞中對(duì)Wnt功能的精確調(diào)控的必要性。
β-catenin在生殖細(xì)胞中具有重要作用。在原始生殖細(xì)胞啟動(dòng)子TNAP-CRE表達(dá)的細(xì)胞和細(xì)胞系中,表達(dá)活躍的β-catenin導(dǎo)致了男性和女性的生殖細(xì)胞缺乏[26],而單倍體生殖細(xì)胞β-catenin缺失導(dǎo)致了精子數(shù)量減少,生殖細(xì)胞凋亡增加,生育能力受損[27]。睪丸的Wnt信號(hào)通路尚未得到很好的研究,但其已被認(rèn)為影響正常的精子發(fā)生[28]。Wnt/β-catenin信號(hào)通路的紊亂將破壞唯支持細(xì)胞的功能,這對(duì)睪丸精子形成的能力至關(guān)重要[29-30]。
經(jīng)典的Wnt信號(hào)通路對(duì)成年男性睪丸發(fā)揮正常功能是不可或缺的,Wnt基因?qū)ψ甜B(yǎng)細(xì)胞精子形成的支持至關(guān)重要[31]。其中,Wnt配體作用于多個(gè)位點(diǎn),可影響睪丸的發(fā)育,并有助于成體的上皮細(xì)胞的功能完整性。這些基因可能是非梗阻性無(wú)精癥的重要候選基因,其功能缺陷將影響睪丸的發(fā)育。Wnt信號(hào)水平的控制對(duì)精子形成的Sertoli細(xì)胞的支持至關(guān)重要,但是對(duì)Wnt信號(hào)在男性生殖細(xì)胞中的作用仍知之甚少。因此,Wnt信號(hào)在生殖細(xì)胞中的具體作用仍有待進(jìn)一步研究。
[參考文獻(xiàn)]
[1]? Hernandez Gifford JA. The role of WNT signaling in adult ovarian folliculogenesis [J]. Reproduction,2015,150(4):R137-R148.
[2]? Ferlin A,F(xiàn)oresta C. New genetic markers for male infertility [J]. Curr Opin Obstet Gynecol,2014,26(3):193-198.
[3]? Tiberio P,Lozneanu LL,Angeloni V,et al. Involvement of AF1q/MLLT11 in th progression of ovarian cancer [J]. Oncotarget,2017,8(14):23 246-23 264.
[4]? Plaseska-Karanfilska D,Noveski P,Plaseski T,et al. Genetic causes of male infertility [J]. Balkan J Med Genet,2012,15:31-34.
[5]? Weedinj W,Khera M,Lipshultz L. Varicocele repair in patients with nonobstructive azoosperima:a meta-analysis [J]. J Urol,2010,183(6):2309-2315.
[6]? Zhang X,Hao L,Meng L,et al. Digital gene expression tag profiling analysis of the gene expression patterns regulating the early stage of mouse spermatogenesis [J]. PLoS One,2013,8(3):e58 680.
[7]? Chen MW,Yang ST,Chien MH,et al. The STAT3-miR-NA-92-Wnt signaling pathway regulates spheroid fomation an malignant progression in ovarial cancer [J]. Cancer Res,2017,77(8):1955-1967.
[8]? Holstein TW. The evolution of the Wnt pathway [J]. Cold Spring Harb Perspect Biol,2012,4(7):a007 922.
[9]? Wallkamm V,Rahm K,Schmoll J,et al. Regulation of distinct branches of the non-canonical Wnt-signaling network in Xenopus dorsal marginal zone explants [J]. BMC Biol,2016,14:55.
[10]? Fodde R, Tomlinson I. Nuclear b-catenin expression and Wnt signalling:in defence of the dogma [J]. J Pathol,2010,221(3):239-241.
[11]? Madan B,Ke Z,Lei ZD,et al. NOTUM is a potential pharmacodynamic biomarker of Wnt pathway inhibition [J]. Oncotarget,2016,7(11):12 386-12 392.
[12]? Ashouri S,Khujin MH,Kazemi M,et al. Effect of teicoplanin on the expression of c-myc and c-fos proto-oncogenes in MCF-7 breast cancer cell line [J]. Adv Biomed Res,2016,5(1):172-175.
[13]? Barker N. The canonical Wnt/beta-catenin signalling pathway [J]. Methods Mol Biol,2008,468:5-15.
[14]? Hassanian SM,Ardeshirylajimi A,Dinarvand P,et al. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β-catenin signaling in endothelial cells [J]. J Thromb Haemost,2016,14(11):2261-2273.
[15]? Bukowska J,Ziecik AJ,Laguna J,et al. The Importance of the Canonical Wnt Signaling Pathway in the Porcine Endometrial Stromal Stem/Progenitor Cells:Implications for Regeneration [J]. Stem Cells Dev,2015,24(24):2873-2885.
[16]? Yu WZ,Chen XM,Niu WB,et al. Role of Wnt5a in the differentiation of human embryonic stem cells into endometriumlike cells [J] Int J Clin Exp Pathol,2015,8(5):5478-5484.
[17]? Yeh JR, Zhang X, Nagano MC. Wnt5a is a cell-extrinsic factor that supports mouse spermatogonial stem cell-renewal [J]. J Cell Sci,2011,124(14):2357-2366.
[18]? Fan X,Krieg S,Hwang JY,et al. Dynamic regulation of Wnt7a expression in the primate endometrium:implications for postmenstrual regeneration and secretory transformation [J]. Endocrinology,2012,153(3):1063-1069.
[19]? Bernkopf DB,Hadjihannas MV,Behrens J. Negative-feedback regulation of the Wnt pathway by conductin/axin2 involves insensitivity to upstream signalling [J]. J Cell Sci,2015,128(1):33-39.
[20]? Miller C,Degenhardt K,Sassoon DA. Fetal exposure to DES results in deregulation of Wnt7a during uterine morphogenesis [J]. Nat Genet,1998,20(3):228-230.
[21]? Kerr GE, Young JC,Horvay K,et al. Regulated Wnt/Beta-Catenin Signaling Sustains Adult Spermatogenesis in Mice [J]. Biol Reprod,2014,90(1):3.
[22]? Huang N,Wen Y,Guo XJ,et al. A Screen for Genomic Disorders of Infertility Identifies MAST2 Duplications Associated with Nonobstructive Azoospermia in Humans [J]. Biol Reprod,2015,93(3):61.
[23]? Qiu CZ,Wang MZ,Yu WS,et al. Correlation of GOLPH3 gene with Wnt signaling pathway in human colon cancer cells [J]. J Cancer,2016,7(8):928-934.
[24]? Lüdtke TH,Rudat C,Wojahn I,et al. Tbx2 and Tbx3 act downstream of Shh to maintain canonical Wnt signaling during branching morphogenesis of the murine lung [J]. Dev Cell,2016,39(2):239-253.
[25]? Kohn MJ,Kaneko KJ,Depamphilis ML. DkkL1 (Soggy),a Dickkopf family member,localizes to the acrosome during mammalian spermatogenesis [J]. Mol Reprod Dev,2005,71(4):516-522.
[26]? Liu S,Liu YP,Huang ZJ,et al. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats [J]. Pain,2015,156(12):2572-2584.
[27]? Chang YF,Lee-Chang JS,Harris KY,et al. Role of b-catenin in post-meiotic male germ cell differentiation [J]. PLoS One,2011,6(11):e28 039.
[28]? Li Q,Ishikawa TO,Miyoshi H,et al. A targeted mutation of Nkd1 impairs mouse spermatogenesis [J]. J Biol Chem,2005,280(4):2831-2839.
[29]? Boyer A,Hermo L,Paquet M,et al. Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in sertoli cells [J]. Biol Reprod,2008,79(3):475-485.
[30]? Tanwar PS,Kaneko-Tarui T,Zhang L,et al. Constitutive WNT/beta-catenin signaling in murine Sertoli cells disrupts their differentiation and ability to support spermatogenesis [J]. Biol Reprod,2010,82(2):422-432.
[31]? Yang X,Sun J,Xia D,et al. Capn4 Enhances Osteopontin Expression through Activation of the Wnt/β-Catenin Pathway to Promote Epithelial Ovarian Carcinoma Metastasis [J]. Cell Physiol Biochem,2017,42(1):185-197.
(收稿日期:2018-07-24? 本文編輯:王? ?蕾)