• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Safety Automotive System Design through Validation during the Early Design Phases

    2019-04-03 02:35:32DrIngOlenaIvanova
    汽車技術(shù) 2019年3期

    Dr.-Ing.Olena Ivanova

    (ITK-Engineering GmbH,Stuttgart 70565,Germany)

    【Abstract】Efficiency of the system design approach could be increased through the system design validation,respecting safety objectives and system dynamics during the early concept phases.Therefore,a formal safety system design criteria applicable to the system behavior models and safety critical constraints is represented.An efficient safety system design approach,which respects formal safety system design criteria,is shown as well.The safety critical constraints are defined in terms of hazard or fault tolerance domains for observable on the vehicle or system level states.For system behavioral models selected item validation methods are shown.Mathematical models as part of the system behavior models respect system dynamics,which are not explicitly considered in ISO 26262.In this work,it is also illustrated how to apply the proposed safety system design approach for a simple system.A formal safety design criteria helps to prevent conservative design restrictions,surely prevent safety hazards for system with complex dynamics and reduce coordination efforts by the distributed development but require some tools for automated safety system validation because of the possible system dynamic complexity.

    Key words:ISO 26262,Safety system design,Fault tolerance domain,System dynamics,Model in the Loop(MiL)

    1 Introduction

    Safety isoneof thekey issuesof futureautomobile development.

    With thetrend of increasingtechnological complexity,software content and mechatronic implementation,there are increasing risksfromsystematic failures and random hardwarefailures.ISO 26262 includesguidancetoavoid these risks by providing appropriate requirements and processes.

    Figure 1 showsthe safety activities during the whole product lifecycle,includingtheconcept phase,product development and the phase after release for production.Each number near the activity notation referencesthe volume-number in Reference[1].The application field of Reference[1]issafety-related systemscomprised of electrical,electronic and software components.The remainingsystemsarenotated as“other technologies”or“external measures”,depending on the itemscope (see 1*and 3*in Figure1).Theassumptionsregardingitem controllability by the driver using the hazard and risk analysis shall be checked by the safety product validation,as shown by No.4-9 in Figure 1.

    Figure 1. Safety lifecycle

    This study concentrateson the system design and validation of theconcept phase,becauseefficient system design during this phase saves the most effort and costs.

    Themain objectiveof theitemdefinition(see 3-5 in Figure 1)is to describe the system,its dependencies and interaction with theenvironment and other items,see Reference[1],volume 3,§5.Itemdefinition includes the functional concept,operational and environmental constrains,and interactional interfaces with other items and the environment,its elements and so on.

    ISO 26262 specifies no formal validation methods for the itemdefinition.

    By theinitiation of thesafety lifecycle(see 3-6 in Figure 1),a distinction can be made between a new item development and amodification of theexistingitem,specifying the responsibilities and work products for the development and production processes.

    The objective of the hazard analysis and risk assessment(see3-7 in Figure1)istoidentify and to categorize the hazards where malfunctions in the itemcan trigger and toformulatethesafety goalsrelated tothe prevention or mitigation of the hazardous events.Through Reference[1],volume 3,§7,the hazard analysis and risk assessment arebased on theitemdefinition.Thehazard is defined in terms of conditions or behavior that can be observed at thevehiclelevel.

    In Reference[2],[3]and[4],hazard definition is achieved by definition of thefault set(specified in the natural language and based on the item definition),which referstothedrivingsituation fromstandardized safety catalogs.This type of hazard definition has several disadvantages:

    a.Hazard definition strongly depends on the item definition and this in turn depends on the preliminary systemdesign.Thus,thehazard isspecified in such away that it cannot be easily reused for other systemdesigns or itsredesign.

    b.A correctness of the hazard definition strongly dependson thecorrectnessof theitemdefinition and there is no formalized way to validate the itemdefinition without ageneral hazard definition methodology.

    The objective of the functional safety concept(see 3-8 in Figure1)istoderivethefunctional safety requirementsfromthe safety goals.

    Thisincludes:

    a.Fault detection and fault mitigation for the preliminary itemarchitecture.

    b.Systemtransition tothesafestate.

    c.Fault tolerance mechanism.

    d.Driver warningconcept.

    2 Hazard Definition

    The hazardsare classified through their controllability by thedriver,theoccurrenceprobability of therelevant driving situation and the caused injury severity during the hazard and risk assessment.Further development efforts and safety system design depend on this classification.However,such classification for new product featurescould havesomeuncertainties.Possibleuncertaintiesinvolve assumptions regarding controllability by the driver,which aredifficult tobevalidated at thebeginningof the development process.

    Themain requirement dueto Reference[1]for hazard definition is definition in terms of the conditions or behavior that can beobserved at thevehiclelevel,see Reference[1],volume 3,§5.

    In thisstudy,thesafety relevant hazardsaredefined through a hazard tolerance domain Dnh,which consistsof the elements xv,for which hold xv∈Rnhand v(xv,t)<0:

    where Rnhis a vector space necessary for the unique and completeconditionsor behavior definition that can be observed on the vehicle level;xvis a state vector,with behavior definition that can be observed on the vehicle level aselements;v(xv,t)<0 isa vector function,which defines the condition and behavior on the vehicle level,which could lead tothesafety relevant hazard.

    In most cases,the definition of the safety goals means toprevent exceedingthehazard tolerancedomain Dnh.Systemstates,which bring the systeminto the hazard tolerancedomain arenotated assafeone[1],and requireno further prevention or control measures.

    Such ahazard tolerancedomain definition Formula(1)formalizes the hazard and safety goal definition,which prevents misunderstanding by the distributed development,formalizes safety analysis and allows us to systemize and even automate some steps in the system design and validation.

    Conclusion 1:for an item-independent hazard definition,astandardized catalogwith xvstatesand hazard tolerance domain definition see Formula (1),shall be provided for all automotive Original Equipment Manufacturers.

    Asmentioned above,thehazard tolerancedomain may have some uncertainties due to driver model assumption.Such uncertaintiesarenot within thescopeof this article,so here we assume a conservative driver model.Thereby,a hazard tolerance domain is considered asa certain domain.

    The further design of the functional safety concept is based on thehazard toleranceregion Formula (1)and item definition.

    3 Item Definition

    Therequirementsregardingitemdefinition are explicitly described in Reference[1],volume 3,§5 and includedefinition of theitemelements,their functionality,interfaces and functional design constraints.In this chapter,formalized itemdefinition and validation methods for the early development’s phases with respect to the safety objectivesareprovided.

    3.1 Item Interface Definition and Validation

    First,anecessary iteminterfacewith other items,the environment and driver should be specified.The safety relevant system inputsand outputs,see Figure 1,represent a state vector xv=[]tThrough vector composition by thehazard tolerancedomain definition in Formula (1).

    Thesysteminput fromtheenvironment env=[env1env2]Tcould not be detected through the item interfaceunlike,but strongly influencesystemoutput statesvalues.

    Therefore,env shall be explicitly specified by the itemdefinition and respected by thefurther systemdesign.The non-safety system inputs and outputsnot influence the values of the safety relevant systemstates xv.Through such adefinition,the systemdynamic for the safety states xvis decoupled from the xfsystemdynamic.

    Conclusion 2:if the safety relevant item interfacesnot represent a state vector xvfor conditions or behavior definition on the vehicle level,then the item definition isnot appropriatefor thehazard prevention.

    3.2 Submodules and Internal Item State Definition and Validation

    The internal interfaces between item elements and itemsubmodulesarealsodefined by theitemdefinition.Here safetyrelevant system states,non-safety relevant system statesand iteminternal control inputs u=[u1u2]Tare differed.

    All safety relevant states xsby thesafety item definition aredecoupled fromtherest of thesystemstates.

    A Functional Safety Concept(FSC)for a particular itemdefinition is designed.To validate the FSC,hazard tolerance domain Dnhin the vector space Rsis transformed tointernal itemstates xs(see Figure2):

    where the hazard tolerance domain Dsincludes all reachable xsvalues,which are estimated through the transformation function vs(xv,t,env),which exists for all xv

    Figure2.Itemdefinition

    The condition?xv( )Dnhmeans the existence of the condition and behavior on the vehiclelevel xv,which guarantees for the system statesno exceeding fromthe hazard tolerancedomain Dnh:

    Thereby,ahazard tolerancedomain Dsfor theinternal

    where s(xs,t,u)will be referenced as a hazard function.

    Such a domain transformation specifiesan additional criterion for thepreliminary itemdesign validation.

    Conclusion 3:if the inverse transformation function sv?vs-1tothevector space Rnvwith vehiclebehavior states xv.

    does not exist or leadsto the exit fromthe initial hazard tolerance domain Dnh:

    see Figure 3,then Item—Definition or preliminary system design isnot appropriate for the hazard prevention.

    Figure 3. Inversetransformation of hazard tolerance domain

    3.3 Reachability Domain for Internal Item States and Its Validation

    The reachability domain Dsdfor the internal item states xsisrestricted duetothesystemdynamicsand the itemoperational mode.The common effects,which influence the systemdynamics,are:communication(send/receive)frequency between several control units (SUs),requirement execution time on some control units,and systemtransition process (for sensors,actuator and soon).

    The systemdynamics depend on the final system design,thereforefor theconcept phase,simply an assumption regarding systemdynamics could be considered.In the Reference[1],thereareno requirements or instruction to respect the systemdynamics by theitem/systemdesign.

    The reachability domain restriction due to the system dynamics

    is respected in the feasibility domain

    where the control inputs fu(xs,t)depend on the system design decision,f(xs,t,u,env)describesthesystemdynamics and g(xs,t,u,env)describes algebraic dependencies by the systemdynamic definition.

    Some basic requirements for the safety critical item dynamicsmodellingin Formula (6)areasfollows:the model in Formula (6)shall guaranty that all possible hazardscould bedetected (Req 1);faulty hazard detection through the modelling error shall satisfy the system performance requirements (Req 2).

    Therefore,lets specify ideal systemmodel

    The requirements for safety critical itemdynamics modellingcould bedefined as

    and

    whereacceptablemodellingerror

    As soon as systemdynamic is modeled,a new method is proposed to respect the systemdynamics by the safety concept validation.Thiswill prevent detection of safety relevant concept faults only by the final product validation.Thisconsequently reduces the development costs and effort.

    The reachability domain restriction due to the operation mode is respected in domain OP for the attainableinitial conditions xs(0),control and environment inputs u and env:

    where xs(0)-,u,-env-are lover bounds and xs(0),+u+,env+aretheupper boundsof referenced states.

    The feasibility domain ML and choice of the operation modedefinethereachability domain Dsdfor the internal itemstates:

    Such a formal reachability domain definition specifies afurther criterion for theitemdesign validation.

    Conclusion 4:if the reachability domain for the internal itemstates Dsdexceedsthehazard tolerance domain for the internal itemstates Ds,see Figure 4,Dsd?Ds,then the systemdynamicsand/or itemoperation mode does not satisfy the safety requirements.

    Figure 4. Reachability domain for the internal itemstates

    Thesystemdesign modification could changethe reachability domain for the internal item states.To prevent safety concept faultsby thedesign modification,a continuoussystemvalidation due to the defined above conclusionsshall beimplemented.Therefore,an item functional model,validation scenariosand validation routine shall be defined.

    An examplefor safety relevant design modification is state values feasibility check before propagation.In this case,thesystemreaction timeincreases,and consequently,the feasibility domain and reachability domain for internal itemstates change.Therefore,a design validation via conclusion 4 isessential.

    Conclusion 5:the reachability domain definition for theinternal itemstatescount asan assumption until the final systemdesign decision,implementation and validation.Thereachability domain Dsdassumption is validated via conclusions 3 and 4 by any relevant system design modification.

    3.4 Sensors,Interfacesand Execution Module Accuracy by Item Definition

    Theinterfacesand execution moduleaccuracy strongly influence the value of the itemstates and consequently increasethereachability domain D?sdof thefeasibility domain for the item~ sates increases with respect~to item states accuracy ML?ML and real~ operation mode OP divergesfromideal operational OP ? OP.

    By itemstatesaccuracy model consideration,a definition and validation of reachability domain D?sdare morecomplicated and advanced toolsand methodsare used.

    Nowadays,most componentsand systemsin the automotive sector already have accuracy modelsfor the input and output states:established error models(offsets,scale error,nonlinearities,drift and so on)or tolerance interval for theupper and lower statevaluesor covariance matrices for the systemmodules with Kalman filters or probability valuesfor the systemstate or further signal qualifiers (e.g.,imageunderstandingsystems).

    For these systems,which internal state estimation accuracy vary duringthedrive (e.g.,cognitivesystems),a functional safety concept with adaptive reachability domain control shall beimplemented.Other ways,such as a functional safety concept unnecessarily restrictsthe systemdesign and isinappropriatetoguaranty safety objectives.

    Nowadays,in ISO 26262,therearenosafety requirements,which respect item states accuracy by the systemdesign.The hard definition of the fault tolerance time for each safety mechanism(see ISO 26262,volume 4,§6.4.2.3)also restricts the possibility to design an adaptive safety mechanismor reachability domain control.

    4 System Fault Definition

    Asdefined in Reference[1],an FSCincludes safety systemfault definition,itsdetection,mitigation and tolerance mechanism.A safety fault definition is done on the basis of the safety analysis results.

    By systemsafety analysis,afault in each systemstate xs,control input u and possiblefault combination are considered.

    The methodology of automatized safety system analysisisnot described in Reference[1]for theearly development phasebut theautomatized fault injection in the AUTOSARmodel isalready researched as an important systemvalidation methodology.In Reference[5],fault modelsfor each safety relevant fault areadded as extension modulestothefinal sourcecodewithout its manual change.The necessity of formal fault model definition is discussed in Reference[5]but in practice,fault modelsin natural languagewereused.Here,in contrast to Reference[5],replacing the mathematical model of sub-items or sub-modules due to the mathematical model of thissub-systemwith afault is proposed.

    Due to such validation,the administration efforts for SWmodulesand fault modulesescalatebut thetraceability and the systematic of the safety analysis will be improved.

    Hence,amathematical model for thesystemwith a fault will be provided:

    wheredepending on thefailureallocation,afunctional dependency ge1(xs,u,t)or a system dynamic fe1(xs,t,u,env)will bechanged or escape.A reachability domain for a“systemwith a fault”can be defined as follows:

    Conclusion 6:If the reachability domain for the systemwith afault doesnot exit thehazard tolerance domain for theinternal itemstates,then the specified systemfailureisnot safety relevant and requires no special through ISO 26262 specified process and additional safety measures,other waysa safety mechanism for thisfault or fault combination isrequired or anew definition of theoperational modeisrequired or the functional systemdesign shall be changed.

    As in Reference[1],a fault tolerance time shall be specified if applicablefor thefunctional safety concept design.In the hazard tolerance domain definitionexplicitly specified,soin thiscaseafault tolerancetimeis applicableand shall bedefined.In thisstep,welosesome generality of thefault tolerancedomain definition dueto conservativechoiceof thehazard function s★(xs,u) with constant fault tolerance time (tend-t0):

    Thus,thegeneral definition of thefault tolerancetime ftt (if fault tolerancedomain isalready defined)always leadstothelossof performanceand over engineeringin most cases.

    A good example of how such a design can lead to over engineering is the relation between acceptable system error and fault tolerance time.The smaller the systemerror,the higher the fault tolerance time could be.So,a constant definition of the fault tolerance time is a strong restriction.

    5 Example

    The implementation of the above defined system design and formal validation methods will be shown here for a simple example.The safety critical item dynamics modellingisin thescopeof thefurther research,therefore herean initial systemwith simply systemdynamicswas chosen asan example.Hence,thefulfillment of the modellingrequirements(Req 1) and (Req 2) could be excluded in this context.

    Some systemmodule shall switch a lamp on demand,if it is required through the systeminput∈{0 ;1}.Here the statesand system control input u are scaler values,see vector space dimension for Dnhdomain.

    The definition of the fault tolerance domain could be done based on the following requirement:“The required state of the lamp shall be safety implemented with fault tolerance time interval.”

    Because of the system simplicity,the transformation of the fault tolerance domain Dnhin the vector space Rscould be easily done:

    On thisstep,thereisnosafety mechanism implemented and hence systemdynamics are neglected.For theoperation modeholds:

    So,the hazard tolerance domain for the internal item statescan beobtained asfollows:

    The reachability domain for the internal itemstates is

    where index (1)indicates that the reachability domain holds for the first systemdesign iteration.The reachability domain shall bereevaluated for each systemdesign modification.In contrast to the reachability domain,the hazard tolerancedomain Dnhshall not bechanged.

    For the systemwithout internal fault the validation criteria Dsd?Ds,could be easily verified.

    In thecaseof theinternal systemfault(e.g.,burned LED),the systemdynamicswill be changed xs=0.

    For such asystem,conclusion 4 could not be validated and thefollowingholds:.

    Because LEDis allocated at the end of the functional chain,thisfault can not beprevented,but todetect it and warn thedriver with additional systemoutputcan be

    For such asystem,ahazard tolerancedomain shall be fit to the new systemoutput:

    hazard could occur just in thecasethat LEDisburned,and the driver isnot informed.

    Thetransformation function vs(2)

    leads to the new hazard tolerance domain definition for internal item states:

    For such asystemdesign,thesystemdynamicsfor internal states will be also changed:

    For the (2)-nd systemdesign iteration,conclusion 4 is fulfilled:

    For thereachability domain of the“systemwith a fault”in our case holds:

    Thefulfillment of theconditionsdependson thedefinition of theoperation modeand in general for thespecifiedthiscannot beensured.

    For somespecial drivingsituation,when warning lamp must blink (on-off change of the systeminput)with frequency f2,see the Figure5,thefollowinginequality could not beguaranteed:

    Figure5. Systemstates for the submodule with afault

    Thus,when u frequency f2does not fulfil the condition

    thesafety relevant fault(e.g.,burning LED)could not be detected.

    Helpful in thiscasecould betherestriction of the changingratefor thecontrol input uin:

    by theoperation modedefinition.

    where tn-tn-m<t*1holds.

    6 Conclusion

    It has been shown how important the formal definition of the hazard tolerance domain and the systemdesign validation regardingitssafety objectiveseven for asimple system.

    A completefault treecould bedefined automatically through the specified internal item statesand control inputs.

    Here,the advantagesof the modular design could be used and themathematical model just for related functional module with a fault is updated.The final computation of thereachability domain for thecompleteitemand its validation could be done automatically.

    By any change of the system design and further systemdesign refinement,reevaluation of the reachability domain and its validation shall be done automatically,which contributestotheautomatization of thechange management.

    午夜精品一区二区三区免费看| 国产精品爽爽va在线观看网站| 一级毛片 在线播放| 免费不卡的大黄色大毛片视频在线观看 | 99热网站在线观看| 久久综合国产亚洲精品| 亚洲人与动物交配视频| 在线播放无遮挡| ponron亚洲| 一级毛片 在线播放| av卡一久久| 成年免费大片在线观看| 国产色婷婷99| 亚洲性久久影院| 熟女电影av网| 国产极品天堂在线| 精品一区在线观看国产| 麻豆乱淫一区二区| 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 久久精品夜色国产| 内地一区二区视频在线| 成年人午夜在线观看视频 | 26uuu在线亚洲综合色| 精品人妻偷拍中文字幕| 身体一侧抽搐| 日韩欧美 国产精品| av在线蜜桃| av.在线天堂| 免费观看av网站的网址| 国产高潮美女av| 亚州av有码| 插阴视频在线观看视频| 成人综合一区亚洲| 国产精品一区二区三区四区免费观看| 插逼视频在线观看| 黄色日韩在线| 久久精品熟女亚洲av麻豆精品 | 夫妻性生交免费视频一级片| 久久久久久久久久人人人人人人| av.在线天堂| 久久99蜜桃精品久久| 美女国产视频在线观看| 国国产精品蜜臀av免费| 午夜福利视频精品| 午夜爱爱视频在线播放| 亚洲av电影不卡..在线观看| 精品国内亚洲2022精品成人| 黄色配什么色好看| 国产成人精品久久久久久| 免费看a级黄色片| 亚洲av.av天堂| 听说在线观看完整版免费高清| 最后的刺客免费高清国语| 亚洲精品第二区| 欧美高清性xxxxhd video| 日韩欧美一区视频在线观看 | 少妇高潮的动态图| 色综合色国产| 日韩人妻高清精品专区| eeuss影院久久| 最近中文字幕高清免费大全6| 又爽又黄无遮挡网站| 国产精品人妻久久久久久| 日日啪夜夜撸| 一二三四中文在线观看免费高清| 国产高清三级在线| 日韩一本色道免费dvd| 夫妻午夜视频| 国产v大片淫在线免费观看| 国产成人freesex在线| 日韩中字成人| 一本久久精品| 国产午夜精品一二区理论片| 人人妻人人澡欧美一区二区| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 国产在视频线精品| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 国产精品爽爽va在线观看网站| 99热全是精品| 免费大片黄手机在线观看| 国产不卡一卡二| 国产成人a∨麻豆精品| av线在线观看网站| 日韩欧美 国产精品| 久久久精品94久久精品| 特大巨黑吊av在线直播| 国产一区二区三区综合在线观看 | 午夜视频国产福利| 亚洲国产日韩欧美精品在线观看| 日本-黄色视频高清免费观看| 蜜臀久久99精品久久宅男| 最新中文字幕久久久久| 精品午夜福利在线看| 我要看日韩黄色一级片| 亚洲欧美日韩卡通动漫| 人妻少妇偷人精品九色| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品一二三| 欧美日韩在线观看h| 18禁在线播放成人免费| 精品亚洲乱码少妇综合久久| 亚洲精品自拍成人| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 床上黄色一级片| 国产黄色视频一区二区在线观看| 国产伦在线观看视频一区| 只有这里有精品99| 两个人视频免费观看高清| 亚洲精品一区蜜桃| 国产高潮美女av| av一本久久久久| 午夜激情欧美在线| 内射极品少妇av片p| 免费播放大片免费观看视频在线观看| 成年人午夜在线观看视频 | 我的女老师完整版在线观看| 中文乱码字字幕精品一区二区三区 | 精华霜和精华液先用哪个| 欧美zozozo另类| 中文在线观看免费www的网站| 久久久精品欧美日韩精品| 亚洲国产色片| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 一级av片app| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级 | 五月伊人婷婷丁香| 国产永久视频网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品视频女| 少妇的逼水好多| 国产亚洲精品av在线| 伊人久久精品亚洲午夜| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| av一本久久久久| 国产精品熟女久久久久浪| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 淫秽高清视频在线观看| 天堂影院成人在线观看| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 日韩不卡一区二区三区视频在线| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 日韩不卡一区二区三区视频在线| 久久精品夜色国产| 三级男女做爰猛烈吃奶摸视频| 天堂√8在线中文| 韩国高清视频一区二区三区| 国产精品久久久久久久电影| 偷拍熟女少妇极品色| 亚洲图色成人| 亚洲经典国产精华液单| 国产一级毛片七仙女欲春2| 青春草视频在线免费观看| 亚洲在线观看片| 成人高潮视频无遮挡免费网站| 亚洲激情五月婷婷啪啪| 亚洲av.av天堂| 女人十人毛片免费观看3o分钟| 亚洲精品成人av观看孕妇| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 人妻夜夜爽99麻豆av| 国产免费又黄又爽又色| av天堂中文字幕网| 久久久成人免费电影| 免费观看的影片在线观看| 国产探花在线观看一区二区| 久久久久久久久久成人| 蜜臀久久99精品久久宅男| av免费在线看不卡| 午夜亚洲福利在线播放| 国产乱来视频区| 午夜精品一区二区三区免费看| 精品一区二区三区人妻视频| 日韩不卡一区二区三区视频在线| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线 | 两个人的视频大全免费| 国精品久久久久久国模美| 国产一区有黄有色的免费视频 | 久久久色成人| 亚洲,欧美,日韩| 黑人高潮一二区| 建设人人有责人人尽责人人享有的 | 亚洲精品日本国产第一区| 国产伦在线观看视频一区| 我的女老师完整版在线观看| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 亚洲最大成人av| 99久久人妻综合| 中文字幕av成人在线电影| 91在线精品国自产拍蜜月| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| 亚洲高清免费不卡视频| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美 日韩 精品 国产| 麻豆久久精品国产亚洲av| 搡老妇女老女人老熟妇| 久久久久久久久久久丰满| 男女边摸边吃奶| 男女视频在线观看网站免费| 欧美变态另类bdsm刘玥| 亚洲精品色激情综合| 超碰97精品在线观看| 亚洲第一区二区三区不卡| 亚洲av一区综合| 丝袜喷水一区| 日本色播在线视频| 亚洲欧美一区二区三区国产| 日本-黄色视频高清免费观看| 日韩成人av中文字幕在线观看| 国产免费又黄又爽又色| 国产成人免费观看mmmm| 午夜福利成人在线免费观看| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 欧美人与善性xxx| 亚洲国产欧美在线一区| 色视频www国产| av在线蜜桃| 久久韩国三级中文字幕| 少妇的逼水好多| 亚洲成人精品中文字幕电影| 高清av免费在线| 自拍偷自拍亚洲精品老妇| 97超视频在线观看视频| 国产精品嫩草影院av在线观看| 久久久久久久久久久丰满| www.av在线官网国产| 中文字幕av成人在线电影| 亚洲自偷自拍三级| 丰满少妇做爰视频| 亚洲国产成人一精品久久久| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 精品欧美国产一区二区三| 久久久久国产网址| 欧美性感艳星| 欧美97在线视频| 成人国产麻豆网| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 国产片特级美女逼逼视频| 色综合色国产| 91在线精品国自产拍蜜月| 80岁老熟妇乱子伦牲交| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 精品欧美国产一区二区三| 三级经典国产精品| 国产av国产精品国产| 成人综合一区亚洲| 国产乱人视频| 成人漫画全彩无遮挡| 午夜亚洲福利在线播放| 国产高清国产精品国产三级 | 插逼视频在线观看| 国产精品久久久久久精品电影| av在线播放精品| 蜜桃久久精品国产亚洲av| 色综合色国产| 国产精品人妻久久久影院| 少妇熟女欧美另类| 国产乱人视频| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 在现免费观看毛片| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 亚洲在久久综合| 亚洲欧洲日产国产| 成人一区二区视频在线观看| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 精品久久久久久电影网| 色尼玛亚洲综合影院| 亚洲欧美精品专区久久| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说| 精品欧美国产一区二区三| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 18+在线观看网站| 国产精品人妻久久久影院| 国产在线一区二区三区精| av国产免费在线观看| 人妻系列 视频| 22中文网久久字幕| 亚洲国产精品成人久久小说| 人妻夜夜爽99麻豆av| 精品久久久精品久久久| 国产av码专区亚洲av| av卡一久久| 少妇熟女aⅴ在线视频| 18禁在线播放成人免费| 人妻一区二区av| a级毛片免费高清观看在线播放| 亚洲在线自拍视频| 最近最新中文字幕免费大全7| 亚洲不卡免费看| 五月伊人婷婷丁香| 国产亚洲一区二区精品| 亚洲自拍偷在线| 亚洲精品成人av观看孕妇| 中文天堂在线官网| 在线免费十八禁| 日本-黄色视频高清免费观看| 成人无遮挡网站| 精品酒店卫生间| 日本爱情动作片www.在线观看| 日韩在线高清观看一区二区三区| 亚洲最大成人av| 日韩欧美一区视频在线观看 | 国产一区二区三区综合在线观看 | 狂野欧美激情性xxxx在线观看| 精品国内亚洲2022精品成人| 色哟哟·www| 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av| 亚洲图色成人| av免费在线看不卡| 久久久久久久亚洲中文字幕| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂 | 亚洲精品456在线播放app| 国产av在哪里看| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 久久久久精品性色| 亚洲精品乱码久久久久久按摩| 久久久久精品性色| 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看| 日日啪夜夜撸| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 日韩一区二区三区影片| 日韩欧美精品v在线| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 国产成人aa在线观看| ponron亚洲| 久99久视频精品免费| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 亚洲欧美精品自产自拍| 精品人妻熟女av久视频| 亚洲av中文av极速乱| 亚洲精品第二区| freevideosex欧美| 亚洲一区高清亚洲精品| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三卡| 久久久久久久午夜电影| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久午夜乱码| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 亚洲美女视频黄频| 日本三级黄在线观看| 国产精品av视频在线免费观看| 精品久久久久久成人av| 久久久久久久久大av| 国产亚洲av片在线观看秒播厂 | 高清毛片免费看| 亚洲国产av新网站| 国产一区有黄有色的免费视频 | 高清在线视频一区二区三区| 精品久久久久久电影网| 一级爰片在线观看| 精品久久久久久久久av| 可以在线观看毛片的网站| 欧美另类一区| 久久久久免费精品人妻一区二区| 成人特级av手机在线观看| 国产午夜精品一二区理论片| av在线天堂中文字幕| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 十八禁网站网址无遮挡 | av.在线天堂| 在现免费观看毛片| 亚洲精品日韩在线中文字幕| 久久精品久久久久久久性| 国产一区二区三区av在线| 特大巨黑吊av在线直播| 国产精品无大码| 亚洲国产成人一精品久久久| 亚洲av男天堂| 美女被艹到高潮喷水动态| 91久久精品国产一区二区三区| av在线亚洲专区| 91在线精品国自产拍蜜月| 网址你懂的国产日韩在线| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 毛片女人毛片| 国产乱人视频| 美女高潮的动态| 婷婷色综合大香蕉| 中文在线观看免费www的网站| 精品午夜福利在线看| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件| 一个人看的www免费观看视频| 国语对白做爰xxxⅹ性视频网站| 日本免费在线观看一区| 国产黄色视频一区二区在线观看| 国产 一区精品| 99热这里只有精品一区| 亚洲自偷自拍三级| 亚洲精华国产精华液的使用体验| av在线播放精品| 国产高清不卡午夜福利| 成人性生交大片免费视频hd| 亚洲欧美精品专区久久| 久久精品国产亚洲av天美| 黑人高潮一二区| 日韩一区二区视频免费看| 听说在线观看完整版免费高清| 看免费成人av毛片| 美女cb高潮喷水在线观看| 久久热精品热| 特大巨黑吊av在线直播| 日韩欧美三级三区| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 2018国产大陆天天弄谢| 小蜜桃在线观看免费完整版高清| 久久精品久久精品一区二区三区| 插逼视频在线观看| 51国产日韩欧美| 亚洲成人精品中文字幕电影| 尤物成人国产欧美一区二区三区| 少妇的逼好多水| 国产亚洲精品av在线| 亚洲aⅴ乱码一区二区在线播放| 精品国产一区二区三区久久久樱花 | 国内少妇人妻偷人精品xxx网站| 国产亚洲一区二区精品| 精品久久久久久电影网| 成人欧美大片| 91在线精品国自产拍蜜月| 人体艺术视频欧美日本| 三级毛片av免费| 亚洲成人中文字幕在线播放| 午夜久久久久精精品| 精品久久国产蜜桃| 久久久久国产网址| 一本一本综合久久| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 国产视频首页在线观看| 三级经典国产精品| 人妻少妇偷人精品九色| 日韩中字成人| 午夜精品一区二区三区免费看| 中国国产av一级| 亚洲色图av天堂| 五月天丁香电影| av播播在线观看一区| 99久久人妻综合| 国产成人福利小说| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频| 亚洲精品久久久久久婷婷小说| 99热这里只有精品一区| 亚洲内射少妇av| 免费看光身美女| 久久久久九九精品影院| 国产av在哪里看| 国产在线一区二区三区精| 有码 亚洲区| 日本熟妇午夜| 好男人在线观看高清免费视频| 91aial.com中文字幕在线观看| 精品亚洲乱码少妇综合久久| 男女国产视频网站| 黄色日韩在线| 国产麻豆成人av免费视频| 在线观看一区二区三区| 国产淫语在线视频| 久久6这里有精品| 身体一侧抽搐| 欧美 日韩 精品 国产| 国产成年人精品一区二区| 久久亚洲国产成人精品v| 69av精品久久久久久| 国产精品一区二区性色av| 超碰97精品在线观看| 美女黄网站色视频| 在线播放无遮挡| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 亚洲国产精品国产精品| 精品一区在线观看国产| 三级男女做爰猛烈吃奶摸视频| 午夜激情欧美在线| 精品久久久久久电影网| 免费av观看视频| 欧美成人一区二区免费高清观看| 神马国产精品三级电影在线观看| 久久久久久久久久久丰满| av一本久久久久| 欧美最新免费一区二区三区| 久久精品夜色国产| 精品一区二区免费观看| 午夜免费男女啪啪视频观看| 欧美日韩国产mv在线观看视频 | 国产高潮美女av| 亚洲国产成人一精品久久久| 一级a做视频免费观看| 色综合色国产| 久久精品夜色国产| 日韩制服骚丝袜av| 91精品一卡2卡3卡4卡| 性色avwww在线观看| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久久亚洲| 欧美97在线视频| 成人午夜高清在线视频| 精品人妻偷拍中文字幕| 亚洲精品一区蜜桃| 成人漫画全彩无遮挡| av.在线天堂| 久久草成人影院| 2018国产大陆天天弄谢| 国产白丝娇喘喷水9色精品| 国产美女午夜福利| 亚洲怡红院男人天堂| 亚洲av中文字字幕乱码综合| 天天躁日日操中文字幕| 亚洲精品久久久久久婷婷小说| 乱码一卡2卡4卡精品| 在线观看美女被高潮喷水网站| 国内精品美女久久久久久| 国产精品蜜桃在线观看| 国产黄a三级三级三级人| 国产黄片美女视频| 久久久久性生活片| 亚洲av免费在线观看| 亚洲在久久综合| 国产精品久久久久久精品电影小说 | 国内精品一区二区在线观看| 亚洲成人久久爱视频| 亚洲综合色惰| 91狼人影院| 一级毛片我不卡| 深夜a级毛片| 男女下面进入的视频免费午夜| 一级毛片aaaaaa免费看小| 男女视频在线观看网站免费| 国产极品天堂在线| 亚洲在线观看片| 国产免费视频播放在线视频 | 国产91av在线免费观看| 国国产精品蜜臀av免费| 国产av码专区亚洲av| 久久草成人影院| 男女边吃奶边做爰视频| 美女脱内裤让男人舔精品视频| 一级av片app| 一级a做视频免费观看| 色网站视频免费| 成年免费大片在线观看| 777米奇影视久久| 看十八女毛片水多多多| 久久99热6这里只有精品| 精品午夜福利在线看| 成年版毛片免费区| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 国产黄片美女视频| 国产亚洲一区二区精品| 日韩av免费高清视频| 久久久久久久久久人人人人人人| 亚洲精品中文字幕在线视频 | 夜夜爽夜夜爽视频| 天天躁日日操中文字幕| av播播在线观看一区| 一级毛片aaaaaa免费看小| 成人无遮挡网站| 日本午夜av视频| 波多野结衣巨乳人妻| 亚洲精品国产av成人精品| 26uuu在线亚洲综合色| 欧美日本视频| 午夜免费激情av| 国产不卡一卡二| 国产精品不卡视频一区二区|