• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive control for attitude coordination of leader-following rigid spacecraft systems with inertia parameter uncertainties

    2019-04-02 06:35:16XiaokuiYUEXianghongXUEHaoweiWENJianpingYUAN
    CHINESE JOURNAL OF AERONAUTICS 2019年3期

    Xiaokui YUE,Xianghong XUE,*,Haowei WEN,Jianping YUAN

    aNational Key Laboratory of Aerospace Flight Dynamics,Northwestern Polytechnical University,Xi'an 710072,China

    bSchool of Astronautics,Northwestern Polytechnical University,Xi'an 710072,China

    KEYWORDS Adaptive control;Attitude coordination;Leader-following consensus;Non-certainty equivalence;Spacecraft formation flying

    Abstract This paper studies the leader-following attitude coordination problems of multiple spacecraft in the presence of inertia parameter uncertainties.To achieve attitude coordination in the situation that even the leader's attitude is only applicable to a part of the following spacecraft,a nonlinear attitude observer is proposed to obtain an accurate estimation of the leader's attitude and angular velocity for all the followers.In addition,a distributed control scheme based on noncertainty equivalence principle is presented for multiple spacecraft'attitude synchronization.With a dynamic scaling,attitude consensus can be achieved asymptotically without any information of the bounds of the uncertain inertia parameters.Furthermore,once the estimations of inertia parameters reach their ideal values,the estimation process will stop and the ideal value of inertia parameter will be held.This is a special advantage of parameter estimation method based on non-certainty equivalence.Numerical simulations are presented to demonstrate that the proposed non-certainty equivalence-based method requires smaller control toque and converges faster compared with the certainty equivalence-based method.

    1.Introduction

    Spacecraft formation flying has drawn extensive attention in the last decade due to its higher flexibility and robustness,greater efficiency and lower fuel consumption.1-4Attitude coordination has been expected to be a necessary and important technology for many space missions,such as the CanX-4&5 primarily supported by Canadian Space and the SULFRO mission concept led by Chinese Academy of Sciences.5Compared with the leaderless case studied in Ref.6,the leader-following attitude coordination control is more challengeable since it not only ensures the consensus of the followers'attitude,but also enables the followers'attitude and angular velocity to be in line with those of the leader.7,8If there is only one follower,the leader-following problem degenerates into the attitude tracking problem of spacecraft.9,10

    According to how the followers access the leader's states,the methods for tackling leader-following problem can be classified into decentralized and distributed methods.The decentralized control algorithms assume that the leader's state is accessible to every follower in the group.11-16A passivitybased controller for a group of spacecraft without inertial frame information was developed in Ref.13.Meng et al.designed two distributed containment control laws for attitude consensus of spacecraft,including both static and dynamic leaders.14The result indicates that the attitude of the followers will converge to the convex hull formed by all leaders.A nonsingular fast terminal sliding mode controller was proposed to counteract the impact of external disturbances and actuator failures in Ref.15Attitude coordination with communication delays,caused by the distance between satellites,was taken into consideration in Ref.16,17

    In practice,it is more realistic that only a part of the followers can access the leader's attitude.Several distributed control laws have been presented to solve this problem in Ref.18-22Ren firstly studied distributed attitude synchronization of the leader-following problem with attitudes represented by modifi ed Rodriguez parameters.18Cai and Huang proposed a distributed nonlinear estimation method of leader's state for followers under the assumption that the communication network of the spacecraft systems is undirected and connected.19This work was extended to the case without the measurements of angular velocity by employing an angular velocity auxiliary system in Ref.20Zou et al.also studied the attitude coordination of the leader-following spacecraft systems without angular velocity measurement under undirected communication graph and proposed a finite-time observer to obtain the unmeasurable angular velocity of the leader.21Du extended attitude consensus of leader-following spacecraft systems to the situation with both rigid and flexible spacecraft.22However,all the above literatures did not consider attitude coordination with uncertain inertia parameters.

    Uncertainties of the spacecraft,caused by fuel consumption,appendage deployment and onboard payload transformation, are challenging to spacecraft attitude synchronization.Attitude tracking for single spacecraft with unknown inertia parameter has been investigated in Ref.9,10,23-25However,the development from attitude tracking problem to leader-following problem is nontrivial,especially when the leader's information cannot be directly accessed by all the followers.Several authors have studied the leaderfollowing attitudecoordination problem associated with parameter uncertainties.26-30Wu et al.studied the attitude synchronization and tracking problem of spacecraft with parameter uncertainties.26,27In these papers,the uncertainties were assumed to be a known nominal part and an uncertain part.A robust nonlinear controller for both relative position tracking and attitude synchronization with external disturbance and model uncertainty was presented in Ref.28However,initial values of the inertia parameters were regarded as known constants.Recently,Cai and Huang proposed a distributed control algorithm based on Certainty-Equivalence(CE)for multiple spacecraft systems in the presence of inertia parameter uncertainties.31The authors later extended their research to the condition with both uncertainties and external disturbances.32Although the asymptotic convergence of the tracking errors is easy to achieve in the existing literatures,the parameter estimation process is directly affected by tracking error dynamics,which could result in bad transient performance.

    The main aim of this paper is to provide a highperformance solution for the problem of attitude coordination for leader-following spacecraft in the presence of inertia parameter uncertainties.Unlike the CE-based approaches in attitude consensus with uncertainties,a distributed control law based on dynamic-scaling-based non-certainty equivalence is proposed.By setting an upper bound for dynamic scaling factor,the proposed method can not only make the convergence rate of attitude coordination faster,but also avoid the bad transient performance compared with CE-based method.In addition,the asymptotic convergence of tracking error under all the possible initial conditions is guaranteed without considering the boundary information of system uncertainties.Moreover,the distributed observer proposed in Ref.20is modified and applied to overcome the difficulty that the leader's attitude and angular velocity are only accessible to a part of the followers.This distributed observer guarantees that the attitude estimation made by the followers will converge to the leader's attitude,and then all the followers can track the estimation to achieve attitude consensus with the leader.

    The following of this paper is organized as follows.The attitude dynamics of spacecraft and problem formulation are brie fl y described in Section 2.Section 3 introduces a nonlinear distributed observer.The controller is given and its stability analysis is made in Section 4.Simulations are presented in Section 5 to illustrate our results.Conclusions are given in Section 6.

    2.Preliminaries and problem formulation

    2.1.Algebraic graph theory

    In this subsection,algebraic graph theory is brie fl y introduced to describe the communication networks among the leaderfollowing spacecraft system.A directed graph(or digraph)is represented as,in whichrepresents a vertex set,and E( G)?V( G)×V( G)represents an edge set of ordered pair of vertexes.The edge set consists of elements of the formif vertex vjcan get some information from vertex vi. An adjacency matrixof digraph G is de fined as: ifaij>0,otherwise aij=0.With the adjacency matrix A( G),the Laplacian matrixdigraph G is given as:if

    In the leader-following spacecraft system,v1,v2,...vNrepresent the N followers and G represents the communicating relations between all following spacecraft.The leader is denoted as v0and the edges between the leader and all followers are denoted as Elf.Then,the corresponding communication network s of leader-following spacecraft system can be represented asisthevertex set,is the edge set andis the adjacency matrix ofˉG.The adjacency matrix between the leader and all following spacecraft is denoted bylower can access the state of the leader,otherwise ai0=0.Since there is no edge from the follower to the leader,a0i=0 for all i=1,2,...,N.If not otherwise specified,matrix L( G)andare abbreviated as L and B in the following sections respectively.

    Assumption 1.The communication digraphˉG of leaderfollowing spacecraft system contains a spanning tree,in which the leader spacecraft(v0inˉG)is the root.Remark 1.Assumption 1 is the weakest condition to guarantee the accessibility of the leader's attitude information by all the followers.

    2.2.Problem formulation of attitude synchronization

    Consider a system containing N rigid spacecraft with the following attitude dynamic equations:

    where Ji∈ R3×3is the symmetric and positive definite inertia matrix of the i-th spacecraft. A quaternion q=[ˉq,^q]T∈R×R3is denoted as q∈Q,and a unit quaternion is denoted as q∈Quif it satisfies the constraint=1.qi∈Quis a unit quaternion describing the orientation of the body frame Biof the i-th spacecraft with respect to the inertial frame;denotes the attitude velocity of the body frame Biof the i-th spacecraft relative to the inertial frame I;ui∈R3denotes the control torque of the i-th spacecraft.The variable quantities ωi,Ji,uiare all expressed in Bi.The operator q(·)converts a vector x ∈ R3to a quaternionThe notation ω×forrepresents the following skew symmetric matrixThe operator⊙ represents the quaternion product: for qi,qj∈ Q,

    The reference attitude q0of the leader is generated according to the following system:

    In view of Eqs.(1)and(2),the attitude tracking errors between the ith spacecraft and the leader are given as whererepresent the unit quaternion attitude tracking error and direction cosinematrix between frameBiand B0,respectively;I3∈R3×3denotes the identity matrix;~ωirepresents the angular velocity tracking error between ωiand ω0.From the Definition above,the attitude tracking error dynamics are obtained as follows:

    The purpose of this paper is to solve the following problem associated with parameter uncertainties.

    Problem 1.Given systems(1)and(2),under Assumption 1,design a distributed control law such that,for all ωi(0)∈ R3and all

    Assumption 2.The leader's angular velocity ω0(t)is generated the same as19

    where ω0∈ R3,S ∈ R3×3,and system(5)is assumed to be marginally stable.

    Assumption 3.The leader's angular velocity ω0(t)satisfies the persistent excitation inequality29

    for positive constants t0,T0and ?.

    Remark 2.Assumption 2 implies that the leader's angular velocity ω0is bounded.Additionally,according to system(2),q0is bounded too.The model of similar form has been widely used in Ref.19,20,30-32However,these literatures all assume that the matrix S is known to all followers to make the follower be able to generate the same angular acceleration as the leader.To remedy the unknown of matrix S,an estimation of S is proposed based on Immersion&Invariance(I&I)theory with Assumption 3.It is noted that persistent excitation is widely used to ensure the convergence of parameter.

    2.3.Lemmas

    To prove the main result in this paper,we need the following lemmas:

    Lemma 1.The matrix H=L+B is positive stable if and only if digraphˉG contains a spanning tree with the leader spacecraft as the root.33

    Lemma 2.Let x1∈ Qu,x2∈ Q,x3=x1⊙x2and x4=x2⊙x1.Then xT2x2=xT3x3=xT4x4.20

    3.Distributed observer

    Since the attitude of the leader is not available to all the following spacecraft,a distributed observer is proposed to estimate the leader's attitude for all other spacecraft.To estimate the angular velocity and angular acceleration of the leader,we de fine a dynamic compensator similar as19

    where

    and ηi∈Q,ξi∈R3,i=1,2,...,N represent the leader's attitude and angular velocity estimated by the i-th follower,respectively;η0=q0,ξ0=ω0,ν1, ν2are positive real numbers,anddenotes the estimation of S by the i-th spacecraft.Letdenotes the vector of all ones,and IN∈RN×Ndenotes the identity matrix.In view of these Definitions,Eqs.(5)and(7)can be rewritten in a compact form as

    For i=1,2,...,N,let ζi=ηi-q0,?i=ξi-ω0denote the attitude and angular velocity error between the leader and the followers' estimation,andand then,the time derivative of ? is given as

    Since S is marginally stable, letdenotes the elements of matrix S,and then it can be easily veri fi ed thatwhere

    Let γSbe assigned as

    and thus,the dynamics of the estimation error~θSis further reduced to

    Next,we de fine the estimation βSas

    where

    and Q1(ξi),Q1(ξi),Q1(ξi) ∈R6are the column vectors of QT(ξi).

    Lemma 3.Considering systems(2)and(5),and the estimations given in Eqs.(7),(11),(12)and(14)with Assumptions 1-3,if ν1, ν2>0,q0(0) ∈Qu,ω0(0) ∈R3,ηi(0) ∈Q,ξi(0) ∈R3,then ηi(t)and ξi(t)exist,are bounded for all t>0,and satisfyandexponentially for all i=1,2...,N.

    Remark 3.Assumption 1 is the premise of the establishment of Lemma 3 and it ensures that all the followers can access the leader's state.Then,the followers can utilize the distributed observer given in Eq.(7)to estimate the leader's attitude,angular velocity and angular acceleration.Lemma 3 indicates that the estimation ηiand ξiwill converge to the leader's attitude q0and angular velocity ω0,respectively.In addition,Remark 1 shows that q0and ω0are bounded and then ηiand ξiare also bounded.

    Since the leader's state might not be accessible to all the followers,the error Eqs.(3)and(4)cannot be employed directly.Instead,for each follower,the error signal is de fined as20,31

    where k1i>0 denotes a control gain,ei∈Q is the attitude error,is the angular velocity error, anddenotes the corresponding rotation matrix.Differentiating Eq.(15)leads to the following error system:

    where pi=C( ei)ξi,pdi=C( ei)^Siξiand

    Remark 4.Eq.(4)represents the real errors between the followers'attitude and that of the leader;however,Eq.(16)represents the errors between the followers'attitude and the estimated attitude of the leader by the i-th follower.Lemma 2 ensures that the estimated attitude of the leader by the followers is convergent to the leader's attitude.Therefore,the convergence of system(16)guarantees the convergence of system(4).In addition,Lemma 3 indicates→0 exponentially ast→∞,and then by Remark 3.2 in Ref.20,ε1i, ε2i, ε3i→0 exponentially as t→ ∞.

    4.Dynamic-scaling-based non-certainty equivalent controller

    4.1.Distributed controller design

    To deal with the unknown inertia matrix

    a model parameter vector is de fined asThen it can be easily veri fi ed that

    where

    For the system de fined in Eq.(16),the corresponding parameter estimation^θiof θiis given by

    where βiand γiare two functions to be specified,and Φidenotes the measurable or obtainable signals that are independent of ωi.Therefore,the parameter estimate error becomes

    Consequently,the dynamics of the parameter estimation error can be obtained by substituting Eq.(1)into the time derivative of Eq.(22)to yield the following:

    where denotes the j-th element of Φi.

    Consider a regression matrix Wi∈R3×6,i=1,2,...,N

    where δi, φi, αi,i=1,2,...,N are positive constants;k2i∈R denotes a dynamic control gain to be determined.Hence,the time derivative of~θican be written as

    Let γiand the control input uibe assigned as

    Substitute Eqs.(26)and(27)into Eq.(25),and the time derivative of the parameter estimate error is simplified as

    As in Ref.34,an‘‘a(chǎn)pproximate”solution βican be generated as

    where ρiis a constant real number,Wi(is the regression matrix in Eq. (24) whereis replaced byare the column vectors ofand the estimated angular velocity^ωiis de fined as

    where ψi∈R is a dynamic observer gain to be determined.Then partial derivative?βi/?ωican be obtained as

    From the illustration in Appendix,the following inequality holds between Δiand the observation error^ωi-ωi

    The details of ΔiandˉΔiare given in Appendix A.2.

    Substitute Eq.(31)into Eq.(28),and the time derivative of the parameter estimate error becomes

    By applying Eqs.(24)and(27),Eq.(16)can be further derived as

    Remark 5.In Eq.(34),the dynamics ofis directly related to,which is different to the parameter estimation scheme given in Ref.20,31based on CE principle.Therefore,≡0 holds when=0,i.e.,once the estimationreaches the value of θi,the estimation process will stop and the ideal values of inertia parameter will be held.

    4.2.Dynamic scaling

    Since the inertial matrix Jiis unknown,the minimum eigenvalue of the matrix cannot be used in controller.To overcome this difficulty,a scaled estimate error is de fined as

    where λi>0 is the minimum eigenvalue of Ji.The scaling factor is de fined by the following differential equations:

    From Eq.(37),it can be obtained that ri(t) ≥1 holds for all t≥0.By differentiating Eq.(36)and using Eqs.(34)and(37),it follows that

    Consider a Lyapunov function

    With Eq.(38),its derivative with respect to time is obtained as

    where

    Since Jiis positive definite,λminis positive too.It can be concluded that˙Vz≤0,and then,and ziare bounded.

    4.3.Stability analysis

    Theorem 1.Given systems(1),(2)and(5)with unknown inertia matrix Ji,using the control law(27),the parameter estimation in Eqs.(7),(11),(12),(14),(25),(26)and(29)with the dynamic gains k2iand ψiare de fined as

    where k3i,k4i,i=1,2,...,N are positive constants.Then,the parameter estimation error~θ is bounded,^ωi(t)-ωi(t)will converge to zero,and Problem 1 is solvable.

    Proof.Utilizing Eqs.(1),(24)and(30),the time derivative of-ωi(t)can be obtained as

    Now,consider a Lyapunov-like function

    Since ri(0) ≥1 due to Eq.(37),V1is positive definite.Using Eq.(33),Eq.(43)and the inequality

    the time derivative of V1is obtained as

    Taking the time derivative of Eq.(48)yields

    Finally,to show the convergence of tracking errors,we consider the following Lyapunov function:

    Taking the derivative of V3in Eq.(50)and using Eqs.(35),(42)and(46),we can obtain a s t→∞.With Eq.(35),one hasand=0.By Remark 3.3 in Ref.20,we obtain that=0 and=0.

    Since ωi,and^e are bounded,Wiand Δiare bounded with Eqs.(24)and(32).By Eq.(37),is bounded and then by Eqs.(38)and(44),andare bounded too.Thusis bounded and using Barbalat'slemma again onehas=0 and hence=0.Therefore,-ωi=0 according to Eq.(44).The proof is completed.

    Remark 6.Although the external disturbance is not considered in Eq.(1),σ-modification can be employed to ensure the attitude tracking and parameter estimation errors against bounded external disturbance.Considering a bounded external disturbance di(t)∈ R3,is added to the right-hand side of Eq.(1),where dmaxis a positive constant.Add a leakage term-ρiσi(βi+ γi)to the right-hand side of Eq.(18),where σiis a positive constant,and then the dynamics of~θ is given by

    Consider the same Lyapunov function Vzin Eq.(39)with the same dynamic scaling mechanism in Eq.(36),the timederivative of Vzbecomes

    where

    Via Eq.(16),it is obtained that˙ˉωiand˙eiare bounded,and then Eq.(50)ensures that¨V3is bounded too.According to Barbalat's lemma,˙V2and hence˙ˉωiand˙^e will converge to zero

    where

    Letusde finethescaling factorwith thefollowing derivative:

    where k5iis a positive constant.Then˙Vzbecomes

    Eq.(55)ensures ri≥ri(0) ≥1.Hence,the following inequalities are established by utilizing exp( x) >x:

    Let σi>k5i/λi,and then the boundedness of zican be obtained according to the second term on the right-hand side of Eq.(58).Following the same design process in the proof of Theorem 1,if we chose the constant k3isatisfying k3i>1/2,the observation error^ωi-ωiwill be ultimately attracted to the set:

    Similarly,if φi> αi/2 and δi>1/2,the attitude tracking errorsandwill also be attracted to the set:

    Therefore,in view of Eqs.(55),(59)and(60),Δiand riare bounded.In addition,the size of S1iand S2ican be made arbitrarily small by increasing the constants k3i,φiand δi.Moreover,if the external disturbance is slowly time-varying,it can be handled as unknown constant parameters,which will lead to the asymptotic convergence of^ωi-ωi,^eiandˉωi.

    5.Simulation

    Consider a leader-following spacecraft system,the followers'attitude dynamics are described in Eq.(1)with the following inertia parameters:

    The leader's angular velocity ω0is generated by Eq.(5)with the following matrix:

    The simulation is conducted with the following initial conditions: ω0(0)=[2,1,1]T,ωi(0)=[0,0,0]T,andThe initial attitudes of spacecraft are given asIn addition,the control gains are de fined as ν1=20,ν2=20,k1i=10,k3i=2,αi=5,δi=0.5,φi=10,ρi=0.1,k4i=10-6and ri(0)=1.The results based on CE in Ref.31are selected as the control group,in which the control gain is given as k1=10 and k2=10.

    The communication graphˉG is shown in Fig.1 and the corresponding adjacency matrix is

    Fig.1 Communication digraphˉG.

    Fig.2 Norm of angular acceleration errors||^Siξi(t)-Sω0(t)||2.

    Fig.3 Norm of attitude tracking errors

    Fig.4 Norm of angular velocity tracking errors

    Simulation results of four followers are presented in Figs.2-6.To simplify the figures,the norm of errors is used to replace the errors in these figures.Fig.2 shows that the angular velocity error decays to zero,which indicates that the estimation angular acceleration^Siξi(t)ultimately coincides with the practical angular acceleration Sω0(t).The attitude and angular velocity tracking errors of the four followers relative to the leader are compared in Figs.3 and 4,respectively.The results show that the errors of the attitude and angular velocity all converge to zero under both control schemes,while the convergence rate of the proposed method is obviously faster than that of the CE-based method for all the spacecraft.Fig.5 shows the comparison of parameter estimation errors,which indicates that the proposed method converges faster than the CE-based method.The profiles of the control torque are given in Fig.6.It can be observed in Fig.6 that the maximum torque required by the CE-based algorithm is about three times that of the proposed controller.Since tracking of the same timevarying reference,the control torque of steady-state for both methods are almost identical and remain time-varying.

    6.Conclusion

    Fig.5 Norm estimation errors

    Fig.6 Norm of control torque

    In this paper,a dynamic-scaling-based non-certainty equivalent adaptive control scheme has been presented to address theleader-following attitude coordination problem with unknown inertia parameters.The non-certainty equivalent principle and dynamic scaling skill are used both in the distributed estimator and the distributed control law.The main advantage of the proposed method is that it does not need the boundary of inertia parameter matrix.In addition,the followers can track the attitude of the leader without any information of the leader by the proposed distributed estimation.The numerical simulations have illustrated the effectiveness of the proposed distributed control scheme.Compared with the existing schemes based on CE,our method has better convergence accuracy and faster convergence rate.Furthermore,with an upper bound of dynamic-scaling factor,the control process requires a smaller control torque to ensure the convergence of attitude and angular velocity.

    Acknowledgements

    This paper was supported by the National Natural Science Foundation of China(Nos.11402200,11502203).

    Appendix A

    A.1 Proof of Lemma 1

    Substituting Eq.(14)to Eq.(13),we obtain

    To eliminate the second items in Eq.(61),the dynamic scaling skill is used again.Consider a scaled parameter estimation errorand then its derivative is given as

    De fine a Lyapunov function

    and then its time derivative is obtained as

    where the Young inequality has been employed.Let

    Replacing Eq.(65)in Eq.(64)yields

    Since ω0is a persistent excitation signal,the matrixˉQ( ωS)is row full rank.Therefore,there exist some positive constants αSsuch thatand then Eq.(66)can be rewritten as

    Therefore,ˉQ( ωS)zS→0 exponentially as t→∞.Similar as the construction of Lyapunov-like function Eq.(45)of Theorem 1 and the following deduction,we have rS,zSand ? which are all bounded.Therefore,

    Theorem 2.5.3 in Ref.35guarantees the existence of a positive definite diagonal matrix C=diag{ c1,c2,...,cN}such thatis positive definite. Letand be the smallest eigenvalue ofLet

    where P is a positive definite matrix such that

    By direct calculating,we have

    where

    In the derivation of Eq. (71), the identity‖q0⊙q( ?i)‖=‖q( ?i)‖implied by Lemma 2 is employed.Substituting(71)into(70)gives

    for some αU>0.Hence,it can be obtained that||?||,||ζ||andconverge to zero exponentially. There-exponentially.

    A.2 Details of ΔiandˉΔi

    In this part,the detailed form of ΔiandˉΔiwill be given to complete the controller derivation.For notational convenience,we de fine

    By applying Eqs.(14),(16)and(18),Δican be obtained as

    The details are given below:

    Since all elements of Δiin Eqs.(73)(77)can be written aswhere Θ ∈R3,Δican be given in a compact form as

    where denotes the corresponding matrix.Then one has

    with

    It can be concluded for the Definition of 2-norm that

    Thereby the detailed forms of ΔiandˉΔiare given.

    亚洲专区国产一区二区| 国产免费av片在线观看野外av| 亚洲国产日韩欧美精品在线观看 | 无限看片的www在线观看| 制服人妻中文乱码| 久9热在线精品视频| 亚洲七黄色美女视频| 无遮挡黄片免费观看| 久久久久久免费高清国产稀缺| 丁香六月欧美| 亚洲精品国产一区二区精华液| 桃红色精品国产亚洲av| videosex国产| 精品少妇一区二区三区视频日本电影| 日日摸夜夜添夜夜添小说| 久久精品国产99精品国产亚洲性色| 亚洲人成77777在线视频| 一a级毛片在线观看| 欧美精品亚洲一区二区| 国产激情久久老熟女| 日韩有码中文字幕| 狠狠狠狠99中文字幕| 国产蜜桃级精品一区二区三区| 白带黄色成豆腐渣| 午夜日韩欧美国产| 午夜成年电影在线免费观看| 久久久国产成人免费| 亚洲一码二码三码区别大吗| 中文字幕人成人乱码亚洲影| 久久久久久免费高清国产稀缺| 777久久人妻少妇嫩草av网站| 精品久久久久久久人妻蜜臀av| 狂野欧美激情性xxxx| 好男人在线观看高清免费视频| 99国产精品一区二区蜜桃av| 黄片小视频在线播放| 亚洲真实伦在线观看| 亚洲一区二区三区色噜噜| 变态另类成人亚洲欧美熟女| 黑人操中国人逼视频| 观看免费一级毛片| 亚洲精品国产一区二区精华液| 国产亚洲欧美98| 99久久国产精品久久久| a在线观看视频网站| 国产亚洲精品久久久久5区| 亚洲18禁久久av| 亚洲成人中文字幕在线播放| 老熟妇仑乱视频hdxx| 手机成人av网站| 熟女电影av网| √禁漫天堂资源中文www| 国产亚洲av嫩草精品影院| 欧美成人性av电影在线观看| АⅤ资源中文在线天堂| 99热只有精品国产| 免费在线观看完整版高清| avwww免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人久久性| 亚洲成人久久性| 麻豆久久精品国产亚洲av| 国产亚洲av高清不卡| 久久精品国产综合久久久| xxx96com| 一本精品99久久精品77| 欧美国产日韩亚洲一区| 精品熟女少妇八av免费久了| 午夜福利在线观看吧| 亚洲欧美一区二区三区黑人| 久久久久久久午夜电影| 九色成人免费人妻av| 国产不卡一卡二| 色噜噜av男人的天堂激情| 美女免费视频网站| av在线播放免费不卡| 久久这里只有精品中国| 在线永久观看黄色视频| 免费电影在线观看免费观看| 精品乱码久久久久久99久播| 中文字幕人妻丝袜一区二区| 国产高清视频在线观看网站| 亚洲精品美女久久久久99蜜臀| 国产一区二区在线av高清观看| 男女床上黄色一级片免费看| 岛国视频午夜一区免费看| 国产精品av视频在线免费观看| 欧美日本视频| 巨乳人妻的诱惑在线观看| 午夜福利在线在线| 此物有八面人人有两片| 国产av不卡久久| 国产成人系列免费观看| 人人妻人人澡欧美一区二区| 国产成人系列免费观看| 国产精品免费一区二区三区在线| 亚洲在线自拍视频| 欧美日韩一级在线毛片| 国产精品日韩av在线免费观看| 在线观看舔阴道视频| 精品久久久久久久久久免费视频| 1024视频免费在线观看| 国产一区二区激情短视频| 欧美日本亚洲视频在线播放| 麻豆成人av在线观看| 精品一区二区三区av网在线观看| 国产v大片淫在线免费观看| 很黄的视频免费| 少妇裸体淫交视频免费看高清 | 日韩精品青青久久久久久| 日韩国内少妇激情av| 啦啦啦观看免费观看视频高清| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区四区五区乱码| 俺也久久电影网| 1024视频免费在线观看| 久久精品国产亚洲av高清一级| 淫秽高清视频在线观看| 日韩欧美三级三区| 精华霜和精华液先用哪个| 久久久久久免费高清国产稀缺| 特级一级黄色大片| 国产av麻豆久久久久久久| 午夜久久久久精精品| 美女扒开内裤让男人捅视频| 首页视频小说图片口味搜索| 亚洲aⅴ乱码一区二区在线播放 | 嫁个100分男人电影在线观看| 巨乳人妻的诱惑在线观看| 999精品在线视频| 亚洲熟女毛片儿| 中文字幕高清在线视频| 两个人看的免费小视频| 成人亚洲精品av一区二区| 日本一区二区免费在线视频| 少妇被粗大的猛进出69影院| 黄色毛片三级朝国网站| 蜜桃久久精品国产亚洲av| 亚洲成人久久爱视频| 国产精华一区二区三区| 国产一区二区在线观看日韩 | 欧美性猛交黑人性爽| 激情在线观看视频在线高清| 国产精品 欧美亚洲| 国产区一区二久久| 欧美成狂野欧美在线观看| 久久久久久大精品| 久久久久久人人人人人| 熟女少妇亚洲综合色aaa.| 久久久久性生活片| 1024手机看黄色片| 久久精品国产亚洲av高清一级| 亚洲熟妇熟女久久| 全区人妻精品视频| 一级毛片精品| 观看免费一级毛片| 国产高清videossex| 最新在线观看一区二区三区| 欧美乱妇无乱码| 免费高清视频大片| 在线观看一区二区三区| 国产又色又爽无遮挡免费看| 国产野战对白在线观看| 日本免费一区二区三区高清不卡| www日本在线高清视频| 国产av麻豆久久久久久久| 久久午夜综合久久蜜桃| 色播亚洲综合网| 亚洲熟妇中文字幕五十中出| 免费观看精品视频网站| 欧美中文综合在线视频| 久99久视频精品免费| 男人的好看免费观看在线视频 | 国产爱豆传媒在线观看 | 黄色成人免费大全| 老司机深夜福利视频在线观看| 91麻豆av在线| 欧美日韩一级在线毛片| 给我免费播放毛片高清在线观看| 亚洲狠狠婷婷综合久久图片| 国产av不卡久久| 欧美黄色片欧美黄色片| 巨乳人妻的诱惑在线观看| 亚洲精品在线观看二区| 老汉色∧v一级毛片| 国产黄片美女视频| 中文字幕高清在线视频| 黄色a级毛片大全视频| 俺也久久电影网| a级毛片在线看网站| 亚洲欧美一区二区三区黑人| 国产黄a三级三级三级人| 一进一出好大好爽视频| 国产一区二区三区视频了| 老司机深夜福利视频在线观看| 一级毛片精品| 欧美中文综合在线视频| 亚洲人成伊人成综合网2020| 好男人在线观看高清免费视频| 18美女黄网站色大片免费观看| 听说在线观看完整版免费高清| 黄色视频不卡| 欧美一区二区精品小视频在线| 亚洲国产精品合色在线| 国内精品久久久久精免费| 色尼玛亚洲综合影院| 精品一区二区三区四区五区乱码| 禁无遮挡网站| 99在线视频只有这里精品首页| 91国产中文字幕| 亚洲精华国产精华精| 亚洲精华国产精华精| 精品久久久久久久毛片微露脸| 国产黄a三级三级三级人| 国产av不卡久久| 久久性视频一级片| 亚洲18禁久久av| 1024香蕉在线观看| 国产av在哪里看| 久久久久亚洲av毛片大全| 亚洲精品一区av在线观看| 欧美乱色亚洲激情| 国产99久久九九免费精品| 制服人妻中文乱码| 高清在线国产一区| 黄片大片在线免费观看| 精品国产乱码久久久久久男人| 最近视频中文字幕2019在线8| 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 欧美日韩中文字幕国产精品一区二区三区| 99精品欧美一区二区三区四区| 男女做爰动态图高潮gif福利片| 亚洲国产精品sss在线观看| 大型黄色视频在线免费观看| 一区二区三区高清视频在线| 亚洲午夜精品一区,二区,三区| 精品高清国产在线一区| 黄色a级毛片大全视频| 亚洲在线自拍视频| 中文在线观看免费www的网站 | 欧美黄色淫秽网站| 久久草成人影院| 免费在线观看亚洲国产| 精品无人区乱码1区二区| 操出白浆在线播放| 真人一进一出gif抽搐免费| 欧美成人性av电影在线观看| 18禁美女被吸乳视频| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区91| 亚洲精品中文字幕一二三四区| 国产精品av久久久久免费| 丝袜美腿诱惑在线| 搡老妇女老女人老熟妇| 欧美一区二区国产精品久久精品 | 熟女电影av网| 精品福利观看| 国产99白浆流出| 国产av在哪里看| 精品一区二区三区视频在线观看免费| 妹子高潮喷水视频| 久久精品91蜜桃| 中文亚洲av片在线观看爽| 亚洲熟女毛片儿| 嫩草影视91久久| 亚洲乱码一区二区免费版| 日韩欧美国产一区二区入口| 亚洲全国av大片| 日本五十路高清| 欧美日本亚洲视频在线播放| 国产在线观看jvid| 亚洲av成人不卡在线观看播放网| 黄色毛片三级朝国网站| 看黄色毛片网站| 精品高清国产在线一区| 国产伦一二天堂av在线观看| 在线观看舔阴道视频| 欧美日韩国产亚洲二区| 国内精品一区二区在线观看| 啦啦啦观看免费观看视频高清| 久久久久精品国产欧美久久久| 亚洲成a人片在线一区二区| 又爽又黄无遮挡网站| 欧美另类亚洲清纯唯美| 国产高清videossex| 亚洲第一电影网av| 亚洲av成人精品一区久久| 一级毛片高清免费大全| 欧美高清成人免费视频www| 亚洲成av人片在线播放无| 国产亚洲精品综合一区在线观看 | 国产又黄又爽又无遮挡在线| 特大巨黑吊av在线直播| 亚洲一区高清亚洲精品| 制服诱惑二区| 母亲3免费完整高清在线观看| 变态另类丝袜制服| 国产亚洲欧美在线一区二区| 亚洲精品粉嫩美女一区| 亚洲精品色激情综合| 黄片小视频在线播放| 免费在线观看完整版高清| 亚洲av美国av| 一二三四社区在线视频社区8| 香蕉丝袜av| 一个人免费在线观看电影 | 俄罗斯特黄特色一大片| 一级a爱片免费观看的视频| 成人国语在线视频| 桃红色精品国产亚洲av| 亚洲人成伊人成综合网2020| 黑人欧美特级aaaaaa片| 丁香六月欧美| 一级毛片高清免费大全| 婷婷亚洲欧美| 国产一区二区三区视频了| 波多野结衣高清无吗| 黄色女人牲交| 99在线人妻在线中文字幕| 亚洲av熟女| 叶爱在线成人免费视频播放| 18禁美女被吸乳视频| 老鸭窝网址在线观看| 香蕉国产在线看| 99riav亚洲国产免费| bbb黄色大片| 我要搜黄色片| 制服丝袜大香蕉在线| 青草久久国产| 欧美色欧美亚洲另类二区| 正在播放国产对白刺激| 一级毛片精品| 精品国内亚洲2022精品成人| 香蕉久久夜色| 夜夜看夜夜爽夜夜摸| 嫩草影视91久久| 老司机在亚洲福利影院| 妹子高潮喷水视频| 99国产极品粉嫩在线观看| 亚洲国产看品久久| 国产午夜精品久久久久久| 亚洲五月天丁香| 亚洲人成电影免费在线| 国产v大片淫在线免费观看| 看片在线看免费视频| 搞女人的毛片| 大型黄色视频在线免费观看| 精华霜和精华液先用哪个| 国产精品久久久久久亚洲av鲁大| 国产又色又爽无遮挡免费看| 男女床上黄色一级片免费看| 亚洲精品中文字幕一二三四区| 好男人在线观看高清免费视频| 久久久久性生活片| 色av中文字幕| 看免费av毛片| 欧美精品啪啪一区二区三区| 欧美高清成人免费视频www| 亚洲成人久久性| 国产成人系列免费观看| 免费av毛片视频| 黄色视频不卡| 久久天躁狠狠躁夜夜2o2o| 欧美日韩福利视频一区二区| 国产激情久久老熟女| 热99re8久久精品国产| 久99久视频精品免费| 国产精品一区二区免费欧美| 国产精品乱码一区二三区的特点| 国产99白浆流出| 国产不卡一卡二| 亚洲专区中文字幕在线| 99久久久亚洲精品蜜臀av| 两个人免费观看高清视频| 国产野战对白在线观看| 宅男免费午夜| a级毛片a级免费在线| 嫁个100分男人电影在线观看| 日本撒尿小便嘘嘘汇集6| 免费在线观看亚洲国产| 中文字幕最新亚洲高清| 欧美日本视频| 日韩中文字幕欧美一区二区| 少妇人妻一区二区三区视频| 亚洲av成人av| 久久人妻福利社区极品人妻图片| 成人手机av| 女人被狂操c到高潮| 精品久久久久久久久久久久久| 午夜日韩欧美国产| 久久久久久免费高清国产稀缺| 欧美午夜高清在线| 午夜亚洲福利在线播放| 天天添夜夜摸| 久久九九热精品免费| 精品欧美国产一区二区三| 亚洲人成伊人成综合网2020| 一级毛片女人18水好多| 中文亚洲av片在线观看爽| 午夜免费观看网址| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 18禁国产床啪视频网站| а√天堂www在线а√下载| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区四区五区乱码| 真人做人爱边吃奶动态| 人妻夜夜爽99麻豆av| 精品乱码久久久久久99久播| 岛国在线免费视频观看| 免费看日本二区| 一区二区三区国产精品乱码| 欧美三级亚洲精品| 丁香欧美五月| 亚洲精品粉嫩美女一区| 欧美色视频一区免费| 91老司机精品| 日本成人三级电影网站| 婷婷精品国产亚洲av| av国产免费在线观看| or卡值多少钱| 亚洲人成电影免费在线| 久久人妻av系列| 女同久久另类99精品国产91| 成年版毛片免费区| av欧美777| 一个人免费在线观看的高清视频| 真人一进一出gif抽搐免费| 婷婷丁香在线五月| 一本大道久久a久久精品| 最好的美女福利视频网| 成在线人永久免费视频| 国产精华一区二区三区| 久久午夜综合久久蜜桃| 午夜免费成人在线视频| 91国产中文字幕| 亚洲av五月六月丁香网| 色综合站精品国产| 校园春色视频在线观看| 日本免费一区二区三区高清不卡| 99国产精品一区二区蜜桃av| 97超级碰碰碰精品色视频在线观看| 久久久国产成人精品二区| 色综合婷婷激情| 在线十欧美十亚洲十日本专区| 日本黄大片高清| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 黄片小视频在线播放| 天天添夜夜摸| 免费看日本二区| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 99国产精品一区二区蜜桃av| 亚洲国产精品久久男人天堂| 亚洲欧美日韩东京热| 成人三级黄色视频| 叶爱在线成人免费视频播放| 九九热线精品视视频播放| 很黄的视频免费| 特级一级黄色大片| 成人三级黄色视频| 成人午夜高清在线视频| 可以免费在线观看a视频的电影网站| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 两人在一起打扑克的视频| 久久精品国产综合久久久| 欧美一区二区精品小视频在线| 天天添夜夜摸| 午夜福利成人在线免费观看| 黄色成人免费大全| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 欧美极品一区二区三区四区| 国产乱人伦免费视频| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| 精品日产1卡2卡| 国语自产精品视频在线第100页| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 国内精品久久久久精免费| 精品不卡国产一区二区三区| 亚洲成人国产一区在线观看| 亚洲精品久久国产高清桃花| 国产日本99.免费观看| 欧美乱色亚洲激情| 亚洲乱码一区二区免费版| 亚洲精品中文字幕一二三四区| 久久久久精品国产欧美久久久| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 成人手机av| 日本黄色视频三级网站网址| 亚洲五月天丁香| 岛国在线观看网站| 欧美成人性av电影在线观看| 国产免费男女视频| 亚洲九九香蕉| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 9191精品国产免费久久| 一区福利在线观看| 国产亚洲欧美98| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 777久久人妻少妇嫩草av网站| 亚洲av熟女| 国产乱人伦免费视频| 母亲3免费完整高清在线观看| 少妇熟女aⅴ在线视频| 久久人妻福利社区极品人妻图片| 亚洲成av人片在线播放无| 国产精品自产拍在线观看55亚洲| 欧美高清成人免费视频www| a级毛片a级免费在线| 一级毛片高清免费大全| 在线免费观看的www视频| 久久精品91无色码中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产成人精品久久二区二区免费| 超碰成人久久| 免费在线观看视频国产中文字幕亚洲| 两个人的视频大全免费| 久久精品人妻少妇| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| ponron亚洲| 亚洲国产欧美一区二区综合| 精品高清国产在线一区| 久久天堂一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆 | 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 欧美精品亚洲一区二区| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 久久精品成人免费网站| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 少妇熟女aⅴ在线视频| 91av网站免费观看| netflix在线观看网站| 免费观看人在逋| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| av免费在线观看网站| 俺也久久电影网| 99久久久亚洲精品蜜臀av| 亚洲成人久久爱视频| 日韩精品青青久久久久久| 两人在一起打扑克的视频| 日韩成人在线观看一区二区三区| 中出人妻视频一区二区| 午夜福利欧美成人| 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频| 日韩精品免费视频一区二区三区| 女警被强在线播放| 白带黄色成豆腐渣| 天天添夜夜摸| 两人在一起打扑克的视频| 午夜两性在线视频| 国产成人精品无人区| 欧美高清成人免费视频www| 男女床上黄色一级片免费看| √禁漫天堂资源中文www| 一级毛片精品| 婷婷亚洲欧美| 哪里可以看免费的av片| 精品久久久久久久久久久久久| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 一级毛片高清免费大全| 亚洲精品久久成人aⅴ小说| 亚洲精品久久国产高清桃花| 一本大道久久a久久精品| 天堂动漫精品| 国产成人啪精品午夜网站| 欧美性长视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产av一区在线观看免费| 国产一区在线观看成人免费| 老鸭窝网址在线观看| 欧美日韩瑟瑟在线播放| av有码第一页| 国产aⅴ精品一区二区三区波| 午夜福利高清视频| 国产av又大| 亚洲国产高清在线一区二区三| 成人午夜高清在线视频| 窝窝影院91人妻| 一二三四社区在线视频社区8| 级片在线观看|