• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive control for attitude coordination of leader-following rigid spacecraft systems with inertia parameter uncertainties

    2019-04-02 06:35:16XiaokuiYUEXianghongXUEHaoweiWENJianpingYUAN
    CHINESE JOURNAL OF AERONAUTICS 2019年3期

    Xiaokui YUE,Xianghong XUE,*,Haowei WEN,Jianping YUAN

    aNational Key Laboratory of Aerospace Flight Dynamics,Northwestern Polytechnical University,Xi'an 710072,China

    bSchool of Astronautics,Northwestern Polytechnical University,Xi'an 710072,China

    KEYWORDS Adaptive control;Attitude coordination;Leader-following consensus;Non-certainty equivalence;Spacecraft formation flying

    Abstract This paper studies the leader-following attitude coordination problems of multiple spacecraft in the presence of inertia parameter uncertainties.To achieve attitude coordination in the situation that even the leader's attitude is only applicable to a part of the following spacecraft,a nonlinear attitude observer is proposed to obtain an accurate estimation of the leader's attitude and angular velocity for all the followers.In addition,a distributed control scheme based on noncertainty equivalence principle is presented for multiple spacecraft'attitude synchronization.With a dynamic scaling,attitude consensus can be achieved asymptotically without any information of the bounds of the uncertain inertia parameters.Furthermore,once the estimations of inertia parameters reach their ideal values,the estimation process will stop and the ideal value of inertia parameter will be held.This is a special advantage of parameter estimation method based on non-certainty equivalence.Numerical simulations are presented to demonstrate that the proposed non-certainty equivalence-based method requires smaller control toque and converges faster compared with the certainty equivalence-based method.

    1.Introduction

    Spacecraft formation flying has drawn extensive attention in the last decade due to its higher flexibility and robustness,greater efficiency and lower fuel consumption.1-4Attitude coordination has been expected to be a necessary and important technology for many space missions,such as the CanX-4&5 primarily supported by Canadian Space and the SULFRO mission concept led by Chinese Academy of Sciences.5Compared with the leaderless case studied in Ref.6,the leader-following attitude coordination control is more challengeable since it not only ensures the consensus of the followers'attitude,but also enables the followers'attitude and angular velocity to be in line with those of the leader.7,8If there is only one follower,the leader-following problem degenerates into the attitude tracking problem of spacecraft.9,10

    According to how the followers access the leader's states,the methods for tackling leader-following problem can be classified into decentralized and distributed methods.The decentralized control algorithms assume that the leader's state is accessible to every follower in the group.11-16A passivitybased controller for a group of spacecraft without inertial frame information was developed in Ref.13.Meng et al.designed two distributed containment control laws for attitude consensus of spacecraft,including both static and dynamic leaders.14The result indicates that the attitude of the followers will converge to the convex hull formed by all leaders.A nonsingular fast terminal sliding mode controller was proposed to counteract the impact of external disturbances and actuator failures in Ref.15Attitude coordination with communication delays,caused by the distance between satellites,was taken into consideration in Ref.16,17

    In practice,it is more realistic that only a part of the followers can access the leader's attitude.Several distributed control laws have been presented to solve this problem in Ref.18-22Ren firstly studied distributed attitude synchronization of the leader-following problem with attitudes represented by modifi ed Rodriguez parameters.18Cai and Huang proposed a distributed nonlinear estimation method of leader's state for followers under the assumption that the communication network of the spacecraft systems is undirected and connected.19This work was extended to the case without the measurements of angular velocity by employing an angular velocity auxiliary system in Ref.20Zou et al.also studied the attitude coordination of the leader-following spacecraft systems without angular velocity measurement under undirected communication graph and proposed a finite-time observer to obtain the unmeasurable angular velocity of the leader.21Du extended attitude consensus of leader-following spacecraft systems to the situation with both rigid and flexible spacecraft.22However,all the above literatures did not consider attitude coordination with uncertain inertia parameters.

    Uncertainties of the spacecraft,caused by fuel consumption,appendage deployment and onboard payload transformation, are challenging to spacecraft attitude synchronization.Attitude tracking for single spacecraft with unknown inertia parameter has been investigated in Ref.9,10,23-25However,the development from attitude tracking problem to leader-following problem is nontrivial,especially when the leader's information cannot be directly accessed by all the followers.Several authors have studied the leaderfollowing attitudecoordination problem associated with parameter uncertainties.26-30Wu et al.studied the attitude synchronization and tracking problem of spacecraft with parameter uncertainties.26,27In these papers,the uncertainties were assumed to be a known nominal part and an uncertain part.A robust nonlinear controller for both relative position tracking and attitude synchronization with external disturbance and model uncertainty was presented in Ref.28However,initial values of the inertia parameters were regarded as known constants.Recently,Cai and Huang proposed a distributed control algorithm based on Certainty-Equivalence(CE)for multiple spacecraft systems in the presence of inertia parameter uncertainties.31The authors later extended their research to the condition with both uncertainties and external disturbances.32Although the asymptotic convergence of the tracking errors is easy to achieve in the existing literatures,the parameter estimation process is directly affected by tracking error dynamics,which could result in bad transient performance.

    The main aim of this paper is to provide a highperformance solution for the problem of attitude coordination for leader-following spacecraft in the presence of inertia parameter uncertainties.Unlike the CE-based approaches in attitude consensus with uncertainties,a distributed control law based on dynamic-scaling-based non-certainty equivalence is proposed.By setting an upper bound for dynamic scaling factor,the proposed method can not only make the convergence rate of attitude coordination faster,but also avoid the bad transient performance compared with CE-based method.In addition,the asymptotic convergence of tracking error under all the possible initial conditions is guaranteed without considering the boundary information of system uncertainties.Moreover,the distributed observer proposed in Ref.20is modified and applied to overcome the difficulty that the leader's attitude and angular velocity are only accessible to a part of the followers.This distributed observer guarantees that the attitude estimation made by the followers will converge to the leader's attitude,and then all the followers can track the estimation to achieve attitude consensus with the leader.

    The following of this paper is organized as follows.The attitude dynamics of spacecraft and problem formulation are brie fl y described in Section 2.Section 3 introduces a nonlinear distributed observer.The controller is given and its stability analysis is made in Section 4.Simulations are presented in Section 5 to illustrate our results.Conclusions are given in Section 6.

    2.Preliminaries and problem formulation

    2.1.Algebraic graph theory

    In this subsection,algebraic graph theory is brie fl y introduced to describe the communication networks among the leaderfollowing spacecraft system.A directed graph(or digraph)is represented as,in whichrepresents a vertex set,and E( G)?V( G)×V( G)represents an edge set of ordered pair of vertexes.The edge set consists of elements of the formif vertex vjcan get some information from vertex vi. An adjacency matrixof digraph G is de fined as: ifaij>0,otherwise aij=0.With the adjacency matrix A( G),the Laplacian matrixdigraph G is given as:if

    In the leader-following spacecraft system,v1,v2,...vNrepresent the N followers and G represents the communicating relations between all following spacecraft.The leader is denoted as v0and the edges between the leader and all followers are denoted as Elf.Then,the corresponding communication network s of leader-following spacecraft system can be represented asisthevertex set,is the edge set andis the adjacency matrix ofˉG.The adjacency matrix between the leader and all following spacecraft is denoted bylower can access the state of the leader,otherwise ai0=0.Since there is no edge from the follower to the leader,a0i=0 for all i=1,2,...,N.If not otherwise specified,matrix L( G)andare abbreviated as L and B in the following sections respectively.

    Assumption 1.The communication digraphˉG of leaderfollowing spacecraft system contains a spanning tree,in which the leader spacecraft(v0inˉG)is the root.Remark 1.Assumption 1 is the weakest condition to guarantee the accessibility of the leader's attitude information by all the followers.

    2.2.Problem formulation of attitude synchronization

    Consider a system containing N rigid spacecraft with the following attitude dynamic equations:

    where Ji∈ R3×3is the symmetric and positive definite inertia matrix of the i-th spacecraft. A quaternion q=[ˉq,^q]T∈R×R3is denoted as q∈Q,and a unit quaternion is denoted as q∈Quif it satisfies the constraint=1.qi∈Quis a unit quaternion describing the orientation of the body frame Biof the i-th spacecraft with respect to the inertial frame;denotes the attitude velocity of the body frame Biof the i-th spacecraft relative to the inertial frame I;ui∈R3denotes the control torque of the i-th spacecraft.The variable quantities ωi,Ji,uiare all expressed in Bi.The operator q(·)converts a vector x ∈ R3to a quaternionThe notation ω×forrepresents the following skew symmetric matrixThe operator⊙ represents the quaternion product: for qi,qj∈ Q,

    The reference attitude q0of the leader is generated according to the following system:

    In view of Eqs.(1)and(2),the attitude tracking errors between the ith spacecraft and the leader are given as whererepresent the unit quaternion attitude tracking error and direction cosinematrix between frameBiand B0,respectively;I3∈R3×3denotes the identity matrix;~ωirepresents the angular velocity tracking error between ωiand ω0.From the Definition above,the attitude tracking error dynamics are obtained as follows:

    The purpose of this paper is to solve the following problem associated with parameter uncertainties.

    Problem 1.Given systems(1)and(2),under Assumption 1,design a distributed control law such that,for all ωi(0)∈ R3and all

    Assumption 2.The leader's angular velocity ω0(t)is generated the same as19

    where ω0∈ R3,S ∈ R3×3,and system(5)is assumed to be marginally stable.

    Assumption 3.The leader's angular velocity ω0(t)satisfies the persistent excitation inequality29

    for positive constants t0,T0and ?.

    Remark 2.Assumption 2 implies that the leader's angular velocity ω0is bounded.Additionally,according to system(2),q0is bounded too.The model of similar form has been widely used in Ref.19,20,30-32However,these literatures all assume that the matrix S is known to all followers to make the follower be able to generate the same angular acceleration as the leader.To remedy the unknown of matrix S,an estimation of S is proposed based on Immersion&Invariance(I&I)theory with Assumption 3.It is noted that persistent excitation is widely used to ensure the convergence of parameter.

    2.3.Lemmas

    To prove the main result in this paper,we need the following lemmas:

    Lemma 1.The matrix H=L+B is positive stable if and only if digraphˉG contains a spanning tree with the leader spacecraft as the root.33

    Lemma 2.Let x1∈ Qu,x2∈ Q,x3=x1⊙x2and x4=x2⊙x1.Then xT2x2=xT3x3=xT4x4.20

    3.Distributed observer

    Since the attitude of the leader is not available to all the following spacecraft,a distributed observer is proposed to estimate the leader's attitude for all other spacecraft.To estimate the angular velocity and angular acceleration of the leader,we de fine a dynamic compensator similar as19

    where

    and ηi∈Q,ξi∈R3,i=1,2,...,N represent the leader's attitude and angular velocity estimated by the i-th follower,respectively;η0=q0,ξ0=ω0,ν1, ν2are positive real numbers,anddenotes the estimation of S by the i-th spacecraft.Letdenotes the vector of all ones,and IN∈RN×Ndenotes the identity matrix.In view of these Definitions,Eqs.(5)and(7)can be rewritten in a compact form as

    For i=1,2,...,N,let ζi=ηi-q0,?i=ξi-ω0denote the attitude and angular velocity error between the leader and the followers' estimation,andand then,the time derivative of ? is given as

    Since S is marginally stable, letdenotes the elements of matrix S,and then it can be easily veri fi ed thatwhere

    Let γSbe assigned as

    and thus,the dynamics of the estimation error~θSis further reduced to

    Next,we de fine the estimation βSas

    where

    and Q1(ξi),Q1(ξi),Q1(ξi) ∈R6are the column vectors of QT(ξi).

    Lemma 3.Considering systems(2)and(5),and the estimations given in Eqs.(7),(11),(12)and(14)with Assumptions 1-3,if ν1, ν2>0,q0(0) ∈Qu,ω0(0) ∈R3,ηi(0) ∈Q,ξi(0) ∈R3,then ηi(t)and ξi(t)exist,are bounded for all t>0,and satisfyandexponentially for all i=1,2...,N.

    Remark 3.Assumption 1 is the premise of the establishment of Lemma 3 and it ensures that all the followers can access the leader's state.Then,the followers can utilize the distributed observer given in Eq.(7)to estimate the leader's attitude,angular velocity and angular acceleration.Lemma 3 indicates that the estimation ηiand ξiwill converge to the leader's attitude q0and angular velocity ω0,respectively.In addition,Remark 1 shows that q0and ω0are bounded and then ηiand ξiare also bounded.

    Since the leader's state might not be accessible to all the followers,the error Eqs.(3)and(4)cannot be employed directly.Instead,for each follower,the error signal is de fined as20,31

    where k1i>0 denotes a control gain,ei∈Q is the attitude error,is the angular velocity error, anddenotes the corresponding rotation matrix.Differentiating Eq.(15)leads to the following error system:

    where pi=C( ei)ξi,pdi=C( ei)^Siξiand

    Remark 4.Eq.(4)represents the real errors between the followers'attitude and that of the leader;however,Eq.(16)represents the errors between the followers'attitude and the estimated attitude of the leader by the i-th follower.Lemma 2 ensures that the estimated attitude of the leader by the followers is convergent to the leader's attitude.Therefore,the convergence of system(16)guarantees the convergence of system(4).In addition,Lemma 3 indicates→0 exponentially ast→∞,and then by Remark 3.2 in Ref.20,ε1i, ε2i, ε3i→0 exponentially as t→ ∞.

    4.Dynamic-scaling-based non-certainty equivalent controller

    4.1.Distributed controller design

    To deal with the unknown inertia matrix

    a model parameter vector is de fined asThen it can be easily veri fi ed that

    where

    For the system de fined in Eq.(16),the corresponding parameter estimation^θiof θiis given by

    where βiand γiare two functions to be specified,and Φidenotes the measurable or obtainable signals that are independent of ωi.Therefore,the parameter estimate error becomes

    Consequently,the dynamics of the parameter estimation error can be obtained by substituting Eq.(1)into the time derivative of Eq.(22)to yield the following:

    where denotes the j-th element of Φi.

    Consider a regression matrix Wi∈R3×6,i=1,2,...,N

    where δi, φi, αi,i=1,2,...,N are positive constants;k2i∈R denotes a dynamic control gain to be determined.Hence,the time derivative of~θican be written as

    Let γiand the control input uibe assigned as

    Substitute Eqs.(26)and(27)into Eq.(25),and the time derivative of the parameter estimate error is simplified as

    As in Ref.34,an‘‘a(chǎn)pproximate”solution βican be generated as

    where ρiis a constant real number,Wi(is the regression matrix in Eq. (24) whereis replaced byare the column vectors ofand the estimated angular velocity^ωiis de fined as

    where ψi∈R is a dynamic observer gain to be determined.Then partial derivative?βi/?ωican be obtained as

    From the illustration in Appendix,the following inequality holds between Δiand the observation error^ωi-ωi

    The details of ΔiandˉΔiare given in Appendix A.2.

    Substitute Eq.(31)into Eq.(28),and the time derivative of the parameter estimate error becomes

    By applying Eqs.(24)and(27),Eq.(16)can be further derived as

    Remark 5.In Eq.(34),the dynamics ofis directly related to,which is different to the parameter estimation scheme given in Ref.20,31based on CE principle.Therefore,≡0 holds when=0,i.e.,once the estimationreaches the value of θi,the estimation process will stop and the ideal values of inertia parameter will be held.

    4.2.Dynamic scaling

    Since the inertial matrix Jiis unknown,the minimum eigenvalue of the matrix cannot be used in controller.To overcome this difficulty,a scaled estimate error is de fined as

    where λi>0 is the minimum eigenvalue of Ji.The scaling factor is de fined by the following differential equations:

    From Eq.(37),it can be obtained that ri(t) ≥1 holds for all t≥0.By differentiating Eq.(36)and using Eqs.(34)and(37),it follows that

    Consider a Lyapunov function

    With Eq.(38),its derivative with respect to time is obtained as

    where

    Since Jiis positive definite,λminis positive too.It can be concluded that˙Vz≤0,and then,and ziare bounded.

    4.3.Stability analysis

    Theorem 1.Given systems(1),(2)and(5)with unknown inertia matrix Ji,using the control law(27),the parameter estimation in Eqs.(7),(11),(12),(14),(25),(26)and(29)with the dynamic gains k2iand ψiare de fined as

    where k3i,k4i,i=1,2,...,N are positive constants.Then,the parameter estimation error~θ is bounded,^ωi(t)-ωi(t)will converge to zero,and Problem 1 is solvable.

    Proof.Utilizing Eqs.(1),(24)and(30),the time derivative of-ωi(t)can be obtained as

    Now,consider a Lyapunov-like function

    Since ri(0) ≥1 due to Eq.(37),V1is positive definite.Using Eq.(33),Eq.(43)and the inequality

    the time derivative of V1is obtained as

    Taking the time derivative of Eq.(48)yields

    Finally,to show the convergence of tracking errors,we consider the following Lyapunov function:

    Taking the derivative of V3in Eq.(50)and using Eqs.(35),(42)and(46),we can obtain a s t→∞.With Eq.(35),one hasand=0.By Remark 3.3 in Ref.20,we obtain that=0 and=0.

    Since ωi,and^e are bounded,Wiand Δiare bounded with Eqs.(24)and(32).By Eq.(37),is bounded and then by Eqs.(38)and(44),andare bounded too.Thusis bounded and using Barbalat'slemma again onehas=0 and hence=0.Therefore,-ωi=0 according to Eq.(44).The proof is completed.

    Remark 6.Although the external disturbance is not considered in Eq.(1),σ-modification can be employed to ensure the attitude tracking and parameter estimation errors against bounded external disturbance.Considering a bounded external disturbance di(t)∈ R3,is added to the right-hand side of Eq.(1),where dmaxis a positive constant.Add a leakage term-ρiσi(βi+ γi)to the right-hand side of Eq.(18),where σiis a positive constant,and then the dynamics of~θ is given by

    Consider the same Lyapunov function Vzin Eq.(39)with the same dynamic scaling mechanism in Eq.(36),the timederivative of Vzbecomes

    where

    Via Eq.(16),it is obtained that˙ˉωiand˙eiare bounded,and then Eq.(50)ensures that¨V3is bounded too.According to Barbalat's lemma,˙V2and hence˙ˉωiand˙^e will converge to zero

    where

    Letusde finethescaling factorwith thefollowing derivative:

    where k5iis a positive constant.Then˙Vzbecomes

    Eq.(55)ensures ri≥ri(0) ≥1.Hence,the following inequalities are established by utilizing exp( x) >x:

    Let σi>k5i/λi,and then the boundedness of zican be obtained according to the second term on the right-hand side of Eq.(58).Following the same design process in the proof of Theorem 1,if we chose the constant k3isatisfying k3i>1/2,the observation error^ωi-ωiwill be ultimately attracted to the set:

    Similarly,if φi> αi/2 and δi>1/2,the attitude tracking errorsandwill also be attracted to the set:

    Therefore,in view of Eqs.(55),(59)and(60),Δiand riare bounded.In addition,the size of S1iand S2ican be made arbitrarily small by increasing the constants k3i,φiand δi.Moreover,if the external disturbance is slowly time-varying,it can be handled as unknown constant parameters,which will lead to the asymptotic convergence of^ωi-ωi,^eiandˉωi.

    5.Simulation

    Consider a leader-following spacecraft system,the followers'attitude dynamics are described in Eq.(1)with the following inertia parameters:

    The leader's angular velocity ω0is generated by Eq.(5)with the following matrix:

    The simulation is conducted with the following initial conditions: ω0(0)=[2,1,1]T,ωi(0)=[0,0,0]T,andThe initial attitudes of spacecraft are given asIn addition,the control gains are de fined as ν1=20,ν2=20,k1i=10,k3i=2,αi=5,δi=0.5,φi=10,ρi=0.1,k4i=10-6and ri(0)=1.The results based on CE in Ref.31are selected as the control group,in which the control gain is given as k1=10 and k2=10.

    The communication graphˉG is shown in Fig.1 and the corresponding adjacency matrix is

    Fig.1 Communication digraphˉG.

    Fig.2 Norm of angular acceleration errors||^Siξi(t)-Sω0(t)||2.

    Fig.3 Norm of attitude tracking errors

    Fig.4 Norm of angular velocity tracking errors

    Simulation results of four followers are presented in Figs.2-6.To simplify the figures,the norm of errors is used to replace the errors in these figures.Fig.2 shows that the angular velocity error decays to zero,which indicates that the estimation angular acceleration^Siξi(t)ultimately coincides with the practical angular acceleration Sω0(t).The attitude and angular velocity tracking errors of the four followers relative to the leader are compared in Figs.3 and 4,respectively.The results show that the errors of the attitude and angular velocity all converge to zero under both control schemes,while the convergence rate of the proposed method is obviously faster than that of the CE-based method for all the spacecraft.Fig.5 shows the comparison of parameter estimation errors,which indicates that the proposed method converges faster than the CE-based method.The profiles of the control torque are given in Fig.6.It can be observed in Fig.6 that the maximum torque required by the CE-based algorithm is about three times that of the proposed controller.Since tracking of the same timevarying reference,the control torque of steady-state for both methods are almost identical and remain time-varying.

    6.Conclusion

    Fig.5 Norm estimation errors

    Fig.6 Norm of control torque

    In this paper,a dynamic-scaling-based non-certainty equivalent adaptive control scheme has been presented to address theleader-following attitude coordination problem with unknown inertia parameters.The non-certainty equivalent principle and dynamic scaling skill are used both in the distributed estimator and the distributed control law.The main advantage of the proposed method is that it does not need the boundary of inertia parameter matrix.In addition,the followers can track the attitude of the leader without any information of the leader by the proposed distributed estimation.The numerical simulations have illustrated the effectiveness of the proposed distributed control scheme.Compared with the existing schemes based on CE,our method has better convergence accuracy and faster convergence rate.Furthermore,with an upper bound of dynamic-scaling factor,the control process requires a smaller control torque to ensure the convergence of attitude and angular velocity.

    Acknowledgements

    This paper was supported by the National Natural Science Foundation of China(Nos.11402200,11502203).

    Appendix A

    A.1 Proof of Lemma 1

    Substituting Eq.(14)to Eq.(13),we obtain

    To eliminate the second items in Eq.(61),the dynamic scaling skill is used again.Consider a scaled parameter estimation errorand then its derivative is given as

    De fine a Lyapunov function

    and then its time derivative is obtained as

    where the Young inequality has been employed.Let

    Replacing Eq.(65)in Eq.(64)yields

    Since ω0is a persistent excitation signal,the matrixˉQ( ωS)is row full rank.Therefore,there exist some positive constants αSsuch thatand then Eq.(66)can be rewritten as

    Therefore,ˉQ( ωS)zS→0 exponentially as t→∞.Similar as the construction of Lyapunov-like function Eq.(45)of Theorem 1 and the following deduction,we have rS,zSand ? which are all bounded.Therefore,

    Theorem 2.5.3 in Ref.35guarantees the existence of a positive definite diagonal matrix C=diag{ c1,c2,...,cN}such thatis positive definite. Letand be the smallest eigenvalue ofLet

    where P is a positive definite matrix such that

    By direct calculating,we have

    where

    In the derivation of Eq. (71), the identity‖q0⊙q( ?i)‖=‖q( ?i)‖implied by Lemma 2 is employed.Substituting(71)into(70)gives

    for some αU>0.Hence,it can be obtained that||?||,||ζ||andconverge to zero exponentially. There-exponentially.

    A.2 Details of ΔiandˉΔi

    In this part,the detailed form of ΔiandˉΔiwill be given to complete the controller derivation.For notational convenience,we de fine

    By applying Eqs.(14),(16)and(18),Δican be obtained as

    The details are given below:

    Since all elements of Δiin Eqs.(73)(77)can be written aswhere Θ ∈R3,Δican be given in a compact form as

    where denotes the corresponding matrix.Then one has

    with

    It can be concluded for the Definition of 2-norm that

    Thereby the detailed forms of ΔiandˉΔiare given.

    国产成人精品无人区| 色播在线永久视频| 亚洲精品乱久久久久久| 999精品在线视频| 高清欧美精品videossex| 欧美成人免费av一区二区三区 | 又大又爽又粗| 热99久久久久精品小说推荐| avwww免费| 女人被躁到高潮嗷嗷叫费观| 久久久久国产精品人妻aⅴ院 | 国产精品二区激情视频| av在线播放免费不卡| 一二三四在线观看免费中文在| 欧美日韩国产mv在线观看视频| xxx96com| 欧美另类亚洲清纯唯美| 69av精品久久久久久| 国产欧美日韩精品亚洲av| 亚洲av电影在线进入| 后天国语完整版免费观看| 国产高清国产精品国产三级| 久久久精品区二区三区| 99re6热这里在线精品视频| 久久精品成人免费网站| 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 久久影院123| 久热爱精品视频在线9| 国产又色又爽无遮挡免费看| 男女免费视频国产| 久久久久久亚洲精品国产蜜桃av| 国产精品乱码一区二三区的特点 | 动漫黄色视频在线观看| 成年人免费黄色播放视频| 两性夫妻黄色片| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲五月婷婷丁香| 国产精品一区二区免费欧美| 一本综合久久免费| 国产野战对白在线观看| 亚洲精品中文字幕一二三四区| 操美女的视频在线观看| netflix在线观看网站| 91字幕亚洲| 女人久久www免费人成看片| 国产欧美日韩一区二区精品| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线| 天天添夜夜摸| 亚洲avbb在线观看| 在线观看免费视频日本深夜| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 一区二区三区国产精品乱码| www.自偷自拍.com| 少妇裸体淫交视频免费看高清 | 大码成人一级视频| 国产精品一区二区精品视频观看| 宅男免费午夜| 99香蕉大伊视频| av国产精品久久久久影院| 美女视频免费永久观看网站| 国产成人精品在线电影| 亚洲欧美激情综合另类| 成年人午夜在线观看视频| 日本欧美视频一区| 99国产精品一区二区蜜桃av | 深夜精品福利| 后天国语完整版免费观看| 亚洲欧美日韩高清在线视频| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 人人妻人人澡人人看| 看黄色毛片网站| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人| 久久草成人影院| 不卡av一区二区三区| 国产xxxxx性猛交| 99国产精品一区二区蜜桃av | 99在线人妻在线中文字幕 | 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 夜夜躁狠狠躁天天躁| 超碰97精品在线观看| 啦啦啦 在线观看视频| 亚洲人成电影免费在线| 国产亚洲精品一区二区www | 91大片在线观看| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 国产主播在线观看一区二区| 国产主播在线观看一区二区| 91麻豆精品激情在线观看国产 | 三上悠亚av全集在线观看| 欧美+亚洲+日韩+国产| 精品电影一区二区在线| 精品人妻在线不人妻| 国产av一区二区精品久久| 一进一出好大好爽视频| 国产不卡av网站在线观看| 国产一区二区三区综合在线观看| 女性生殖器流出的白浆| 亚洲精品粉嫩美女一区| 亚洲精品国产精品久久久不卡| 国产亚洲欧美在线一区二区| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影| 高清毛片免费观看视频网站 | 午夜福利在线免费观看网站| 啦啦啦 在线观看视频| 久久精品人人爽人人爽视色| 亚洲av日韩精品久久久久久密| 久久精品熟女亚洲av麻豆精品| 丝瓜视频免费看黄片| 国产成人欧美| 精品福利观看| 欧美日韩黄片免| 久久人人97超碰香蕉20202| 国产乱人伦免费视频| 老司机亚洲免费影院| 久久久久精品国产欧美久久久| 久久久久视频综合| 精品无人区乱码1区二区| 久久久精品国产亚洲av高清涩受| 在线播放国产精品三级| 午夜免费鲁丝| 女人爽到高潮嗷嗷叫在线视频| 老司机在亚洲福利影院| 成人av一区二区三区在线看| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 久久中文看片网| 在线永久观看黄色视频| 国产精品一区二区在线观看99| 大陆偷拍与自拍| 在线看a的网站| 国产极品粉嫩免费观看在线| 午夜激情av网站| 亚洲成人国产一区在线观看| 国产成人av教育| 99久久99久久久精品蜜桃| 国产不卡一卡二| 十八禁人妻一区二区| 免费观看精品视频网站| 丁香欧美五月| 99香蕉大伊视频| 美国免费a级毛片| 国产淫语在线视频| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 午夜福利一区二区在线看| 亚洲熟妇中文字幕五十中出 | 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 一夜夜www| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 性色av乱码一区二区三区2| 欧美国产精品一级二级三级| 日韩制服丝袜自拍偷拍| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 亚洲欧美色中文字幕在线| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 一a级毛片在线观看| 高清毛片免费观看视频网站 | 色老头精品视频在线观看| 99热只有精品国产| 成年女人毛片免费观看观看9 | 在线看a的网站| 国产在线精品亚洲第一网站| 国产又爽黄色视频| 日本一区二区免费在线视频| 国产精品1区2区在线观看. | 一级毛片女人18水好多| 精品国产一区二区三区四区第35| 国产av又大| 美国免费a级毛片| 欧美午夜高清在线| 中出人妻视频一区二区| 18禁观看日本| 国产成人影院久久av| 亚洲av片天天在线观看| 宅男免费午夜| av网站在线播放免费| 妹子高潮喷水视频| 极品教师在线免费播放| 午夜免费鲁丝| 欧美精品高潮呻吟av久久| 十八禁人妻一区二区| 午夜日韩欧美国产| 国产精品免费一区二区三区在线 | 每晚都被弄得嗷嗷叫到高潮| 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 在线国产一区二区在线| 国产欧美日韩一区二区三| 在线观看日韩欧美| 欧美不卡视频在线免费观看 | 国产精华一区二区三区| 久久精品亚洲熟妇少妇任你| 久久久国产精品麻豆| 国产精品欧美亚洲77777| 大型黄色视频在线免费观看| 欧美日韩成人在线一区二区| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 欧美亚洲日本最大视频资源| 亚洲黑人精品在线| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看 | 黄色 视频免费看| 欧美久久黑人一区二区| 日本欧美视频一区| 日本vs欧美在线观看视频| 久久香蕉精品热| 99国产综合亚洲精品| 成人影院久久| 国产真人三级小视频在线观看| 一级作爱视频免费观看| 黄网站色视频无遮挡免费观看| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区 | 人人妻人人澡人人看| 黄色成人免费大全| 免费女性裸体啪啪无遮挡网站| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看 | 国产精品综合久久久久久久免费 | 久久精品aⅴ一区二区三区四区| av福利片在线| 亚洲成人免费电影在线观看| 男女下面插进去视频免费观看| 精品国内亚洲2022精品成人 | 亚洲精品乱久久久久久| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 黄色怎么调成土黄色| 亚洲片人在线观看| 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| 超色免费av| 国产成+人综合+亚洲专区| 91精品三级在线观看| 成人三级做爰电影| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 九色亚洲精品在线播放| 免费观看人在逋| 一级毛片女人18水好多| 人妻一区二区av| 成熟少妇高潮喷水视频| 国产亚洲精品第一综合不卡| 一进一出抽搐动态| 亚洲精品国产区一区二| 一区二区三区精品91| av不卡在线播放| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 国产成人欧美在线观看 | 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 男人的好看免费观看在线视频 | 精品久久久久久电影网| 中文字幕人妻熟女乱码| 国产av又大| 亚洲中文日韩欧美视频| 天天影视国产精品| 啪啪无遮挡十八禁网站| 人人澡人人妻人| 精品久久久精品久久久| 国产成人系列免费观看| 视频区欧美日本亚洲| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 又黄又爽又免费观看的视频| 亚洲av成人不卡在线观看播放网| 久久人妻福利社区极品人妻图片| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 一进一出抽搐gif免费好疼 | 国产精品香港三级国产av潘金莲| 精品福利永久在线观看| 久久影院123| 久久精品亚洲熟妇少妇任你| 午夜成年电影在线免费观看| 王馨瑶露胸无遮挡在线观看| 亚洲成人免费av在线播放| 欧美黑人欧美精品刺激| 麻豆国产av国片精品| 亚洲精品久久午夜乱码| 妹子高潮喷水视频| 国产精品九九99| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 久久精品亚洲熟妇少妇任你| 国产精品久久久av美女十八| 满18在线观看网站| 亚洲综合色网址| 女同久久另类99精品国产91| 午夜福利乱码中文字幕| 男女免费视频国产| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 国产精品久久久av美女十八| 最近最新免费中文字幕在线| 人人澡人人妻人| 美女视频免费永久观看网站| 色94色欧美一区二区| av片东京热男人的天堂| 飞空精品影院首页| a在线观看视频网站| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| av有码第一页| 美女福利国产在线| 色94色欧美一区二区| 一级毛片精品| 成年人免费黄色播放视频| 国产精品欧美亚洲77777| 少妇粗大呻吟视频| 精品人妻熟女毛片av久久网站| 伊人久久大香线蕉亚洲五| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 首页视频小说图片口味搜索| 日韩免费高清中文字幕av| 亚洲精品一二三| 极品人妻少妇av视频| 亚洲成人免费电影在线观看| 国产免费现黄频在线看| e午夜精品久久久久久久| av免费在线观看网站| 亚洲精品粉嫩美女一区| 精品无人区乱码1区二区| 又黄又粗又硬又大视频| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 91精品国产国语对白视频| 日韩成人在线观看一区二区三区| 亚洲av熟女| 最近最新中文字幕大全电影3 | 午夜日韩欧美国产| 国产一区在线观看成人免费| 后天国语完整版免费观看| 女性被躁到高潮视频| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲| 亚洲av第一区精品v没综合| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 这个男人来自地球电影免费观看| 亚洲色图av天堂| 大型av网站在线播放| 久久精品亚洲熟妇少妇任你| 亚洲黑人精品在线| 国产精品亚洲一级av第二区| 久久午夜亚洲精品久久| 999久久久国产精品视频| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 啪啪无遮挡十八禁网站| 9热在线视频观看99| 亚洲精品中文字幕一二三四区| 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 在线观看舔阴道视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一码二码三码区别大吗| 色综合欧美亚洲国产小说| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| 丝袜美腿诱惑在线| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 国产精品自产拍在线观看55亚洲 | 一本一本久久a久久精品综合妖精| 日韩欧美在线二视频 | 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 视频区图区小说| 淫妇啪啪啪对白视频| 亚洲精品乱久久久久久| 成人永久免费在线观看视频| 国产不卡一卡二| 成年人黄色毛片网站| 麻豆成人av在线观看| av超薄肉色丝袜交足视频| 亚洲国产精品合色在线| 午夜亚洲福利在线播放| 好看av亚洲va欧美ⅴa在| 国产男女超爽视频在线观看| 韩国av一区二区三区四区| 女性生殖器流出的白浆| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 王馨瑶露胸无遮挡在线观看| 久久中文字幕人妻熟女| 欧美人与性动交α欧美软件| 黄频高清免费视频| 欧美国产精品va在线观看不卡| 狠狠婷婷综合久久久久久88av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲七黄色美女视频| 黄色片一级片一级黄色片| 午夜免费鲁丝| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 国产精品.久久久| 欧美国产精品一级二级三级| 老熟女久久久| 亚洲五月婷婷丁香| 色播在线永久视频| 国产主播在线观看一区二区| aaaaa片日本免费| 999精品在线视频| 欧美日韩亚洲综合一区二区三区_| 多毛熟女@视频| 婷婷成人精品国产| 色精品久久人妻99蜜桃| 亚洲午夜精品一区,二区,三区| 99在线人妻在线中文字幕 | 中文字幕精品免费在线观看视频| 99精品欧美一区二区三区四区| 国产精品 欧美亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 女性被躁到高潮视频| 国产一区二区激情短视频| 久久影院123| 在线观看免费视频网站a站| 国产成人欧美在线观看 | 欧美人与性动交α欧美精品济南到| 激情在线观看视频在线高清 | 午夜91福利影院| 国产欧美亚洲国产| 久久久久久久久免费视频了| 精品国产美女av久久久久小说| 中出人妻视频一区二区| 男女午夜视频在线观看| av福利片在线| 美女视频免费永久观看网站| 桃红色精品国产亚洲av| 十八禁网站免费在线| 国产成人啪精品午夜网站| 精品亚洲成国产av| 国产极品粉嫩免费观看在线| 亚洲精品国产区一区二| 午夜老司机福利片| 久久国产精品男人的天堂亚洲| 欧美大码av| 亚洲成av片中文字幕在线观看| 亚洲av片天天在线观看| av网站免费在线观看视频| 又紧又爽又黄一区二区| 18禁黄网站禁片午夜丰满| 国产精品久久久av美女十八| 丰满迷人的少妇在线观看| 国产三级黄色录像| 欧美日韩瑟瑟在线播放| 制服诱惑二区| 亚洲成人免费av在线播放| 国产精品永久免费网站| 欧美日本中文国产一区发布| 高清欧美精品videossex| 一级片免费观看大全| 国产一区二区三区视频了| 免费不卡黄色视频| 他把我摸到了高潮在线观看| 久久 成人 亚洲| 午夜亚洲福利在线播放| 建设人人有责人人尽责人人享有的| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 久久热在线av| 久久中文字幕一级| 一级黄色大片毛片| 人人妻人人澡人人看| 国产又色又爽无遮挡免费看| 黄片播放在线免费| 中文字幕人妻丝袜制服| 久久久精品区二区三区| 最新在线观看一区二区三区| 18禁国产床啪视频网站| 丝袜美足系列| 中亚洲国语对白在线视频| 中文字幕制服av| 成人三级做爰电影| 亚洲熟妇熟女久久| 成年人午夜在线观看视频| 欧美日韩视频精品一区| tube8黄色片| 搡老乐熟女国产| 女性生殖器流出的白浆| 国产乱人伦免费视频| 欧美日韩福利视频一区二区| 国产又爽黄色视频| 一级毛片女人18水好多| 在线看a的网站| 999精品在线视频| 老司机午夜福利在线观看视频| 人妻一区二区av| 久久精品亚洲精品国产色婷小说| 久久精品亚洲av国产电影网| 波多野结衣av一区二区av| 国产精品一区二区免费欧美| 欧美日韩乱码在线| 日韩中文字幕欧美一区二区| av片东京热男人的天堂| 欧美激情 高清一区二区三区| 在线观看舔阴道视频| 这个男人来自地球电影免费观看| 亚洲精品在线观看二区| av天堂久久9| 午夜福利免费观看在线| 97人妻天天添夜夜摸| 99精品久久久久人妻精品| 免费黄频网站在线观看国产| 大码成人一级视频| 一区福利在线观看| av一本久久久久| 日韩欧美一区视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av成人不卡在线观看播放网| 日韩有码中文字幕| 日本五十路高清| 久久精品国产99精品国产亚洲性色 | 精品国产乱子伦一区二区三区| 精品国产美女av久久久久小说| 久久ye,这里只有精品| 欧美激情 高清一区二区三区| 成人影院久久| 午夜福利一区二区在线看| 18禁裸乳无遮挡动漫免费视频| 亚洲中文字幕日韩| 天天操日日干夜夜撸| 超碰97精品在线观看| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片 | 在线十欧美十亚洲十日本专区| 交换朋友夫妻互换小说| 黄网站色视频无遮挡免费观看| 成人黄色视频免费在线看| 老熟女久久久| 女人精品久久久久毛片| av在线播放免费不卡| 大型av网站在线播放| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 亚洲第一欧美日韩一区二区三区| av欧美777| 国产精品免费大片| 免费在线观看完整版高清| 丝袜美足系列| 交换朋友夫妻互换小说| 亚洲精品中文字幕在线视频| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 50天的宝宝边吃奶边哭怎么回事| 国产精品自产拍在线观看55亚洲 | 亚洲精品粉嫩美女一区| 欧美乱色亚洲激情| 亚洲av欧美aⅴ国产| 不卡av一区二区三区| 久久天躁狠狠躁夜夜2o2o| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕| 91字幕亚洲| 精品午夜福利视频在线观看一区| 精品亚洲成国产av| 男女高潮啪啪啪动态图| 亚洲精品粉嫩美女一区| 久久精品亚洲精品国产色婷小说| 一级片免费观看大全| 国产99白浆流出| 免费在线观看亚洲国产| 国产又色又爽无遮挡免费看| 欧美大码av| 亚洲中文av在线| 91在线观看av| 久久99一区二区三区| 精品国产亚洲在线| 极品人妻少妇av视频| 久久精品国产99精品国产亚洲性色 | 99精品欧美一区二区三区四区| 欧美精品av麻豆av| 高清视频免费观看一区二区| 黑人操中国人逼视频| 天天添夜夜摸| www日本在线高清视频| 成年人黄色毛片网站| 一二三四在线观看免费中文在| 波多野结衣一区麻豆|