• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hopf Bifurcation of Cross Diffusion Predator-Prey Model with Herd Behavior and Delay

    2019-03-30 08:21:48CHENGFangyuan程方圓ZHANGTiansi張?zhí)焖?/span>
    應(yīng)用數(shù)學(xué) 2019年2期
    關(guān)鍵詞:方圓

    CHENG Fangyuan(程方圓),ZHANG Tiansi(張?zhí)焖?

    (University of Shanghai for Science and Technology,Shanghai 200093,China)

    Abstract: In this paper,we study the Hopf bifurcation of cross diffusion predator-prey model with herd behavior and delay.Taking the death rate β and the delay τ as bifurcation parameters in the model,we discuss the stability of equilibrium point by Routh-Hurwitz conditions and the existence of Hopf bifurcation induced by cross diffusion and delay respectively by analyzing characteristic equation.We get the result that the Hopf bifurcation of the system occurs when β and τ pass through the critical values.Finally,we carry out numerical simulation to verify the correctness of the conclusion.

    Key words: Predator-prey model;Hopf bifurcation;Cross diffusion;Delay;Stability

    1.Introduction

    Biological mathematic is an important branch of modern applied mathematics.More and more predator-prey models are proposed with the development of biology and mathematics.We know that there are many factors that affect population dynamics in predator-prey relationships and functional response can be classified into many different types such as Holing I-IV type,Hassell-Varley type,Beddington-DeAngelis type,Crowley-Martin type,and so on.And the stability of equilibrium and bifurcation are studied.Hale[1]first studied the local bifurcation of delay differential system.He studied the existence of central flow patterns for delay differential system and Hopf bifurcation theorem.Recently,the study of the stability of delayed differential equation and Hopf bifurcation have attracted the attention of many scholars[2?3].They showed that delay can destabilize the positive equilibrium and induce Hopf bifurcation.Some scholars[4?6]combined delay with diffusion,the local stability of the positive equilibrium and delay-induced and diffusive-induced Hopf bifurcation are investigated.In this paper,we add the time delay and diffusion to the predator-prey model with herd behavior to study its Hopf bifurcation.

    In [7],Ajraldi,Pittavino and Venturino investigated the classical two population system and showed that under suitable assumptions in some instances it may lead to unexpected behavior.

    hereu(t) andv(t) stand for the prey and predator densities,respectively,at timet.βγis the death rate of predator in the absence of prey.γis the conversion or consumption rate of prey to predator.

    Recently TANG and SONG[8]have investigated the cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior.They gave the conditions for cross-diffusion induced instability and derived amplitude equations for the excited modes.

    whered11>0 andd22>0 are diffusion coefficients for prey and predator respectively.The coefficientsd12andd21are called cross-diffusion coefficients describing the population fluxes of prey and predators resulting from the presence of the other species,respectively.

    In 2015,TANG and SONG[6]studied the stability,Hopf bifurcations and spatial patters in delayed diffusive predator-prey model with herd behavior.By choosing the appropriate parameter,they got the result that Hopf bifurcations can be induced by diffusion and delay respectively.And they obtained the formula determining the properties of the Hopf bifurcation in.

    As known,biology species often do not response to the variation of the environment instantaneously,instead,they generally response to the variations in the past.Sometimes,the predator does not consume the prey instantaneous,there are some constant time to consume for predator.Due to this point,we combine the factor of cross-diffusion in the system (1.2)with the facter of delay in the system (1.3),then get the following system (1.4):

    With the same aim,we discuss the stability of positive equilibrium and the corresponding Hopf bifurcation.

    As the beginning,we give an assumption:

    which indicates that the flow of the respective densities in the spatial domain depend more strongly on their own density than on the others[9],whereτis the delay item.

    2.Stability of Positive Equilibrium

    This section is to discuss the stability of positive equilibrium of the system (1.4).It is clear that the system has two boundary equilibriaE1(0,0),E2(1,0) and a unique positive equilibriumE3(u?,v?) if 0<β <1,whereu?=β2,v?=β(1?β2).Since we are looking for the stability of the positive equilibrium point,we omit the boundary equilibrium points here.

    Suppose that there is neither diffusion nor delay,then the system (1.4) can be reduced into the system (1.1),which has the Jacobian

    By the Routh-Hurwitz conditions for interior equilibrium,we have

    From the above discussion and those in [7],we can get the following lemma.

    Lemma 2.1Forthe system (1.1) possesses a limit cycle and has an unstable positive equilibriumE3(u?,v?);Forthe system (1.1) has a globally asymptotically stable positive equilibriumE3(u?,v?);While forthe system (1.1)undergoes a Hopf bifurcation nearE3(u?,v?).

    But the above is the fraction of the system(1.1)without delay and diffusion.So to make the question more suitable,we consider the delay and the diffusion in the system (1.4).For the convenience of discussion,we useu(t)foru(t,x),v(t)forv(t,x)andu(t?τ)foru(t?τ,x).Let

    The linearization of system (1.4) atE3(u?,v?) is

    whereand

    The characteristic equation of (2.3) is:

    whereIis the 2×2 identity matrix andThen the sequence of quadratic transcendental equations at the positive equilibriumE3(u?,v?)is

    Setτ= 0.(2.6) can be written as the following sequence of quadratic polynomial equations:

    where

    3.Hopf Bifurcation Induced by Diffusion

    In this section,takingτ= 0,we consider the Hopf bifurcation induced by diffusion in(2.7) fork ≥1.According to the condition of Hopf bifurcation,we haveTk= 0,Dk >0.From (2.8),Tk(β)=0 yields

    Clearly (2.4) gives the following results

    andForthena11(β)<0,Tk=(d11+d22)k2?a11(β).SoTkmust be greater than zero.It does not meet the conditions for Hopf bifurcation.Therefore,the potential bifurcation points of the system (1.4) belong to

    Next,we look for the exact value ofβ.Solving (3.1),we have

    For this bifurcation point 0<βk <1,we have the following results.

    Lemma 3.1Assume 0<βk <1.Then the bifurcation points are finite,that is,there is a non-negative integerand N1∈N0,such thatβkare(resp.not)bifurcating points if 0≤k ≤N1(resp.k >N1).

    ProofWhen 0≤β ≤1,Maxa11(β) =a11(0),that is,a11(0)<(d11+d22)k2whenkis big enough.So there isTk(β)<0.Then (2.6) does not exist any purely imaginary roots.MakingTk(β) = 0,we have a unique solutionand there is no solutions asThis competes the proof.

    Lemma 3.2Assume 0<βk <1.Then for any 0≤k ≤N1,there is 0<βN1<··· <βk <···β0<1.

    ProofFrom (3.3),we can easily see that the value ofβincreases with the decrease ofk.This competes the proof.

    To generate bifurcation,Tk(βk)= 0,Dk(βk)>0 as 0≤k ≤N1,andTj(βk)≠0 for anyj≠k.In order to meet the above conditions,we make the second hypothesis:(H2)

    Under hypothetical conditions,we verify the transverse condition.

    Lemma 3.3Assume(H1)and(H2)hold.Then for any 0<β <1,we have Re(λ′(β))<0.

    ProofSuppose that the root of (2.7) has the formλ(β) =α(β)+ib(β),whereα(β),b(β)∈R.Since the real part of eigenvalueλisRefor any 0<β <1.This competes the proof.

    From Lemmas 3.1-3.3,a statement can be given as follows.

    Theorem 3.1Assume(H1)and(H2)hold.When 0<β <1,there are N1+1 bifurcating pointsβksatisfying 0<βN1<···<βk <···β0<1,such that the system (1.4) undergoes a Hopf bifurcation atβk.Moreover,

    1)E3(u?,v?) is unstable when

    2)E3(u?,v?) is locally asymptotically stable when

    3)The periodic solutions bifurcating fromare spatially homogeneous,the periodic solutions bifurcating fromβ=βkare spatially non-homogeneous.

    4.Hopf Bifurcation Induced by Delay

    Now we discuss the bifurcation induced by delay.Keepstill hold.Whenτ=0,we always assume that the positive equilibriumE3(u?,v?)of the system(1.4)is locally asymptotically stable.

    Assume iωis a root of the characteristic (2.5),then we have

    Separating the real and imaginary parts of (4.1) leads to

    We know sin2ωτ+cos2ωτ=1,so we can get the following equations:

    Next we discuss the sign ofPkandQkto determine the value ofω.This is an important step in proving the existence of Hopf bifurcation of the system.

    From(4.4),ifanda12=?β <0,we can getPk >0.If(H1)and (H2) hold,thenDk >0 is always true.So the sign ofQkis determined byRk.Notice thatRkis a quadratic polynomial with respect tok2andAccording to (4.5) we can conclude that there exists N2∈N0,such that

    Then forω4+Pkω2+Qk=0,there are

    and ?=P2k ?4Qk >0 for eachk ∈{0,1,2···N2}.Therefor (4.3) has the only one positive real rootωk,where

    Whenk ≥N2+ 1 andk ∈N0,ω2must be negative if (4.3) is valid,which leads to the nonexistence of real roots of (4.3).

    According to the above discussion,we can get the following results:

    Lemma 4.1Whenfor allk ∈N0,and N2andωkare defined by (4.6) and(4.8),respectively.(2.5) has a pair of purely imaginary roots±iωkfor eachk ∈{0,1···N2}and has no purely imaginary roots fork ≥N2+1.

    From (4.2),fork ∈{0,1,···N2},we can obtain

    and

    Clearly,

    Letλ(τ)=α(τ)+iβ(τ)be the roots of(2.6)nearτ=τkjsatisfyingα(τkj)=0,βkj=ωk.Then we have the following transverse condition.

    Lemma 4.2Fork ∈{0,1,2···N0}and

    ProofDifferentiating two sides of (2.6) onτ,we get,

    By (2.6),

    Then,

    This completes the proof.

    From Lemmas 4.1-4.2 and combining with the qualitative theory of partial functional differential equations[10],we come to the following results.

    Theorem 4.1Assume (H1) and (H2) hold and for eachk ∈N0,Tk >0,Dk >0 are valid,τ00is defined by (4.9).

    1) Whenτ ∈[0,τ00],the system (1.4) has an asymptotically stable positive equilibriumE3(u?,v?);Whenτ ∈(τ00,+∞),(1.4) has an unstable positive equilibriumE3(u?,v?).

    2) Whenτ=τ00,the system (1.4) undergoes Hopf bifurcation near the positive equilibriumE3(u?,v?) fork ∈{0,1,···N2}andj ∈N0.Moreover,ifk=0,the bifurcation periodic solutions are all spatially homogeneous.Otherwise,these bifurcation periodic solutions are spatially inhomogeneous.

    5.Numerical Simulations

    In this section,we present numerical simulations to verify the above conclusion.Fig.5.1 and Fig.5.2 represent quantitative change of predator and prey with fixed the value of delayτand take death rateβas variable.Fig.5.3 and Fig.5.4 represent quantitative change of predator and prey with fixed the value of death rateβand take delayτas variable.In the first case,whenτ= 0,we taked11= 1,d12= 1,d21= 1,d22= 3,γ= 1.Makethencan be calculated by (2.4).Takeand recalculateFrom Fig.5.1,we can see that the curve vibrate constantly.The curves in Fig.5.2 tend to be stable.These phenomenon correspond to the conclusion of Theorem 3.1.is locally asymptotically stable whenAsβpasses through the critical valuethe equilibriumE3(u?,v?)loses its stability and becomes unstable and the periodic solutions bifurcate from

    In Case 2,supposeτ≠ 0.Keepd11= 1,d12= 1,d21= 1,d22= 3,γ= 1,β=,then we getτ00≈0.922.Takeτ= 0.01<τ00,and the curves in Fig.5.3 tend to be stable.Takeτ=1>τ00,and the curves in Fig.5.4 become unstable and vibrate larger and larger.These phenomenon correspond to the conclusion of Theorem 4.1.Whenτ ∈[0,τ00],the system(1.4)has an asymptotically stable positive equilibriumE3(u?,v?).Asτpasses through the critical valueτ00,the equilibriumE3(u?,v?) loses its stability and becomes unstable.

    Fig.5.1 The system(1.4) has an unstable positive equilibrium for d11 = 1, d12 = 1, d21 = 1,d22 =3, τ =0, γ =1, β =and the initial conditions (u0,v0)=(u?+0.2175,v?+0.2175).

    Acknowledgments:

    In this paper,a predator-prey model with time delay and cross-diffusion is established.We study the stability of positive equilibrium point and the existence of Hopf bifurcations with different parameter value.The periodic solutions bifurcating fromβ=are spatially homogeneous,the periodic solutions bifurcating whenβacross through the critical valuesβ1=are spatially non-homogeneous.Meanwhile,the system (1.4) undergoes Hopf bifurcation near the positive equilibrium (u?,v?) atτ=τ00≈0.922.And the bifurcation periodic solutions are spatially homogeneous whenτacross through the critical valueτ=τ00≈0.922.

    Fig.5.2 The system(1.4) has a stable positive equilibrium for d11 =1, d12 =1, d21 =1, d22 =3,τ =0, γ =1, β = and the initial conditions (u0,v0)=(u?+0.001,v?+0.001).

    Fig.5.3 The system(1.4) has a stable positive equilibrium for d11 =1, d12 =1, d21 =1, d22 =3,τ =0.1<τ00, γ =1, β =and the initial conditions (u0,v0)=(u?+0.2175,v?+0.2175).

    Fig.5.4 The system(1.4) has an unstable positive equilibrium for d11 = 1, d12 = 1, d21 = 1,d22 =3, τ =1>τ00, γ =1, β =and the initial conditions (u0,v0)=(u?+0.001,v?+0.001).

    The bifurcation periodic solution are spatially inhomogeneous whenτacross through the critical valueτ= 1>τ00≈0.922.At last,by the numerical simulations,we verified the correctness of the theory and the feasibility of the method.We hope that our work could be instructive to study the population.

    猜你喜歡
    方圓
    清明風(fēng)若從南起
    幼兒100(2023年14期)2023-05-13 09:17:04
    到了驚蟄節(jié)
    幼兒100(2023年10期)2023-03-28 07:34:54
    涿鹿之戰(zhàn)
    幼兒100(2022年10期)2022-12-27 08:23:51
    十月打了霜
    幼兒100(2022年42期)2022-11-24 06:55:10
    八月十五雁門開
    幼兒100(2022年34期)2022-09-08 05:10:34
    大禹治水
    幼兒100(2022年18期)2022-05-18 07:10:04
    精衛(wèi)填海
    幼兒100(2021年38期)2021-12-23 08:38:20
    撞不周山
    幼兒100(2021年34期)2021-12-06 03:24:20
    女媧造人
    幼兒100(2021年30期)2021-11-02 05:55:26
    盤古開天
    幼兒100(2021年26期)2021-09-09 01:44:28
    亚洲片人在线观看| 91成年电影在线观看| videosex国产| 国产精品美女特级片免费视频播放器 | 久久久久久久午夜电影 | 韩国av一区二区三区四区| 亚洲av熟女| 日韩 欧美 亚洲 中文字幕| 涩涩av久久男人的天堂| 免费少妇av软件| 新久久久久国产一级毛片| 午夜两性在线视频| 国产亚洲精品久久久久久毛片| 国产一区在线观看成人免费| 欧美成人性av电影在线观看| 最新在线观看一区二区三区| 一级毛片精品| 久久欧美精品欧美久久欧美| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 在线观看免费视频日本深夜| 国产精品国产av在线观看| 69av精品久久久久久| 桃色一区二区三区在线观看| 国产免费男女视频| 99re在线观看精品视频| 一个人观看的视频www高清免费观看 | 天堂中文最新版在线下载| 亚洲人成伊人成综合网2020| 亚洲av片天天在线观看| 亚洲少妇的诱惑av| 少妇裸体淫交视频免费看高清 | 麻豆久久精品国产亚洲av | 亚洲午夜理论影院| 国产野战对白在线观看| 日日干狠狠操夜夜爽| 亚洲免费av在线视频| 国产成人免费无遮挡视频| 国产无遮挡羞羞视频在线观看| 宅男免费午夜| tocl精华| 男男h啪啪无遮挡| 日韩免费av在线播放| 天堂√8在线中文| 国产精品成人在线| 久久国产亚洲av麻豆专区| 成人av一区二区三区在线看| 国产黄a三级三级三级人| 真人一进一出gif抽搐免费| 9色porny在线观看| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 成人18禁高潮啪啪吃奶动态图| 一级黄色大片毛片| 亚洲av成人av| 久久性视频一级片| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 国产午夜精品久久久久久| 国产熟女午夜一区二区三区| 亚洲国产欧美网| 97碰自拍视频| 久久人妻熟女aⅴ| 久久久久国产一级毛片高清牌| 国产成+人综合+亚洲专区| 精品久久久久久,| 精品国产乱码久久久久久男人| 欧美丝袜亚洲另类 | 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 色婷婷av一区二区三区视频| 国产精品国产高清国产av| av欧美777| 亚洲黑人精品在线| 人人澡人人妻人| 色哟哟哟哟哟哟| 国产一卡二卡三卡精品| av福利片在线| 热re99久久国产66热| 99久久人妻综合| 大陆偷拍与自拍| 精品无人区乱码1区二区| 亚洲国产欧美网| 最好的美女福利视频网| 一个人观看的视频www高清免费观看 | 99国产极品粉嫩在线观看| 男人舔女人的私密视频| av中文乱码字幕在线| 黄色女人牲交| 丝袜美腿诱惑在线| 欧美成狂野欧美在线观看| 婷婷丁香在线五月| 看黄色毛片网站| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 亚洲av成人av| 一级片免费观看大全| 99香蕉大伊视频| 日韩欧美在线二视频| 看片在线看免费视频| 激情在线观看视频在线高清| 国产精品免费一区二区三区在线| 在线观看免费午夜福利视频| 欧美日韩国产mv在线观看视频| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 欧美日韩亚洲高清精品| 国内毛片毛片毛片毛片毛片| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲色图av天堂| 亚洲激情在线av| 久久九九热精品免费| 丁香六月欧美| 久久久国产欧美日韩av| 久久久久久久久久久久大奶| 免费在线观看日本一区| 美女大奶头视频| av网站免费在线观看视频| 国产av一区在线观看免费| 久久精品亚洲精品国产色婷小说| 亚洲三区欧美一区| 一级毛片精品| 波多野结衣一区麻豆| 91麻豆av在线| 久久久久久久久中文| 久久久久久免费高清国产稀缺| 国产高清激情床上av| 久久人妻熟女aⅴ| 青草久久国产| 三级毛片av免费| 精品第一国产精品| 香蕉久久夜色| 色老头精品视频在线观看| 中文亚洲av片在线观看爽| 美女大奶头视频| 淫秽高清视频在线观看| 青草久久国产| √禁漫天堂资源中文www| 9191精品国产免费久久| 超碰97精品在线观看| 久久精品aⅴ一区二区三区四区| 免费高清在线观看日韩| 如日韩欧美国产精品一区二区三区| 美女扒开内裤让男人捅视频| 久久精品亚洲精品国产色婷小说| 日韩精品青青久久久久久| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 精品一区二区三区视频在线观看免费 | 琪琪午夜伦伦电影理论片6080| 女人精品久久久久毛片| 国产亚洲精品久久久久久毛片| 亚洲精品国产精品久久久不卡| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| 亚洲精品美女久久av网站| av片东京热男人的天堂| 丰满饥渴人妻一区二区三| 露出奶头的视频| 精品欧美一区二区三区在线| 不卡一级毛片| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 日本欧美视频一区| 99香蕉大伊视频| 欧美人与性动交α欧美软件| 亚洲成av片中文字幕在线观看| 免费在线观看亚洲国产| 一级a爱视频在线免费观看| 欧美午夜高清在线| 在线av久久热| 黄色 视频免费看| 天堂√8在线中文| 操美女的视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产有黄有色有爽视频| 欧美最黄视频在线播放免费 | 别揉我奶头~嗯~啊~动态视频| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 精品无人区乱码1区二区| 欧美日韩精品网址| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 久久久久久久久久久久大奶| 欧美乱码精品一区二区三区| 99国产精品免费福利视频| 操美女的视频在线观看| 黄色 视频免费看| 亚洲av第一区精品v没综合| 精品第一国产精品| 国产又爽黄色视频| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕色久视频| 一进一出抽搐gif免费好疼 | 亚洲专区中文字幕在线| a在线观看视频网站| 国产成人精品久久二区二区免费| 在线免费观看的www视频| 操美女的视频在线观看| 丰满饥渴人妻一区二区三| 91成年电影在线观看| 女人精品久久久久毛片| 免费在线观看日本一区| 精品国产超薄肉色丝袜足j| 黄色女人牲交| 日本免费a在线| 色婷婷av一区二区三区视频| 免费一级毛片在线播放高清视频 | 亚洲伊人色综图| 日韩视频一区二区在线观看| 精品无人区乱码1区二区| 91精品国产国语对白视频| ponron亚洲| 日韩三级视频一区二区三区| 久久久国产成人免费| 99精品在免费线老司机午夜| 欧美一区二区精品小视频在线| 亚洲精品国产精品久久久不卡| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区免费| 99久久99久久久精品蜜桃| 国产成人av教育| xxxhd国产人妻xxx| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 99热国产这里只有精品6| 99国产精品99久久久久| 午夜影院日韩av| 亚洲黑人精品在线| 伦理电影免费视频| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 国产精品 国内视频| 久久久久精品国产欧美久久久| 亚洲欧美日韩另类电影网站| 黄片小视频在线播放| 欧美日韩视频精品一区| xxxhd国产人妻xxx| 亚洲激情在线av| 性欧美人与动物交配| 国产99白浆流出| 日日干狠狠操夜夜爽| 久久国产亚洲av麻豆专区| 精品国产美女av久久久久小说| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 久久精品国产亚洲av高清一级| 一级毛片精品| 免费高清视频大片| 欧美中文综合在线视频| 在线视频色国产色| 99热国产这里只有精品6| 一级黄色大片毛片| 老鸭窝网址在线观看| 91九色精品人成在线观看| 长腿黑丝高跟| 多毛熟女@视频| 99久久人妻综合| 中文欧美无线码| 老熟妇乱子伦视频在线观看| 亚洲狠狠婷婷综合久久图片| 免费在线观看日本一区| 日本精品一区二区三区蜜桃| 国产高清videossex| 村上凉子中文字幕在线| 很黄的视频免费| 国产成人欧美| 如日韩欧美国产精品一区二区三区| 欧美日韩精品网址| 日韩av在线大香蕉| 欧美日韩瑟瑟在线播放| 精品久久久久久久毛片微露脸| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三卡| 狂野欧美激情性xxxx| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片 | 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 国产又爽黄色视频| 欧美黄色淫秽网站| 日本五十路高清| 成人黄色视频免费在线看| 亚洲五月色婷婷综合| 大型av网站在线播放| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 伦理电影免费视频| 精品国产美女av久久久久小说| 欧美一级毛片孕妇| 亚洲自拍偷在线| 日韩有码中文字幕| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av高清不卡| 交换朋友夫妻互换小说| 手机成人av网站| 久久中文字幕一级| 国产成+人综合+亚洲专区| 成人亚洲精品一区在线观看| 免费在线观看日本一区| 深夜精品福利| av天堂久久9| 在线观看一区二区三区| 久久久国产成人精品二区 | 精品欧美一区二区三区在线| 在线观看一区二区三区激情| 夜夜夜夜夜久久久久| 日韩免费av在线播放| 制服诱惑二区| 身体一侧抽搐| 香蕉国产在线看| 亚洲av五月六月丁香网| 满18在线观看网站| 99国产精品一区二区三区| 国产精品日韩av在线免费观看 | 亚洲欧美激情在线| 亚洲五月天丁香| 热99国产精品久久久久久7| 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 一本大道久久a久久精品| 淫秽高清视频在线观看| 欧美日韩国产mv在线观看视频| 国产午夜精品久久久久久| 午夜免费鲁丝| 国产一区二区在线av高清观看| 久久久久久久久免费视频了| 99精品欧美一区二区三区四区| 制服人妻中文乱码| 亚洲男人天堂网一区| 久久午夜综合久久蜜桃| 99热只有精品国产| 淫妇啪啪啪对白视频| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 美女午夜性视频免费| www国产在线视频色| 色在线成人网| 欧美中文日本在线观看视频| 美女大奶头视频| www国产在线视频色| 天天躁狠狠躁夜夜躁狠狠躁| 精品日产1卡2卡| av中文乱码字幕在线| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 性欧美人与动物交配| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 亚洲片人在线观看| 成人影院久久| 亚洲久久久国产精品| 精品第一国产精品| 亚洲熟妇熟女久久| 丁香六月欧美| 亚洲狠狠婷婷综合久久图片| 欧美人与性动交α欧美软件| 在线看a的网站| 亚洲中文日韩欧美视频| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区91| www日本在线高清视频| а√天堂www在线а√下载| 女性被躁到高潮视频| 亚洲aⅴ乱码一区二区在线播放 | 免费高清在线观看日韩| 女警被强在线播放| 可以免费在线观看a视频的电影网站| 亚洲欧美精品综合一区二区三区| 久久久水蜜桃国产精品网| 久久草成人影院| 亚洲av五月六月丁香网| 天堂动漫精品| 成人亚洲精品av一区二区 | 久久精品国产亚洲av高清一级| 国产高清videossex| 国产xxxxx性猛交| 天天添夜夜摸| 欧洲精品卡2卡3卡4卡5卡区| 麻豆一二三区av精品| 午夜福利欧美成人| 99精品久久久久人妻精品| 在线十欧美十亚洲十日本专区| 91麻豆精品激情在线观看国产 | 国产伦一二天堂av在线观看| 无限看片的www在线观看| 亚洲美女黄片视频| 青草久久国产| www日本在线高清视频| 一个人免费在线观看的高清视频| 黑人猛操日本美女一级片| 999久久久国产精品视频| 麻豆av在线久日| 好看av亚洲va欧美ⅴa在| 老汉色av国产亚洲站长工具| 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 真人一进一出gif抽搐免费| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 女性被躁到高潮视频| 亚洲人成77777在线视频| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 国产成人一区二区三区免费视频网站| 精品国产亚洲在线| 在线看a的网站| 黑人操中国人逼视频| av有码第一页| 黄色a级毛片大全视频| 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费 | 长腿黑丝高跟| 91九色精品人成在线观看| 狠狠狠狠99中文字幕| 老司机在亚洲福利影院| 久久午夜亚洲精品久久| 97碰自拍视频| 久久久国产一区二区| 黄色女人牲交| 亚洲色图综合在线观看| 91成年电影在线观看| 高清欧美精品videossex| av网站免费在线观看视频| 久久香蕉精品热| 一级作爱视频免费观看| 日韩成人在线观看一区二区三区| 法律面前人人平等表现在哪些方面| a级片在线免费高清观看视频| 我的亚洲天堂| 亚洲狠狠婷婷综合久久图片| 9热在线视频观看99| 亚洲人成电影观看| 97碰自拍视频| 熟女少妇亚洲综合色aaa.| 国产精品免费一区二区三区在线| 看片在线看免费视频| 日本免费a在线| 在线观看66精品国产| 两性夫妻黄色片| 韩国精品一区二区三区| 欧美另类亚洲清纯唯美| 99国产精品免费福利视频| 9191精品国产免费久久| 一级片免费观看大全| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| 中文字幕另类日韩欧美亚洲嫩草| 香蕉久久夜色| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产 | 天天添夜夜摸| 水蜜桃什么品种好| 中文字幕人妻熟女乱码| 美女大奶头视频| 搡老乐熟女国产| 国产一区二区在线av高清观看| 久久精品亚洲精品国产色婷小说| 这个男人来自地球电影免费观看| 亚洲 国产 在线| 成人三级做爰电影| 亚洲精品美女久久久久99蜜臀| 欧美日韩国产mv在线观看视频| 国产精品久久久久久人妻精品电影| 热re99久久精品国产66热6| 性少妇av在线| 精品人妻在线不人妻| 午夜免费鲁丝| 国产伦人伦偷精品视频| 国产精品亚洲一级av第二区| 久久这里只有精品19| av欧美777| 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文字幕日韩| 日本一区二区免费在线视频| 国产xxxxx性猛交| 精品久久久久久久久久免费视频 | 亚洲 欧美一区二区三区| 极品教师在线免费播放| 少妇的丰满在线观看| 黄片小视频在线播放| 9191精品国产免费久久| 中国美女看黄片| 嫩草影视91久久| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 久久精品亚洲熟妇少妇任你| 国产av又大| 村上凉子中文字幕在线| 9色porny在线观看| 少妇裸体淫交视频免费看高清 | av网站免费在线观看视频| 丝袜在线中文字幕| 精品午夜福利视频在线观看一区| 国产成年人精品一区二区 | 18禁裸乳无遮挡免费网站照片 | 国产免费男女视频| 两性夫妻黄色片| 精品久久久久久,| 久久热在线av| 日本免费a在线| 久久久久久免费高清国产稀缺| 国产97色在线日韩免费| 岛国视频午夜一区免费看| 香蕉久久夜色| 成人手机av| www.自偷自拍.com| 午夜久久久在线观看| 99在线人妻在线中文字幕| 欧美精品啪啪一区二区三区| 久久香蕉激情| 精品一品国产午夜福利视频| 国产激情欧美一区二区| 最近最新中文字幕大全免费视频| 99久久久亚洲精品蜜臀av| 精品久久蜜臀av无| 99在线人妻在线中文字幕| 又黄又爽又免费观看的视频| 免费在线观看黄色视频的| 国产又色又爽无遮挡免费看| 国产成人免费无遮挡视频| 精品福利永久在线观看| 成人国产一区最新在线观看| 国产av一区在线观看免费| 久久久精品欧美日韩精品| 在线观看66精品国产| aaaaa片日本免费| 宅男免费午夜| 亚洲自偷自拍图片 自拍| tocl精华| 在线观看一区二区三区| av国产精品久久久久影院| 精品福利永久在线观看| 日韩精品青青久久久久久| 正在播放国产对白刺激| 国产精品自产拍在线观看55亚洲| 亚洲熟女毛片儿| 国产单亲对白刺激| 欧美日本中文国产一区发布| 97人妻天天添夜夜摸| 久久这里只有精品19| 国产一卡二卡三卡精品| 欧美人与性动交α欧美软件| 69精品国产乱码久久久| 婷婷六月久久综合丁香| 欧美日韩国产mv在线观看视频| 国产精品偷伦视频观看了| 天天影视国产精品| 国产精品电影一区二区三区| 色精品久久人妻99蜜桃| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| а√天堂www在线а√下载| 日韩免费av在线播放| 伦理电影免费视频| 中文字幕人妻丝袜制服| 午夜视频精品福利| 男女高潮啪啪啪动态图| 亚洲九九香蕉| 悠悠久久av| 国产激情久久老熟女| 淫秽高清视频在线观看| 激情视频va一区二区三区| 成熟少妇高潮喷水视频| 国产精品爽爽va在线观看网站 | 人人澡人人妻人| 亚洲aⅴ乱码一区二区在线播放 | 国产精品 欧美亚洲| 99精国产麻豆久久婷婷| 热re99久久精品国产66热6| 久久久国产一区二区| 国产一区二区三区在线臀色熟女 | 日韩一卡2卡3卡4卡2021年| 亚洲男人天堂网一区| 曰老女人黄片| 操美女的视频在线观看| 91精品三级在线观看| 欧美精品亚洲一区二区| 久久久久久亚洲精品国产蜜桃av| 深夜精品福利| 水蜜桃什么品种好| 女人被狂操c到高潮| 国产精品九九99| 亚洲五月色婷婷综合| 中出人妻视频一区二区| 午夜福利免费观看在线| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 午夜福利在线免费观看网站| 激情视频va一区二区三区| 午夜久久久在线观看| 叶爱在线成人免费视频播放|