• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Group of Automorphisms of Total Orthogonal Graphs of Odd Characteristic

    2019-03-30 08:20:48GENGTianzhen耿天真MAXiaobin馬曉玢
    應(yīng)用數(shù)學(xué) 2019年2期
    關(guān)鍵詞:天真

    GENG Tianzhen(耿天真),MA Xiaobin(馬曉玢)

    (School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232000,China)

    Abstract: Let Fnq be the n-dimensional row vector space over a finite field Fq of odd characteristic,and let Sn be a non-singular n×n symmetric matrix over Fq.The total orthogonal graph O(Sn,q) with respect to Sn is defined to be the graph with vertices of all 1-dimensional subspace of Fnq ,two vertices [α] and [β] are adjacent if and only if αSnβT≠ 0.The three types of isotropic orthogonal graphs studied in [3] are induced subgraphs of O(Sn;q) with vertices of all isotropic lines.In this paper,the automorphism group of O(Sn,q) is determined.Not like the case of isotopic orthogonal graph studied in[3] (where the graph is vertex transitive),it turns out that the vertex set of O(Sn,q) has three orbits if n is odd,and it has only two orbits if n is even.

    Key words: Orthogonal graph;Graph automorphism;Transitivity

    1.Introduction

    Recently,some graphs based on geometry of classical groups have attracted more attention.We now list some papers concerning with such graphs.TANG and WAN[9]studied the symplectic graph over an arbitrary finite field and determined the full automorphism group.LI and WANG[6]further showed that the subconstituents of the symplectic graph are strictly Deza graphs except the trivial case whenυ= 2.Meemark and Prinyasart[8]introduced the symplectic graphSp(2υ,Zpn) and showed that it is strongly regular whenυ= 1 and it is arc transitive whenpis an odd prime.LI et al.[5]continued the research onSp(2υ,Zpn),showing thatSp(2υ,Zpn) is arc transitive for any primep,and it is a strictly Deza graph ifυ ≥2 andn ≥2.GU and WAN[2]studied the subconstituents of the symplectic graphs modulopn.WAN and ZHOU[11?12]studied the(isotropic)unitary graphs and the(isotropic)orthogonal graphs of Characteristic 2.We here particularly mention [3] due to GU,which seems much related to our topic.Forn=2υor 2υ+1 or 2υ+2,GU[3]defined the(isotropic)orthogonal graphO(n,q) with respect to a symmetric matrixoverFq,where ?=?or ?=1 or ?=diag{1,?z},in such a way: the vertex set of the graph is all isotropic lines ofFnq,two isotropic lines[α]and[β]are adjacent if and only ifαHβT≠0.GU[3]showed thatO(n,q) is strongly regular forυ ≥2,and determined the group of automorphisms ofO(n,q).By the automorphism group of the graph it is easy to see thatO(n,q) is vertex transitive and edge transitive.For more results about the graphs based on geometry of classical groups the reader may refer to [4,7,13].

    One might find that the vertex set of the graphs introduced in [2-9,11-13] are taken to be isotropic lines,or sometimes totally isotropic subspaces of the space in question.In this paper,we shall use all 1-dimensional subspace (isotropic or not) of a orthogonal space to define a new graph,which includes the isotropic orthogonal graph as an induced subgraph.The vertex set of the graph chosen in such a way seems much natural.Indeed,the vertex set of the earliest graph studied by TANG and WAN,i.e.,the symplectic graph,is taken to be all 1-dimensional subspace (although,it can be also viewed consisting of all isotropic lines).

    LetFqbe a finite field withqelements,whereqis a power of an odd primepandn ≥2 be an integer.LetFnq={(a1,a2,...,an) :ai ∈Fq}be then-dimensional row vector space overFq.Denote byei(1≤i ≤n)the row vector inFnqwhoseith coordinate is 1 and all others are 0.For a nonzero vectorα=(a1,...,an)∈Fnq,let [α] denote the 1-dimensional subspace ofFnqspanned byα.Sometimes,[α] = [(a1,...,an)] is directly written as [a1,...,an] for simplicity.Since,[α] = [kα] for anyk ∈F?q=Fq {0},the representation of a vertex in the form [α] is not unique.However if we write the vertex in the form [a1,a2,...,an] such that the first (from left) nonzero coordinate is 1,then the representation is unique.A vertex[a1,a2,...,an] written in such way is said with standard form.

    For ann×nmatrixM,we denote byMTand|M|the transpose and the determinant ofM,respectively.LetGbe the subgroup ofF?qof all square elements.The index ofGinF?qis 2.ThusF?qis exactly a disjoint union ofGandzG,wherezis an arbitrarily given non-square element inFq.Let (α,β)=αSnβTbe a non-degenerate symmetric bilinear form defined onFnqwith respect to a non-singularn×nsymmetric matrixSnoverFq.A vectorαis called isotropic if (α,α) = 0,otherwise,it is called non-isotropic.If a subspace ofFnqconsists of isotopic vectors,it is said to be total isotropic.

    We now define the so-called total orthogonal graphO(Sn,q),with respect to a nonsingularn×nsymmetric matrixSnoverFqin such a way: the vertex set is taken to be all 1-dimensional subspaces (or lines) ofFnq,two lines [α] and [β] are adjacent if and only if (α,β)≠0.Obviously,O(Sn,q) is not a simple graph since for a non-isotropic line [α],[α]~[α].By Theorem 1.23 in[10]we know that ann×nnonsingular symmetric matrix overFqis congruent to diag(In?1,θ),whereIn?1refers to the identity matrix of ordern ?1,andθ= 1 orθ=z.If two non-singular symmetric matricesSnandHnare congruent,that is,Sn=PHnPTfor an invertible matrixP,thenO(Sn,q) is isomorphic toO(Hn,q) under the mapping [α][αP],?[α]∈V(O(Sn,q)).In view of this point,we will directly assume thatSn=InorSn=diag(In?1,z),withza fixed non-square element ofFq.

    A similar discussion as Theorem 2.1 in [9] shows thatO(Sn,q) is also a strongly regular graph with parameters

    In this paper,the automorphism group ofO(Sn,q) is determined,and the partition ofV(O(Sn,q)) as the union of different orbits is done.

    Remark 1.1(i)The three types of isotropic orthogonal graphs studied in[3]are induced subgraphs ofO(Sn,q) with vertices of all isotropic lines.

    (ii) For certain unknown reasons,the case when ?is a non-square element ofFqis left by [3] without consideration.However,the orthogonal graphs studied in this paper cover all cases,especially the case whenSnis congruent towhich is left without consideration in [3].

    2.Automorphisms of O(Sn,q)

    In this section,we determine the automorphism group,denoted by Aut(O(Sn,q)),ofO(Sn,q).Some standard automorphisms are constructed firstly.Based on them every automorphism ofO(Sn,q) is described explicitly.Alln×ninvertible matrices overFqforms a group with respect to matrix multiplication,which is called the general linear group of degreenoverFqand is denoted by GLn(Fq).

    LetP ∈GLn(Fq).We defineσP:V(O(Sn,q))→V(O(Sn,q)) by [α][αP].Then using a similar proof as that of Proposition 3.1 in [3] we obtain:

    Lemma 2.11) LetP ∈GLn(Fq).ThenσPis an automorphism ofO(Sn,q) if and only if PSPT=kSfor somek ∈F?q.

    2) ForP1,P2∈GLn(Fq),σP1=σP2if and only ifP1=kP2for somek ∈F?q.

    IfP ∈GLn(Fq) satisfiesPSnPT=kSnfor somek ∈F?qwe callPa generalized orthogonal matrix.All generalized orthogonal matrices of ordernwith respect toSnforms a subgroup of GLn(Fq),called the generalized orthogonal group of degreenoverFqand denoted by GOn(Fq).The center of GOn(Fq) consists of allkEnwithk ∈F?q.The factor group of GOn(Fq) with respect to its center is called the projective generalized orthogonal group of degreenoverFqand is denoted by PGOn(Fq).According to Lemma 2.1,PGOn(Fq) can be viewed as a subgroup of Aut(O(Sn,q)).

    Letn= 2,and supposeπis a bijective mapping onFqsatisfyingπ(?x?1θ?1) =?θ?1π(x)?1for anyx ∈F?qandπ(0) = 0.DefineσπfromV(O(S2,q)) to itself by sending each vertex [a1,a2],with the standard form,to [a1,π(a2)].

    Lemma 2.2σπis an automorphism ofO(S2,q).

    ProofEach vertex [α] is written in the standard form.Obviously,σπis a bijective mapping onV(O(S2,q)).Suppose that [α] = [a1,a2][b1,b2] = [β].Equivalently,a1b1+θa2b2= 0.Ifa1= 0,thena2=b1= 1 andb2= 0.Clearly,σπ([α])σπ([β]).Ifb1= 0,the result is similar.Now suppose that botha1andb1are 1.Thusb2=?θ?1a?12.By the hypothesis forπ,we haveπ(b2) =π(?θ?1a?12) =?θ?1π(a2)?1,which follows that 1+π(a2)π(b2)θ= 0,showing thatσπ([α])σπ([β]).Consequently,[α][β]?σπ([α])σπ([β]).It follows thatd(σπ([α]))≤d([α])for any vertex[α],whered([α])denotes the degree of [α].By

    we haved(σπ([α]))=d([α]) for any vertex [α].Then we conclude that [α]~[β]?σπ([α])~σπ([β]).Thus,σπis an automorphism.

    Remark 2.1The bijective mappingπonFq,for whichπ(?x?1θ?1)=?θ?1π(x)?1andπ(0)=0,needs not to be an automorphism ofFq.For example,letFqbe the field Z/3Z,and letθ=.Defineπon Z/3Z by fixing,permutingand.Thenπ(?x?1) =?π(x)?1forx=1 and 2.But clearly,πis not an automorphism of Z/3Z.

    Forn ≥3,letπbe an automorphism of the fieldFqand letSn= diag(In?1,θ) withθ= 1 orz.Ifθ=z,thenπ(z)/∈F2qandz?1π(z)∈F2q.Supposer ∈F?qsuch thatπ(z) =zr2.Lety=rifθ=z,and lety= 1 ifθ= 1.Then,π(θ) =θy2.Defineσπ,y:V(O(Sn,q))→V(O(Sn,q)) by

    where [a1,a2,...,an] is written in the standard form.

    Lemma 2.3σπ,yis an automorphism ofO(Sn,q).

    ProofObviously,σπ,yis a bijective mapping onV(O(Sn,q)).The following derivation shows thatσπ,ypreserves adjacency relation of vertices in both directions.

    Hence,σπ,yis an automorphism ofO(Sn,q).

    Letω= (w1,w2,...,wn)∈ Fnq,wherew2i= 1 for eachiandw1= 1.We defineσωfromV(O(Sn,q)) to itself by sending any [a1,a2,...,an],with standard form,to[w1a1,w2a2,...,wnan].

    Lemma 2.4σωis an automorphism ofO(Sn,q).

    ProofObviously,σωis a bijective mapping onV(O(Sn,q)).The procedure

    shows thatσωpreserves adjacency relation of vertices in both directions.Thus the result follows.

    With the known automorphisms in hands,we now describe every automorphism ofO(Sn,q).Letn ≥3 and let a ={α1,α2,...,αn}be a non-isotropic orthogonal basis ofFnq,and suppose that (αi,αi) =a≠ 0 fori= 1,2,...,n ?1 and (αn,αn) =b≠ 0.Letσbe an automorphism ofO(Sn,q).Assumeσ([αi]) = [βi],and assume (βi,βi) =ci.Thenci≠0 fori= 1,2,...,nand (βi,βj) = 0 fori≠j.Namely,{β1,β2,...,βn}also forms a non-isotropic orthogonal basis ofFnq.For a nonzero vectorsuppose thatIt is easy to see thatbi≠0 if and only ifai≠0.Indeed,ifai≠0,then [α]~[αi].Applyingσ,we havewhich leads tobici≠0.Thusbi≠0.Similarly,bi≠0 impliesai≠0.Sinceσis a bijection fromV(O(Sn,q)) to itself,we define permutationsπi,i=2,3,...,nonFqsuch that

    It seems more accurate if one likes to use the symbolπi,σ,ainstead ofπi,as the definition ofπidepends onσand a.

    Next,we useπito characterizeσand give some properties forπiandci.

    Lemma 2.5(i){β1,β2,...,βn}forms a non-isotropic orthogonal basis ofFnq;

    Proof(i) was proved just before this lemma.Assume thatσ([α1+n i=2aiαi]) =Denotebyα,andTo complete the proof of (ii) we need to show thatbi=πi(ai) for eachi ≥2.The case whenai= 0 is trivial.Assume thatai≠0.For the case when 2≤i ≤n ?1,bywe havewhich follows thatThus

    On the other hand,by applyingσtowe havewhich leads to

    Comparing (2.1) and (2.2),we havebi=πi(ai).Next,we consider the case wheni=n.Applyingσto [α][α1?ab?1a?1n αn],we obtain [β][β1+πn(?ab?1a?1n)βn],which follows thatc1+bnπn(?ab?1a?1n)cn=0.Thus

    On the other hand,by applyingσto[α1+anαn][α1?ab?1a?1n αn]we have[β1+πn(an)βn][β1+πn(?ab?1a?1n)βn],which follows that

    Comparing (2.3) and (2.4),we also havebn=πn(an).The discussions above say that for anya2,a3,...,an ∈Fq,

    This completes the proof of (ii).

    Let 2≤i ≤n ?1 and denoteαi+ai+1αi+1+...+anαnalso byα.Assume that

    To complete the proof of (iii) we need to show thatb′j=c?11ciπi(1)πj(aj) fori+1≤j ≤n.Denoteβi+b′i+1βi+1+...+b′nβnalso byβ.For the case wheni+1≤j ≤n ?1,applyingσto [α][α1+αi ?a?1j αj] we have

    which leads to

    Following from (2.2) and (2.6),we obtainb′j=c?11ciπi(1)πj(aj).For the case whenj=n,applyingσto [α][α1+αi ?ab?1a?1n αj] we have

    which leads to

    From (2.4) and (2.7) we obtainb′n=c?11ciπi(1)πn(an).Thus,

    withqi=c?11ciπi(1),which completes the proof of (iii).

    Now we are in a position to complete the proof of (iv).Considering the action ofσon[α2+αn][α2?ab?1αn],we have

    which follows that

    Applyingσto [α1+α2+αn][α2?ab?1αn] we have

    leading to

    Comparing (2.9) and (2.10),we have that

    Applyingσto [α1+α2][α1?α2] we have

    which implies that

    From (2.11) and (2.12) we have

    Ifn=3,then the proof of(iv)is completed.Ifn ≥4,applyingσto[α1?α2+αj][α2+αj]for 3≤j ≤n ?1,we have

    which shows that

    Recalling thatπ2(?1)=?π2(1),we obtain

    On the other hand,the action ofσon [α1+α2+αj][α2?αj] leads to

    showing that

    (2.15) and (2.16) imply that

    The first assertion of (iv) is confirmed by (2.13) together with (2.17),and the second one is confirmed by (2.11) together with (2.15).

    For the proof of (v),considering the action ofσon [α1?α2+αn][α2+ab?1αn],we have

    which implies that

    Comparing (2.10) with (2.19),we have

    The proof of (v) is completed.

    Lemma 2.6Letσ,a,b,πibe defined as in Lemma 2.3.Ifσ([αi])=[αi] for all values ofi,then the following assertions hold.

    ProofBy (iv) of Lemma 2.3,assertion (i) of this lemma is obvious.

    Forx ∈Fqand 2≤j ≤n ?1,applyingσto [α1+xα2+xαj][α2?αj],we have[α1+π2(x)α2+πj(x)αj][α2+π2(1)πj(?1)αj],which leads toπ2(x) =π2(1)πj(1)πj(x).Sinceπj(1)2=1,we have

    For the case whenj=n,applyingσto [α1+xα2+xαn][α2?ab?1αn],we have [α1+π2(x)α2+πn(x)αn][α2+π2(1)πn(?ab?1)αn],which leads to

    By takingx=1,(2.22) becomes

    Substituting this equation into (2.22),we have that

    (2.21) and (2.24) together confirm (ii).

    Now we prove (iii).Ifxy=0,the result is obvious.Suppose thatxy≠0.By [α1+α2+ab?1xαn][α2?x?1αn] we have [α1+π2(1)α2+πn(ab?1x)αn][α2+π2(1)πn(?x?1)αn],which follows that

    Applyingσto [α1+xyα2+yαn][α2?ab?1xαn] we have that

    which implies that

    Substituting (2.25) into (2.26),we obtain

    Multiplying two sides of (2.27) byπ2(1) and using the result of (ii),we have

    Replacingywithxy,andxwithx?1,then we have

    Multiplying two sides of (2.29) byπj(1)2and using the result of (ii),we have

    By (2.30),we easily obtain

    The proof of (iii) is completed.

    For the proof of (iv),the case wheny=0 is trivial.Suppose thaty≠0.Applyingσto[α1?(x+y)α2+xαn][α1+y?1α2+ab?1y?1αn] we have

    which leads toa ?π2(x+y)π2(y?1)a+πn(x)πn(ab?1y?1)b=0.Or equivalently,

    Multiplying two sides of (2.32) byπn(1),we have

    By(iii)of this lemma and(v)of Lemma 2.5,πn(y)πn(ab?1y?1)a?1b=πn(ab?1)πn(1)a?1b=1.Thus (2.33) becomes

    By multiplying two sides of (2.34) byπ2(1),it follows that

    Finally,multiplying two sides of (2.35) byπj(1),we have

    The proof of (iv) is completed.

    It follows from (v) of Lemma 2.5 thatab?1=πn(1)πn(ab?1).(iii) of this lemma shows thatπn(ab?1)=πn(a?1b)?1πn(1)2.Consequently,πn(a?1b)=a?1b·πn(1)3.

    Now,we are in position to announce the main result of this paper.

    Theorem 2.1(i) Ifn= 2,thenσis an automorphism ofO(S2,q) if and only if there exists someK ∈GOn(Fq) and a bijective mappingπonFq,fixing 0 and satisfyingπ(?x?1θ?1)=?θ?1π(x)?1,such thatσ=σK ·σπ.

    (ii) Ifn ≥3,thenσis an automorphism ofO(Sn,q) if and only ifσ=σK ·σω ·σπ,y,whereπis an automorphism of the fieldFqsuch thatπ(θ)=y2θ,ω=(w1,w2,...,wn)∈Fnqwithw2i=1,K ∈GOn(Fq).

    ProofLetn= 2.Lemma 2.1 and 2.2 together confirm the sufficiency of (i).For necessity,letσbe an automorphism ofO(S2,q),and assumeσ([ei])=[fi] fori=1,2.Let

    ThenKS2KT= diag(c1,c2),whereci= (fi,fi) =fiS2fTi.Ifθ=z,we havez|K|2=c1c2.Thus only one ofciis a square element,sayc1.By replacingfiwith suitable multiple we may assume thatc1=1 andc2=z.Thus,KS2KT=S2,showing thatK,K?1∈GOn(Fq).ThusσKandσK?1are automorphisms ofO(S2,q).FromKK?1=I2,it follows thatfiK?1=ei.Thus,(σK?1·σ)([ei]) =σK?1([fi]) = [fiK?1] = [ei] fori= 1,2.Ifc2is a square element,similarly,by replacingfiwith suitable multiple we may assume thatc1=zandc2=z2.ByKS2KT=zS2,we also haveK,K?1∈GO2(Fq).Similarly,we know thatσK?1·σfixes [e1]and [e2].Ifθ= 1,by similar discussions as above,we can choose someK ∈GOn(Fq) such that (σK?1·σ)([ei])=[ei] fori=1,2.The procedure is omitted.

    Now,letσ1=σK?1·σ.For [α] = [1,x]∈V(O(S2,q)),the first coordinate ofσ1([α])cannot be zero sinceσ1fixes[e1].Thus,we can define a mappingπonFqsuch thatσ1([1,x])=[1,π(x)].Obviously,πis bijective andπ(0) = 0.Forx≠ 0,by applyingσ1to [1,x][1,?x?1θ?1],we have [1,π(x)][1,π(?x?1θ?1)],which leads to 1+θπ(x)π(?x?1θ?1) = 0,showing thatπ(?x?1θ?1) =?θ?1π(x)?1.Thusπcan be used to define the automorphismσπofO(S2,q).Clearly,σ1([α])=σπ([α]) for each [α]∈V(O(S2,q)),with the standard form.Finally,we haveσ1=σπandσ=σK ·σπ.

    For the proof of (ii),sufficiency is obvious.Now we consider necessity.Letσbe an automorphism ofO(Sn,q).Obviously,(ei,ei) =eiSeTi= 1 fori= 1,2,...,n ?1,(en,en) =enSeTn=θand (ei,ej) = 0 fori≠j.Thus,a ={e1,e2,...,en}forms a non-isotropic orthogonal basis ofFnq.Assume thatσ([ei])=[fi] and (fi,fi)=ci.Let

    ThenKSKT= diag(c1,c2,...,cn).As what we did just before Lemma 2.3,we define the permutationsπi(i=2,3,...,n),with respect toσand a,onFqsuch that

    By Lemma 2.3,we havecj=c1πj(1)?2forj=2,3,...,n ?1,andcn=c1πn(1)?1πn(θ?1)?1.

    Setπ1(1)=1 andπ1(0)=0.Letfi′=πi(1)fifori=1,2,...,n,and let

    Then we also haveσ([ei])=[f′i],however

    For simplity,f′iis also written asfiandK1is also written asK.

    Now we consider the case whenθ= 1.ThenS=InandKKT=c1In.ThusK,K?1∈GOn(Fq),andσK,σK?1∈Aut(O(Sn,q)).It follows fromKK?1=InthatfiK?1=eifori=1,2,...,n.Thus,(σK?1·σ)([ei])=σK?1([fi])=[fiK?1]=[ei]for eachi.DenoteσK?1·σbyσ1.Thenσ1fixes each [ei].Define permutationsπi,with respect toσ1and a,onFqsuch that

    Let 0≠α ∈Fnq.We write [α] in the standard form [α]=[a1,a2,...,an].Then by using (ii)and (iii) of Lemma 2.3 and recalling thatπi(1)2=1 for 1≤i ≤n,we have

    DefineπonFqbyπ(x) =π2(1)?1π2(x) forx ∈Fq.Sinceπi(1)?1πi(x) =π2(1)?1π2(x) fori= 3,4,...,n,we knowπ=πi(1)?1πifor eachi(≥2).By (iii) and (iv) of Lemma 2.6,it is easy to see thatπ(xy)=π(x)π(y) andπ(x+y)=π(x)+π(y) for allx,y ∈Fq,showing thatπis an automorphism ofFq.Now,(2.37) becomes

    Letω=(π1(1),π2(1),...,πn(1)).Sinceπi(1)2=1 for eachi(thanks to(iv)and(v)of Lemma 2.3),we can useωto define the automorphismσωofO(Sn,q).Now,

    This equation shows thatσω·σ1=σπ,1.Finally,we haveσ=σK ·σω·σπ,1.

    For the left caseθ=z(a fixed non-square element inFq),KSKT=diag(c1,c1,...,c1θ1)withθ1=πn(1)πn(z?1)?1.We claim thatθ1cannot be a square element.Otherwise,sayθ1=r2.By replacingfnwithr?1fn,we haveKSKT=diag(c1,c1,...,c1).Thus(fi,fi)=c1for alli.Sinceσ?1([fi])=[ei] for eachi,applying (v) of Lemma 2.3 toσ?1(viewingfiasαiand viewingeiasβi),we have that 1=(e1,e1)=(en,en)πn(1)2=zπn(1)2,absurd.So we may assume thatθ1=zs2.Replacingfnbys?1fn,we have thatKSKT=diag(c1,c1,...,c1z)=c1S.ThusK?1is a generalized orthogonal matrix.UsingK?1we define the automorphismσK?1onO(Sn,q) and denoteσK?1· σbyσ1.Similar as the case whenθ= 1,we haveσ1([ei])=σK?1([fi])=[fiK?1]=[ei] for eachi.

    Define permutationsπi,with respect toσ1and a,onFqsuch that

    Then by (ii) and (iii) of Lemma 2.3,

    for [α]∈V(O(Sn,q)) with standard form,whereπ1fixes 1 and 0.DefineπonFqbyπ(x)=π2(1)?1π2(x)forx ∈Fq.Also,πis an automorphism ofFq,andπ=πi(1)?1πifor eachi(≥2).Now,(2.39) becomes

    Letω=(π1(1),π2(1),...,πn?1(1),1).By(i)of Lemma 2.4,πi(1)2=1 for each 1≤i ≤n?1.So we can useωto construct the automorphismσωofO(Sn,q).Then

    Lety=πn(1).(v) of Lemma 2.4 shows thatπ(z) =πn(1)?1πn(z) =y2z.Thus we can useπandyto define the automorphismσπ,yofO(Sn,q).It is easy to see thatσω ·σ1=σπ,y.Finally,σ=σK ·σω·σπ,y,as desired.

    3.Orbits Partition of V(O(Sn,q)) Under the Automorphisms

    The study of orbits partition ofV(O(Sn,q)) needs an elementary lemma on GOn(Fq).

    Lemma 3.1LetSn= diag(In?1,θ) withθ= 1 orz.Ifnis odd,then for eachK ∈GOn(Fq) withKSnKT=kSn,kmust be a square element.Ifnis even,then there existsK ∈GOn(Fq) such thatKSnKT=zSn.

    ProofLetnbe odd,and supposeK ∈GOn(Fq) such thatKSnKT=kSn.Thenθ|K|2=knθ,showing thatkn=|K|2,andkis a square element.Now,assume thatnis even.A well known result about finite fields is that the equationX2+Y2=zhas solutions inFq.Suppose thata,b ∈Fqsuch thata2+b2=z.Ifθ=1,for 1≤2k+1<2k+2≤n,set

    Ifθ=z,we set

    for 1≤2k+1<2k+2≤n ?2,and setfn?1=en,fn=zen?1.Let

    Then,we haveQSnQT=zSn.LetV0be the subset ofV(O(Sn,q)) of all isotropic lines and let

    where (F?q)2refers the set of all non-zero square element ofFq.

    Theorem 3.1Ifnis odd,thenV(O(Sn,q)) has three orbits,they areV0,V1andV2.Ifnis even,thenV(O(Sn,q)) has only two orbits,they areV0andV1∪V2.

    ProofFor [α],[β]∈V(O(Sn,q)),if they belong to the sameVi,then by replacingαwith its suitable multiple we may assume that (α,α) = (β,β).Using Lemma 6.8 in [10],we can find an orthogonal matrixQsuch thatαQ=β.ThusσQ([α]) = [β],showing that all elements lying in the sameVibelong to one orbit.If [α]∈V0,clearly,σ([α])∈V0for allσ ∈Aut(O(Sn,q)).It implies thatV0forms an orbit.

    Ifnis odd,we want to prove thatV2is stable under the action of Aut(O(Sn,q)).Let[α]=[a1,a2,...,an]∈V2(with the standard form),and letσbe an automorphism ofO(Sn,q).We consider the action ofσon[α].By Theorem 2.1,σcan be decomposed asσ=σK·σω·σπ,y,whereK ∈GOn(Fq) withKSnKT=kSn,ω= (w1,w2,...,wn)∈Fnqwithw1= 1 andw2i= 1,andπis an automorphism ofFqsatisfyingπ(θ) =θy2fory ∈Fq.Assume thatσ([α])=[β].Then,

    and

    Since (α,α)∈(F?q)2,it follows thatπ(α,α)∈(F?q)2.By Lemma 3.1,k ∈(F?q)2,thusσ([α])=[β]∈V2.It implies thatV2forms an orbit,which immediately follows thatV1forms an orbit.

    Ifnis even,by Lemma 3.1,we can chooseQ ∈GOn(Fq) such thatQSnQT=zSn.Then for [α]∈V2,we have [αQ]∈V1sinceαQSnQTαT=z(α,α)∈z(F?q)2.Consequently,σQ([α])=[αQ]∈V1.It follows thatV1∪V2forms an orbit.

    猜你喜歡
    天真
    彩墨渾成,天真自然
    天真真好
    天真組詩
    滇池(2022年5期)2022-04-30 21:44:36
    天真熱
    天真童年
    小讀者(2020年4期)2020-06-16 03:34:10
    雪天真快樂
    天真給你最美的夢
    雪天真快樂
    古淡天真之美——倪瓚《淡室詩》
    丹青少年(2017年1期)2018-01-31 02:28:21
    年啊年
    国产成人欧美在线观看| 欧美性猛交黑人性爽| 白带黄色成豆腐渣| 看十八女毛片水多多多| 成人特级黄色片久久久久久久| 久久精品91蜜桃| 999久久久精品免费观看国产| .国产精品久久| 亚洲va日本ⅴa欧美va伊人久久| 搞女人的毛片| 在线国产一区二区在线| 麻豆一二三区av精品| 日韩欧美在线乱码| 国产av麻豆久久久久久久| 波多野结衣巨乳人妻| 亚洲成av人片在线播放无| 国产探花极品一区二区| 内射极品少妇av片p| 国产毛片a区久久久久| 国产精品乱码一区二三区的特点| 中文字幕av在线有码专区| 老女人水多毛片| 观看免费一级毛片| 99久久精品一区二区三区| 熟妇人妻久久中文字幕3abv| 成人国产综合亚洲| 色5月婷婷丁香| 免费一级毛片在线播放高清视频| 国产大屁股一区二区在线视频| 人妻丰满熟妇av一区二区三区| 在线播放国产精品三级| 日韩欧美国产在线观看| 又黄又爽又刺激的免费视频.| 在线播放无遮挡| 午夜精品一区二区三区免费看| 欧美国产日韩亚洲一区| 久久精品国产亚洲av天美| 国产单亲对白刺激| 日本在线视频免费播放| 日本在线视频免费播放| 欧美国产日韩亚洲一区| www.熟女人妻精品国产| 最近最新中文字幕大全电影3| 中文在线观看免费www的网站| 国产伦精品一区二区三区四那| 又爽又黄无遮挡网站| 亚洲国产精品久久男人天堂| 中文字幕高清在线视频| 成人高潮视频无遮挡免费网站| 一区二区三区激情视频| 女同久久另类99精品国产91| av天堂中文字幕网| 免费av观看视频| 亚洲中文日韩欧美视频| 成年女人看的毛片在线观看| 日本黄色视频三级网站网址| 每晚都被弄得嗷嗷叫到高潮| 三级国产精品欧美在线观看| 国产毛片a区久久久久| 内射极品少妇av片p| 少妇的逼水好多| 91九色精品人成在线观看| 一个人看视频在线观看www免费| 91九色精品人成在线观看| 国产午夜精品论理片| 最近最新中文字幕大全电影3| 高清在线国产一区| 亚洲人成网站高清观看| 天堂av国产一区二区熟女人妻| 亚洲中文日韩欧美视频| 国产精品国产高清国产av| 免费av不卡在线播放| 免费av不卡在线播放| 亚洲色图av天堂| 三级男女做爰猛烈吃奶摸视频| 欧美+日韩+精品| 国产精品亚洲美女久久久| 两性午夜刺激爽爽歪歪视频在线观看| 免费看光身美女| 婷婷亚洲欧美| 欧美区成人在线视频| 亚洲第一区二区三区不卡| 999久久久精品免费观看国产| 精品人妻偷拍中文字幕| 色吧在线观看| or卡值多少钱| 蜜桃久久精品国产亚洲av| 日本 av在线| 欧美性猛交黑人性爽| xxxwww97欧美| 老司机深夜福利视频在线观看| 亚洲精品成人久久久久久| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 国产精品不卡视频一区二区 | 亚洲熟妇中文字幕五十中出| 美女 人体艺术 gogo| 亚洲午夜理论影院| 男女下面进入的视频免费午夜| av视频在线观看入口| 99热这里只有精品一区| 精品一区二区三区视频在线观看免费| a级毛片免费高清观看在线播放| 高清毛片免费观看视频网站| 免费人成在线观看视频色| 国产午夜福利久久久久久| 国产成年人精品一区二区| 欧美成狂野欧美在线观看| 免费观看精品视频网站| 男人舔奶头视频| 欧美日韩乱码在线| 国产精品永久免费网站| 国产午夜福利久久久久久| 长腿黑丝高跟| 国产视频内射| 成人高潮视频无遮挡免费网站| 黄色女人牲交| 久久久国产成人免费| 精品久久久久久久人妻蜜臀av| 欧美+亚洲+日韩+国产| 中文字幕熟女人妻在线| 久久草成人影院| 少妇熟女aⅴ在线视频| 久久精品久久久久久噜噜老黄 | 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 国产午夜精品久久久久久一区二区三区 | 一级作爱视频免费观看| 天天一区二区日本电影三级| 亚洲av.av天堂| 国产精品嫩草影院av在线观看 | 特级一级黄色大片| 久久中文看片网| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 亚洲av成人不卡在线观看播放网| 亚洲国产精品成人综合色| 中文字幕人妻熟人妻熟丝袜美| 精品国产亚洲在线| 噜噜噜噜噜久久久久久91| 免费看日本二区| 欧美不卡视频在线免费观看| 国产欧美日韩精品亚洲av| 欧美xxxx性猛交bbbb| 搞女人的毛片| 久久精品影院6| 久久久国产成人免费| 日日摸夜夜添夜夜添av毛片 | 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 久久久久久九九精品二区国产| 亚洲av电影在线进入| 欧美成人免费av一区二区三区| 婷婷亚洲欧美| 亚洲av日韩精品久久久久久密| 成年免费大片在线观看| 亚洲中文日韩欧美视频| 亚洲第一区二区三区不卡| 男女床上黄色一级片免费看| 五月玫瑰六月丁香| 深夜a级毛片| 国内揄拍国产精品人妻在线| 少妇丰满av| 亚洲av成人av| 在线观看美女被高潮喷水网站 | 国产麻豆成人av免费视频| 亚洲欧美精品综合久久99| 亚洲人成网站高清观看| 老司机深夜福利视频在线观看| 午夜两性在线视频| 自拍偷自拍亚洲精品老妇| 国产免费av片在线观看野外av| 亚洲性夜色夜夜综合| 亚洲精华国产精华精| 日韩有码中文字幕| 亚洲avbb在线观看| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 十八禁人妻一区二区| 脱女人内裤的视频| 日本与韩国留学比较| 免费搜索国产男女视频| 波多野结衣巨乳人妻| 精品久久久久久久久亚洲 | 乱码一卡2卡4卡精品| 每晚都被弄得嗷嗷叫到高潮| 中亚洲国语对白在线视频| 中文字幕久久专区| 精品国产三级普通话版| 欧美xxxx性猛交bbbb| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app | 日韩欧美一区二区三区在线观看| aaaaa片日本免费| 一个人看的www免费观看视频| 欧美黑人欧美精品刺激| 国产精品久久久久久久久免 | 99国产综合亚洲精品| 99热这里只有精品一区| 波多野结衣高清无吗| 亚洲欧美日韩卡通动漫| 看黄色毛片网站| 久久精品国产自在天天线| 久久性视频一级片| 国产亚洲精品av在线| 最新中文字幕久久久久| 国产成人av教育| 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 精品国产亚洲在线| 51午夜福利影视在线观看| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 91久久精品国产一区二区成人| 国产色婷婷99| 日韩中字成人| 久久久久性生活片| 国产一区二区三区视频了| 欧美日韩乱码在线| 看黄色毛片网站| 久久这里只有精品中国| 色视频www国产| 精品国产亚洲在线| 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 婷婷色综合大香蕉| bbb黄色大片| 黄色一级大片看看| 国产精品精品国产色婷婷| 午夜久久久久精精品| 精品一区二区三区人妻视频| 观看美女的网站| 99热这里只有是精品50| 国产野战对白在线观看| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 国产三级黄色录像| 亚洲精品乱码久久久v下载方式| 97碰自拍视频| 亚洲成av人片免费观看| 国产精品国产高清国产av| 国产精品三级大全| 国产又黄又爽又无遮挡在线| 国产伦精品一区二区三区视频9| 在线免费观看不下载黄p国产 | 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 波多野结衣高清作品| 国产成人欧美在线观看| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 国产激情偷乱视频一区二区| 亚洲av.av天堂| 国产日本99.免费观看| av福利片在线观看| 久久6这里有精品| 人人妻人人看人人澡| 久久亚洲精品不卡| 久久久国产成人精品二区| 精品一区二区三区视频在线观看免费| 两个人视频免费观看高清| 免费一级毛片在线播放高清视频| 国产成年人精品一区二区| 国产精品伦人一区二区| 91久久精品电影网| 亚洲av免费高清在线观看| 99国产精品一区二区三区| 长腿黑丝高跟| 成人美女网站在线观看视频| 国内揄拍国产精品人妻在线| 一级黄片播放器| 国语自产精品视频在线第100页| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 国产主播在线观看一区二区| 成年免费大片在线观看| 波野结衣二区三区在线| 超碰av人人做人人爽久久| 两人在一起打扑克的视频| 国产亚洲精品综合一区在线观看| 亚洲av美国av| 亚洲人与动物交配视频| 国产午夜精品论理片| 天堂√8在线中文| www.熟女人妻精品国产| eeuss影院久久| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 性插视频无遮挡在线免费观看| 韩国av一区二区三区四区| 草草在线视频免费看| 国产精品久久久久久久久免 | 国产精华一区二区三区| 国产精品98久久久久久宅男小说| 99国产精品一区二区蜜桃av| 欧美+日韩+精品| 久久精品综合一区二区三区| 国产精品野战在线观看| 天堂动漫精品| 国产色婷婷99| 五月玫瑰六月丁香| 国产色婷婷99| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 婷婷亚洲欧美| 亚洲av第一区精品v没综合| 午夜免费男女啪啪视频观看 | 少妇被粗大猛烈的视频| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 国内精品久久久久久久电影| 97碰自拍视频| 国产精品美女特级片免费视频播放器| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 国产伦一二天堂av在线观看| or卡值多少钱| 免费av观看视频| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 久久久久久久久大av| 特大巨黑吊av在线直播| avwww免费| 免费在线观看成人毛片| 男人舔奶头视频| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 午夜福利在线观看吧| 99国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 午夜日韩欧美国产| 成人特级av手机在线观看| av在线老鸭窝| 热99在线观看视频| 99热这里只有精品一区| 日本 av在线| 亚洲avbb在线观看| 久久亚洲精品不卡| 中文字幕免费在线视频6| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类 | 久久这里只有精品中国| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 亚洲男人的天堂狠狠| 最好的美女福利视频网| 国产精品亚洲av一区麻豆| 亚洲乱码一区二区免费版| 一进一出抽搐动态| 人妻夜夜爽99麻豆av| 十八禁人妻一区二区| 在线观看66精品国产| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 欧美zozozo另类| 成人国产综合亚洲| 性插视频无遮挡在线免费观看| 成人国产综合亚洲| 欧美xxxx黑人xx丫x性爽| 白带黄色成豆腐渣| 国产精品久久视频播放| 亚洲国产高清在线一区二区三| 中亚洲国语对白在线视频| av福利片在线观看| 一本久久中文字幕| 国产午夜福利久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品成人综合色| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 老鸭窝网址在线观看| h日本视频在线播放| 国产精品久久久久久人妻精品电影| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 国产成+人综合+亚洲专区| 深爱激情五月婷婷| 老司机深夜福利视频在线观看| 51午夜福利影视在线观看| 免费看光身美女| 最近中文字幕高清免费大全6 | 亚洲国产高清在线一区二区三| www.www免费av| 免费av不卡在线播放| av视频在线观看入口| 国产白丝娇喘喷水9色精品| 一个人观看的视频www高清免费观看| 成年版毛片免费区| 性色avwww在线观看| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 两个人的视频大全免费| aaaaa片日本免费| 精品人妻1区二区| 很黄的视频免费| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲人成网站在线播| 婷婷色综合大香蕉| 在线播放国产精品三级| 久久人人爽人人爽人人片va | 黄色女人牲交| 99久久成人亚洲精品观看| 岛国在线免费视频观看| av欧美777| 精品国产三级普通话版| 在线免费观看不下载黄p国产 | 麻豆成人av在线观看| 中文字幕熟女人妻在线| 欧美成人免费av一区二区三区| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 露出奶头的视频| 亚洲成av人片免费观看| 日韩欧美在线乱码| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 欧美日韩中文字幕国产精品一区二区三区| 欧美国产日韩亚洲一区| 亚洲中文字幕日韩| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 国产精品一区二区性色av| 亚洲国产欧洲综合997久久,| 国产乱人伦免费视频| 国产精品女同一区二区软件 | 久久久久亚洲av毛片大全| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 狠狠狠狠99中文字幕| 国产精品亚洲美女久久久| 欧美一区二区国产精品久久精品| 中文字幕高清在线视频| 亚洲无线在线观看| 午夜免费男女啪啪视频观看 | 少妇丰满av| 国产v大片淫在线免费观看| 色av中文字幕| 成年女人毛片免费观看观看9| 久久国产精品人妻蜜桃| 中文资源天堂在线| 波多野结衣巨乳人妻| 色尼玛亚洲综合影院| 亚洲第一欧美日韩一区二区三区| 亚洲精品456在线播放app | 极品教师在线免费播放| 最后的刺客免费高清国语| 18+在线观看网站| 90打野战视频偷拍视频| 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 赤兔流量卡办理| 亚洲熟妇中文字幕五十中出| 看免费av毛片| 国产精品三级大全| 看黄色毛片网站| or卡值多少钱| 亚洲一区二区三区不卡视频| 俄罗斯特黄特色一大片| 日本熟妇午夜| 性插视频无遮挡在线免费观看| 波野结衣二区三区在线| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 日韩亚洲欧美综合| 亚洲真实伦在线观看| xxxwww97欧美| 欧美在线黄色| 国产精品永久免费网站| 久久久久久久久久黄片| 日本一二三区视频观看| 国产麻豆成人av免费视频| 色综合亚洲欧美另类图片| 亚洲熟妇熟女久久| 亚洲五月天丁香| 久久午夜亚洲精品久久| 中文字幕高清在线视频| avwww免费| 日韩av在线大香蕉| 免费人成在线观看视频色| 午夜影院日韩av| 久久久久久久精品吃奶| 99久久成人亚洲精品观看| av在线蜜桃| 听说在线观看完整版免费高清| 欧美极品一区二区三区四区| 永久网站在线| 精品久久国产蜜桃| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 国产不卡一卡二| 久久久久国内视频| 成人一区二区视频在线观看| 久久久久亚洲av毛片大全| 性色av乱码一区二区三区2| 欧美高清性xxxxhd video| 99视频精品全部免费 在线| 一a级毛片在线观看| 欧美日韩乱码在线| 久久九九热精品免费| 一级作爱视频免费观看| 中文字幕精品亚洲无线码一区| 在线免费观看不下载黄p国产 | 国产精品久久电影中文字幕| 国内精品久久久久久久电影| 91麻豆av在线| 欧美日本视频| 身体一侧抽搐| 久久久久国产精品人妻aⅴ院| 老司机深夜福利视频在线观看| 熟女电影av网| 亚洲电影在线观看av| 国内精品一区二区在线观看| www.999成人在线观看| 女人被狂操c到高潮| 中文字幕av成人在线电影| 一级黄片播放器| 国产午夜福利久久久久久| 毛片一级片免费看久久久久 | 免费在线观看亚洲国产| 亚洲中文字幕日韩| 国产高清有码在线观看视频| 91九色精品人成在线观看| 午夜福利欧美成人| 三级毛片av免费| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图 | 国产高清视频在线观看网站| 在线播放国产精品三级| 亚洲,欧美精品.| 一本综合久久免费| 最后的刺客免费高清国语| 免费看a级黄色片| 欧美高清性xxxxhd video| 欧美在线黄色| 色av中文字幕| av国产免费在线观看| 一区二区三区四区激情视频 | 亚洲国产精品成人综合色| 国产乱人伦免费视频| 精品久久久久久久末码| 婷婷亚洲欧美| 亚洲av一区综合| 丁香六月欧美| www.色视频.com| 欧美黄色淫秽网站| 我的老师免费观看完整版| 丝袜美腿在线中文| 国产精品人妻久久久久久| 亚洲自偷自拍三级| 国产精品久久久久久久久免 | 久久这里只有精品中国| 亚洲成a人片在线一区二区| 麻豆久久精品国产亚洲av| 亚洲av熟女| 国产精品人妻久久久久久| 精品午夜福利在线看| 亚洲美女搞黄在线观看 | 日韩av在线大香蕉| 18+在线观看网站| 88av欧美| 亚洲av不卡在线观看| 午夜福利高清视频| 国产精品久久视频播放| 欧美日本视频| 久久人人爽人人爽人人片va | 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 亚洲国产欧洲综合997久久,| 亚洲久久久久久中文字幕| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 国产一区二区激情短视频| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 一本久久中文字幕| 天天一区二区日本电影三级| 久久久久久国产a免费观看| 国产av一区在线观看免费| 精品久久久久久,| 国产成人aa在线观看| 熟女电影av网| 免费人成视频x8x8入口观看| 免费av观看视频| www.999成人在线观看| 中文字幕人妻熟人妻熟丝袜美| 18禁黄网站禁片免费观看直播| 三级毛片av免费| 麻豆久久精品国产亚洲av| 俺也久久电影网| 国产精品98久久久久久宅男小说| av在线天堂中文字幕|