• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Equilibrium Strategies of the Constant Retrial Queue with the N-Policy

    2019-03-30 08:20:26ZHOUMeng周夢LIULiwei劉力維CHAIXudong柴旭東WANGZhen王圳
    應(yīng)用數(shù)學(xué) 2019年2期
    關(guān)鍵詞:旭東

    ZHOU Meng(周夢),LIU Liwei(劉力維),CHAI Xudong(柴旭東),WANG Zhen(王圳)

    (Nanjing University of Science and Technology,Nanjing 210094,China)

    Abstract: The relevant literature studied the strategic behavior and social optimization in an almost unobservable constant retrial queue with the N-policy.There is no waiting space in front of the server and customers who find the server is not idle have to leave forever or keep their contact details on a waiting list.After a service completion,the server will seek a customer from the waiting list at a constant retrial rate.The server is closed when the system becomes empty and is resumed only when the number of waitlisted customers reaches a given threshold.This article aims to study the corresponding fully observable case.We concern about the strategic behavior of arriving customers and obtain social welfare expressions.Moreover,we also make sensitivity analysis of customers’equilibrium balking threshold,social optimal balking threshold and optimal social welfare with respect to N and the constant retrial rate,respectively.

    Key words: Queueing;Orbit;Observable;Equilibrium strategy; N-policy;Constant retrial

    1.Introduction

    In recent years,studying the problem of queuing system from the point of economy has been paid considerable attention.We usually analyze customers’behavior by building a reward-cost structure,it can reflect the customers’willing to enter the system to accept the service and the fact that customers are not willing to wait as well.Arriving customers are allowed to decide whether to join or not based on different information disclosure policies of system.Here are four classic information disclosure policies: (a) Observable case;(b) Unobservable case;(c) Almost unobservable case;(d) Almost observable case.In equilibrium literature,Naor[1],who considered an observable M/M/1 queue based on a reward-cost structure.Then Edelson and Hildebrand[2]also considered the same queue system but it was the unobservable case.They also showed what is the profit maximizing fee.Subsequently,a lot of research came out.Among these,the literatures of retrial queueing systems are already very extensive.Nowadays,customer retrial is a common phenomenon.An example can be illustrated as follows.An incoming call will be served immediately if an agent is available upon arrival.Otherwise,if all agents are found busy,the customer has to hang up and retries after a random amount of time.These relevant retrial literatures are [3-6].Interested readers can refer to [7-8].It should be noted that in retrial queueing literatures,the vast majority of articles assume that each customer who seeks for service is independent of other customers in orbit after a random time.In such cases,the total retrial rate of the system depends on the number of retrial customers in the orbit.Nevertheless,in our model,the transition rate from a normal idle state to a busy state is a constant.Only the head customer of the orbit can request a service after a random retrial time,thus the retrial rate is independent of the number of customers in the orbit.Fayolle first modeled a telephone exchange system.Later,constant retrial policy begins to popularize[9?11].

    In addition,due to high setup cost,it is necessary to adopt some operating control policies to turn up/down the service facility.Among these polices,N-policy is commonly used in many practical scenarios,such as flexible manufacturing systems,make-to-order systems and so on.Once the number of customers reachesNin the orbit,the server is set up.Researches on this topic can date back to the survey by [12],they proposed the concept ofN-policy in an M/M/1 queueing system.Then [13] used several different approaches to study this kind of control policy.

    The biggest innovation in this article is that we study the fully observable case,in which we obtain customers’equilibrium balking threshold in busy state.Under the social optimization,we consider three cases and establish the corresponding balance equations.Moreover,we derive the corresponding stationary distribution by using the difference equation.Finally,we study sensitivity analysis of customers’equilibrium balking threshold,social optimal balking threshold and optimal social welfare with respect toNandθ,respectively.

    The main content of our study can be summarized as follows.In Section 2,we give the model description of the fully observable constant retrial queue with theN-policy.In Section 3,we give customers’equilibrium balking threshold and the expression of social welfare whenN ≤n(1).Section 4 establishes the expression of social welfare in the other two cases.In Section 5,numerical examples are presented to illustrate the sensitivity of some key system performance measures.Section 6 summarizes the results obtained in this article and the research significance of this article.

    2.Model Description

    We consider equilibrium strategies of the fully observable constant retrial queue with theN-policy.Potential primary customers arrive according to a Poisson process with intensityλ.Assuming that there is no waiting space,then an arriving customer occupies the server to be served immediately if the server is idle (called“normal idle state”) upon its arrival.Otherwise,the customer joins a retrial orbit to try his luck after a service completion.The time to seek a customer is assumed to be independent and exponentially distributed with rateθ.During the seeking process,once a new customer arrives,the server interrupts the seeking process and starts to serve the new arriving customer.The service times for customers are independent and exponentially distributed with rateμ.After completing a service,the customer leaves the systems.If the server is found occupied (called“normal busy state”)or off (called“dormant state”) upon arrival,the customer may join a“virtual”retrial orbit according to a First-come,First-served (FCFS) discipline.In practice,we can regard the customers in the orbit as a waitlisted customer and the server will seek a customer from the waiting- list at a constant retrial rate when it is in normal idle state.

    When the server is in dormant state,it doesn’t offer any service to the customers.When it is in dormant state,it will not be activated until the number of customers in the orbit reaches to a given threshold lengthN(N ≥1).When the server is in busy state,it provides exhaustive service to all customers.After the exhaustive service,the system becomes empty and the server switches to dormant state.Then the new cycle begins.It is assumed that the interarrival times,service times and retrial times are mutually independent.

    All self-optimizing customers are risk neutral,indistinguishable,and strategic who aim to maximize their own profit.New arriving customers have to make a decision to join the system or not upon their arrival.Every customer receives a rewardRmonetary units for completing the service,which reflects its satisfaction levels toward the service or the added values of the service.All customers incur a linear waiting cost ofCper unit time when they wait(including the service time).Then for an arriving customer,it needs to weigh the service reward against the cost of mean sojourn time,to decide whether to join the system or not.Specifically,if the reward for service is greater than the expected cost for waiting,the customers decide to join;If the reward is equal to the waiting cost,we asseme that it is indifferent between joining and balking.Otherwise,based on the benefit of their own,he will balk.We assume

    which ensures that the customers who find the server’s state in normal idle state always join the system.

    In our model,we describes the state of the system at timetby the pair{(I(t),N(t)),t ≥0},whereI(t) denotes the state of the server (0: dormant;1: normal busy;2: normal idle;)andN(t) records the number of customers in the orbit.In this paper,we study the fully observable case,we assume that the potential customer can get the sever’s state and the number of customers in the orbit.From inequality (2.1),we will see the customer’s reward exceeds the expected sojourn time if the server’s state is idle.Obviously,an arriving customer will definitely join the system in this situation.Moreover,to ensure the server can always be reactivated,arriving customers will definitely join the system when the server’s state is dormant.Hence,we only need to study the strategic behavior of customers whenI(t) = 1.The system is stable if and only if (see Economou and Kanta [14])

    3.Equilibrium

    In this section,we will study the customers’equilibriunm balking behavior.Letne(1)be the customers’equilibrium balking threshold at state 1,n?(1) be the social optimal balking threshold at state 1.LetT(0,j),1≤j ≤N ?1;T(1,j),j ≥0;T(2,j),j ≥1 respectively as the expected sojourn time of a tagged customer,supposing that he is at thejth position in the retrial orbit upon entering the system and the server’s state isi=0,1,2.We have the following preliminary result.

    Fig.1 Transition rate diagram when n(1)>N ?1

    Theorem 3.1For the fully observable M/M/1 constant retrial queue with theN-policy,the expected sojourn times of a tagged customer when he is at thejth position in the retrial orbit and the server’s state isi(i=0,1,2),are respectively given by

    ProofFirst,by analysis we can derive the following equations:

    Plugging (3.6) into (3.5) and by calculation,we obtain

    Then we can deriveputting (3.4) into it,we derive (3.2).Similarly,yield (3.1),(3.3).

    When a tagged customer arrives,he sees the number of customers in the orbit isnand the state is busy,then his expected net benefit after service completion in equilibrium,denoted byUe(1,n).Fromwe can get

    wheredenotes the floor ofx.

    Due tone(1)>N ?1,in order to get the customers’equilibrium social welfare per time unit,we need to derive the stationary queue length distribution.Letn(1) be the balking threshold strategy at state 1,whenn(1)>N ?1,its corresponding transition diagram is depicted in Fig.1.So state space of the Markovian process{(I(t),N(t)),t ≥0}is{(0,n) :0≤n ≤N ?1}∪{(1,n):0≤n ≤n(1)+1}∪{(2,n):1≤n ≤n(1)+1}.

    Denote{p(0,n),0≤n ≤N ?1;p(1,n),0≤n ≤n(1)+1;p(2,n),1≤n ≤n(1)+1}be the stationary distribution of the Markovian process{I(t),N(t),t ≥0}.

    Theorem 3.2For the fully observable M/M/1 constant retrial queue with theN-policy,the state space is?10b={(0,n):0≤n ≤N ?1}∪{(1,n):0≤n ≤n(1)+1}∪{(2,n):1≤n ≤n(1)+1},whenn(1)>N ?1,the stationary distribution is

    where

    p(2,1) can be solved by the normalization equation:

    ProofThe balance equations for the stationary distribution are given as follows:

    From (3.13),(3.12) and (3.14),we derive (3.9),i.e.,

    When 1≤n ≤N ?2,putting (3.17) into (3.15),yields

    solving it,yields

    based on

    then,we derive

    Substitutingn=N ?1 in (3.15) and solving it yields

    Similarly,

    WhenN+1≤n ≤n(1),putting (3.17) into (3.15),yields

    solving it,yields

    based on

    then,we derive

    Hence,the parts of (3.10) is completed.From (3.17),(3.18),(3.20) and (3.22),the (3.11) can be easily obtained.

    Based on Fig.1,the customers’balking state is (1,n(1)+1).So the social whenN ?1≤n(1),welfare per time unit denoted byS1(n(1)),equals

    Obviously,the equilibrium social welfare isS1(ne(1)).

    4.Social Welfare

    In this section,we consider the customers’social optimal balking behavior in the observable queues.Under social optimization,besides the caseN ?1

    Theorem 4.1For the fully observable M/M/1 constant retrial queue with theN-policy,the state space is={(0,n):0≤n ≤N ?1}∪{(1,n):0≤n ≤N}∪{(2,n):1≤n ≤N},whenn(1)=N ?1,the stationary distribution is

    Fig.2 Transition rate diagram when n(1)=N ?1.

    Fig.3 Transition rate diagram when n(1)≤N ?2.

    where

    p(2,1) can be solved by the normalization equation:

    ProofThe balance equations for the stationary distribution are given as follows:

    The following proof is similar to Theorem 3.1,so here we don’t discuss.

    Based on Fig.2,the customers’balking state is (1,N).So the social welfare per time unit whenn(1)=N ?1,denoted byS2(n(1)),equals

    Theorem 4.2For the fully observable M/M/1 constant retrial queue with theN-policy,the state space is={(0,n):0≤n ≤N ?1}∪{(1,n):0≤n ≤N}∪{(2,n):1≤n ≤N},whenn(1)≤N ?2,the stationary distribution is

    where

    p(2,1) can be solved by the normalization equation:

    ProofThe balance equations for the stationary distribution are given as follows:

    Samely,we derive (4.11),i.e.,

    When 1≤n ≤n(1),plugging (4.21) into (4.17) and solving it,yields

    due to

    then,we derive

    Based on (4.23) and (4.18),we get

    Whenn(1)+2≤n ≤N ?2,putting (4.21) into (4.19),yields

    solving it,yields

    Plugging (4.22) into (4.20),we derive

    Hence,the parts of (4.12) is completed.From (4.21),(4.22),we can use the correspondingp(1,n) to expressp(2,n),hence (4.13) can be easily obtained.

    Based on Fig.3,the customers’balking state is (1,n),n(1) + 1≤n ≤N.So whenn(1)≤N ?2,the social welfare per time unit,denoted byS3(n(1)),equals

    Summarily,we define the social welfare per time unit,denoted byS(n(1)),as

    So the optimal social welfare,denoted byS(n?(1)),isS(n?(1))=maxS(n(1)).

    5.Numerical Results

    In this section,we make sensitivity analysis of customers’equilibrium balking threshold,social optimal balking threshold and optimal social welfare with respect toNand the constant retrial rate,respectively.

    Fig.4 LetR=10,C=1,μ=3,λ=1,θ=3;

    Fig.4(a)shows thatn?(1)increases withN.This indicates that the social planner always expects customers to join more actively withN,but from customers’own benefits,asNincreases,fewer and fewer customers will enter.It shows that customers’selfish behavior deviates from social planner’s desire.In this numerical example,it is obvious thatn?(1)≥Nin caseN ≤12 whilen?(1)=N ?1 in caseN >12.The reason is thatS(n?(1))=S1(n?(1))whenNis relatively small,whereas it gradually converts to the caseS(n?(1)) =S2(n?(1))withN.

    Fig.4(b) shows thatS(n?(1)) decreases withN.From (4.27),we can know each branch ofS(n(1)) decreases withN.This result is consistent with Fig.4(b).Morever,whenNis 1,S(n?(1)) takes the maximum value.It indicates the social planner much expects the system to degenerate into a single-server Markovian queue withoutN-policy,i.e.,N= 1.It should be noted that in our model withN= 1,the server is in the dormant state when the system is empty,and a new arriving customer has to enter the retrial orbit at first and an additional seeking time is needed to start his service.Moreover,each selfish customer obviously also prefers to the caseN=1 to maximize his own residual benefit,the interests of customers and the social planner are uniform.

    Fig.4

    Fig.5

    Fig.5 LetR=10,C=1,μ=3,λ=1,N=5;

    It is understandable that the service rate and the retrial rate have the same effect on the equilibrium balking thresholdne(1)and optimal social welfare.So we just investigate the impact of the retrial rate.First,from (3.5),it is readily seen that the expected sojourn timeT(1,j) decreases withθand this implies that the equilibrium balking thresholdne(1) in the busy state presented in Theorem 3.1 increases withθ.This result is consistent with Fig.5(a).And there exists the same tendency ofn?(1) after the system is activated.Fig.5(a) comparesne(1) andn?(1) with respect toθ.It shows that bothne(1) andn?(1) increase withθand the pace ofne(1) is faster than that ofn?(1).Moreover,ne(1)≥n?(1) in Fig.5(a),so the customers’individual behavior in stable equilibrium always makes the system more congested than the socially optimal one.

    Fig.5(b) shows thatS(n?(1)) increases withθ.From the Fig.4,we know thatS(n?(1))decreases withN,so the social planner much expects the system to degenerate into a classical single-server Markovian queue without retrial and N-policy,i.e.,N=1 andθ=∞.Of course,the social planner can setNandθaccording to the target income that he wants to obtain.

    猜你喜歡
    旭東
    開學(xué)第一天
    給春天開門
    城里的老鼠
    胡旭東
    心聲歌刊(2019年1期)2019-05-09 03:21:36
    蠟筆畫
    郭沫若給旭東的題詞
    神奇的種子
    看圖說話,揭開冪函數(shù)的廬山真面目
    Implementation and integration of a systematic DBPM calibration with PLL frequency synthesis and FPGA?
    SPATIAL REGULARIZATION OF CANONICAL CORRELATION ANALYSIS FOR LOW-RESOLUTION FACE RECOGNITION
    午夜老司机福利剧场| 成人漫画全彩无遮挡| 日韩av免费高清视频| 亚洲av中文av极速乱| 亚洲精品亚洲一区二区| 人人妻人人澡人人爽人人夜夜| 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区四那| 极品教师在线视频| 亚洲精品一区蜜桃| 欧美xxxx性猛交bbbb| 人妻少妇偷人精品九色| 国产老妇伦熟女老妇高清| av一本久久久久| 97在线视频观看| 在线观看av片永久免费下载| 欧美精品一区二区免费开放| 久久女婷五月综合色啪小说| 日本黄色日本黄色录像| 久久这里有精品视频免费| 亚洲,欧美,日韩| 十八禁高潮呻吟视频 | 午夜福利在线观看免费完整高清在| 中文字幕人妻丝袜制服| 99视频精品全部免费 在线| 午夜免费男女啪啪视频观看| 精品亚洲成国产av| 亚洲三级黄色毛片| 国产精品免费大片| 日韩免费高清中文字幕av| 啦啦啦中文免费视频观看日本| av在线播放精品| 人人澡人人妻人| 久久 成人 亚洲| 国产av国产精品国产| 久久ye,这里只有精品| 亚洲一级一片aⅴ在线观看| 亚洲内射少妇av| 国产成人精品婷婷| 黑人猛操日本美女一级片| 在线观看av片永久免费下载| 久久免费观看电影| av天堂中文字幕网| 插逼视频在线观看| 99国产精品免费福利视频| 国产深夜福利视频在线观看| 男女无遮挡免费网站观看| 日本91视频免费播放| 18禁在线无遮挡免费观看视频| av女优亚洲男人天堂| 大片免费播放器 马上看| 国产一区二区三区av在线| 九九久久精品国产亚洲av麻豆| 天天躁夜夜躁狠狠久久av| 3wmmmm亚洲av在线观看| 成人国产av品久久久| 伦精品一区二区三区| 欧美区成人在线视频| 高清视频免费观看一区二区| 一级毛片黄色毛片免费观看视频| 日韩成人伦理影院| 成人免费观看视频高清| 尾随美女入室| 人人妻人人澡人人爽人人夜夜| 另类精品久久| 五月天丁香电影| 少妇猛男粗大的猛烈进出视频| 丰满少妇做爰视频| 亚洲成人手机| 国产在视频线精品| 中文精品一卡2卡3卡4更新| 99九九线精品视频在线观看视频| 极品人妻少妇av视频| 我的女老师完整版在线观看| 精品久久久久久电影网| 内射极品少妇av片p| 免费观看在线日韩| 午夜视频国产福利| 在线观看免费视频网站a站| 国产白丝娇喘喷水9色精品| 亚洲中文av在线| 不卡视频在线观看欧美| 国产白丝娇喘喷水9色精品| 中国美白少妇内射xxxbb| 黄色一级大片看看| 老司机影院毛片| 日韩一本色道免费dvd| 欧美97在线视频| 80岁老熟妇乱子伦牲交| 日日啪夜夜爽| 人人妻人人爽人人添夜夜欢视频 | 婷婷色麻豆天堂久久| 亚洲av国产av综合av卡| 在线精品无人区一区二区三| 日本免费在线观看一区| 不卡视频在线观看欧美| 熟女电影av网| 久久久久国产网址| 午夜福利,免费看| 国产成人精品久久久久久| 插逼视频在线观看| 边亲边吃奶的免费视频| 美女主播在线视频| 亚洲国产欧美在线一区| 久久99热这里只频精品6学生| 日本猛色少妇xxxxx猛交久久| av免费在线看不卡| 久久久久久久久大av| 久久综合国产亚洲精品| 多毛熟女@视频| 六月丁香七月| 韩国高清视频一区二区三区| 高清毛片免费看| 亚洲精华国产精华液的使用体验| 国产白丝娇喘喷水9色精品| 国内少妇人妻偷人精品xxx网站| 高清黄色对白视频在线免费看 | 在线免费观看不下载黄p国产| 性色av一级| 国产av一区二区精品久久| av天堂中文字幕网| 人人妻人人澡人人看| 成人国产麻豆网| 各种免费的搞黄视频| 伦理电影免费视频| 久久久久精品久久久久真实原创| 亚洲精品国产成人久久av| 国语对白做爰xxxⅹ性视频网站| videossex国产| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 久久人人爽人人片av| 少妇精品久久久久久久| 免费在线观看成人毛片| av线在线观看网站| 插阴视频在线观看视频| 中文字幕免费在线视频6| a 毛片基地| 久久午夜福利片| 精品一区二区三区视频在线| 男人狂女人下面高潮的视频| 超碰97精品在线观看| 久久久精品免费免费高清| 岛国毛片在线播放| 如日韩欧美国产精品一区二区三区 | 伦理电影免费视频| 午夜91福利影院| 久久久久久久久久久丰满| 国产探花极品一区二区| 国产黄片美女视频| av播播在线观看一区| 在线观看av片永久免费下载| 国产伦精品一区二区三区视频9| av一本久久久久| 99久国产av精品国产电影| 国产精品伦人一区二区| 三级国产精品片| 精品一区二区三卡| 亚洲国产日韩一区二区| 高清黄色对白视频在线免费看 | 丝袜脚勾引网站| 国产精品久久久久成人av| 国产深夜福利视频在线观看| 国产黄色视频一区二区在线观看| 一级毛片aaaaaa免费看小| 国产淫语在线视频| 成人美女网站在线观看视频| 免费av不卡在线播放| h日本视频在线播放| 欧美日韩视频精品一区| 国产精品秋霞免费鲁丝片| 少妇人妻 视频| 一边亲一边摸免费视频| 国产成人a∨麻豆精品| 国产一级毛片在线| 最近手机中文字幕大全| 麻豆乱淫一区二区| 亚洲国产成人一精品久久久| 美女中出高潮动态图| 亚洲精品一区蜜桃| 国产精品.久久久| 男女啪啪激烈高潮av片| 亚洲精品aⅴ在线观看| 日韩大片免费观看网站| 精品久久国产蜜桃| 曰老女人黄片| 国产淫语在线视频| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 国产午夜精品久久久久久一区二区三区| 国产男女内射视频| 成人无遮挡网站| 亚洲成人手机| 亚洲av在线观看美女高潮| 国产色婷婷99| 人妻夜夜爽99麻豆av| 国产白丝娇喘喷水9色精品| 欧美亚洲 丝袜 人妻 在线| 日韩大片免费观看网站| 午夜91福利影院| 午夜精品国产一区二区电影| 卡戴珊不雅视频在线播放| 国产视频内射| 天堂俺去俺来也www色官网| 午夜福利,免费看| 欧美最新免费一区二区三区| 色婷婷av一区二区三区视频| 午夜91福利影院| 亚洲国产最新在线播放| 精品亚洲成a人片在线观看| 在线天堂最新版资源| 免费av不卡在线播放| 久久精品久久久久久噜噜老黄| 久久精品国产自在天天线| 大片电影免费在线观看免费| 国产 一区精品| 天堂8中文在线网| 久久久久国产精品人妻一区二区| 十八禁高潮呻吟视频 | 全区人妻精品视频| 免费人妻精品一区二区三区视频| 国产一区二区在线观看日韩| 精品一区在线观看国产| 欧美xxxx性猛交bbbb| 久久精品久久久久久久性| 成年人免费黄色播放视频 | 国产av码专区亚洲av| 日韩伦理黄色片| 青春草亚洲视频在线观看| 久久久久精品性色| 亚洲精品一区蜜桃| 五月开心婷婷网| 内射极品少妇av片p| 免费人妻精品一区二区三区视频| 免费播放大片免费观看视频在线观看| 亚洲,一卡二卡三卡| 久久精品夜色国产| 日韩视频在线欧美| av网站免费在线观看视频| 一级,二级,三级黄色视频| 精品一区在线观看国产| 卡戴珊不雅视频在线播放| 国产日韩欧美亚洲二区| 亚洲性久久影院| 少妇丰满av| 免费久久久久久久精品成人欧美视频 | 中文乱码字字幕精品一区二区三区| 青春草国产在线视频| 欧美人与善性xxx| 3wmmmm亚洲av在线观看| 精品一区二区免费观看| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看 | 亚洲不卡免费看| 国产精品麻豆人妻色哟哟久久| 成年美女黄网站色视频大全免费 | 亚洲av福利一区| 秋霞在线观看毛片| 青春草视频在线免费观看| 午夜日本视频在线| 天堂中文最新版在线下载| 深夜a级毛片| 国产av国产精品国产| 亚洲精品国产av成人精品| 国产色爽女视频免费观看| 看十八女毛片水多多多| 国产一区二区三区av在线| 精品一区在线观看国产| 啦啦啦啦在线视频资源| 99久久精品一区二区三区| 亚洲av中文av极速乱| 在线观看美女被高潮喷水网站| 免费在线观看成人毛片| 99国产精品免费福利视频| av有码第一页| 七月丁香在线播放| 亚洲av电影在线观看一区二区三区| 特大巨黑吊av在线直播| 观看免费一级毛片| 精品少妇黑人巨大在线播放| av福利片在线| 美女内射精品一级片tv| 国产老妇伦熟女老妇高清| 免费少妇av软件| 一个人看视频在线观看www免费| 国产精品偷伦视频观看了| av国产久精品久网站免费入址| 99热6这里只有精品| 纯流量卡能插随身wifi吗| 国产色婷婷99| 日日啪夜夜撸| 嫩草影院新地址| 青春草国产在线视频| 成年女人在线观看亚洲视频| 久久鲁丝午夜福利片| 国产黄频视频在线观看| 亚洲国产精品一区三区| 欧美性感艳星| 极品少妇高潮喷水抽搐| a级片在线免费高清观看视频| 22中文网久久字幕| 97超视频在线观看视频| 亚洲精品第二区| 国产 精品1| 亚洲丝袜综合中文字幕| av线在线观看网站| 天天操日日干夜夜撸| 久久久国产一区二区| 日本黄色片子视频| 人人妻人人爽人人添夜夜欢视频 | 天堂8中文在线网| 九色成人免费人妻av| a级毛色黄片| 两个人免费观看高清视频 | 亚洲欧洲日产国产| 亚洲人与动物交配视频| kizo精华| 免费播放大片免费观看视频在线观看| av不卡在线播放| 中国美白少妇内射xxxbb| 国产高清不卡午夜福利| 夫妻午夜视频| 六月丁香七月| 少妇的逼水好多| 日韩不卡一区二区三区视频在线| 日韩中文字幕视频在线看片| a级毛色黄片| 黄色日韩在线| 一区在线观看完整版| 中国三级夫妇交换| 性色av一级| av有码第一页| 精品国产一区二区久久| 成人特级av手机在线观看| 国产欧美日韩一区二区三区在线 | 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 我的老师免费观看完整版| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 国产男女超爽视频在线观看| 少妇人妻 视频| 亚洲欧美日韩另类电影网站| 男人和女人高潮做爰伦理| 美女中出高潮动态图| 大香蕉久久网| 亚州av有码| 日韩欧美精品免费久久| 高清在线视频一区二区三区| 国产精品一区二区性色av| 免费av中文字幕在线| 久久久久久久国产电影| 大陆偷拍与自拍| 嫩草影院新地址| 精品99又大又爽又粗少妇毛片| av网站免费在线观看视频| 国精品久久久久久国模美| 国产色婷婷99| 在线看a的网站| 啦啦啦视频在线资源免费观看| 国产高清三级在线| 久久免费观看电影| 亚洲婷婷狠狠爱综合网| 欧美高清成人免费视频www| 精品久久久久久久久亚洲| 亚洲国产精品成人久久小说| 三级经典国产精品| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 只有这里有精品99| 最近手机中文字幕大全| 高清视频免费观看一区二区| 精品久久久久久久久亚洲| 水蜜桃什么品种好| 国产黄片美女视频| √禁漫天堂资源中文www| 国产精品久久久久久精品电影小说| 中国美白少妇内射xxxbb| 久久久久视频综合| 男男h啪啪无遮挡| 久久av网站| 有码 亚洲区| 国产在视频线精品| 黄色配什么色好看| 夫妻午夜视频| 乱码一卡2卡4卡精品| 一个人看视频在线观看www免费| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 亚洲av成人精品一区久久| 久久国产乱子免费精品| 亚洲国产色片| 国产精品99久久久久久久久| 多毛熟女@视频| 国产 精品1| 肉色欧美久久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 美女视频免费永久观看网站| 成人美女网站在线观看视频| 免费播放大片免费观看视频在线观看| 精品人妻熟女av久视频| 亚洲中文av在线| 日韩人妻高清精品专区| 夜夜骑夜夜射夜夜干| 国产精品一区二区三区四区免费观看| 婷婷色麻豆天堂久久| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片| 日日啪夜夜撸| 精品人妻熟女av久视频| 国产毛片在线视频| 久久久国产一区二区| 成人二区视频| 寂寞人妻少妇视频99o| 国产精品久久久久久av不卡| 在线 av 中文字幕| 久久久久久久久久久免费av| 国产精品欧美亚洲77777| 久久精品久久久久久久性| 国产亚洲av片在线观看秒播厂| 老司机影院毛片| 国产精品免费大片| 香蕉精品网在线| 三上悠亚av全集在线观看 | 亚洲综合精品二区| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 中国国产av一级| 国产免费又黄又爽又色| 久热这里只有精品99| 99久久中文字幕三级久久日本| 少妇 在线观看| 在线精品无人区一区二区三| 一级毛片电影观看| 免费少妇av软件| 日韩一本色道免费dvd| 免费不卡的大黄色大毛片视频在线观看| 丝瓜视频免费看黄片| 全区人妻精品视频| 久久午夜福利片| 午夜免费观看性视频| 亚洲美女黄色视频免费看| 午夜福利影视在线免费观看| .国产精品久久| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 少妇人妻 视频| 日韩不卡一区二区三区视频在线| 久热久热在线精品观看| 免费人妻精品一区二区三区视频| 亚洲av福利一区| 高清在线视频一区二区三区| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 黑人巨大精品欧美一区二区蜜桃 | 精品一区二区三区视频在线| 精品99又大又爽又粗少妇毛片| 日韩av在线免费看完整版不卡| 观看美女的网站| 国产在线一区二区三区精| 26uuu在线亚洲综合色| 王馨瑶露胸无遮挡在线观看| 色94色欧美一区二区| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看 | 男人添女人高潮全过程视频| av播播在线观看一区| 久久精品国产亚洲网站| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| 亚洲精品久久午夜乱码| 国产亚洲最大av| 秋霞伦理黄片| 亚洲综合色惰| 新久久久久国产一级毛片| 久久99精品国语久久久| 最近2019中文字幕mv第一页| 赤兔流量卡办理| av免费在线看不卡| 国产美女午夜福利| av有码第一页| 久久韩国三级中文字幕| 免费大片黄手机在线观看| 一本色道久久久久久精品综合| 一级爰片在线观看| 亚洲综合色惰| 男人和女人高潮做爰伦理| 亚洲不卡免费看| 日韩制服骚丝袜av| 久久精品久久久久久久性| 久久人妻熟女aⅴ| 亚洲精品色激情综合| 国产淫语在线视频| 国产亚洲91精品色在线| 又爽又黄a免费视频| 交换朋友夫妻互换小说| 成年人午夜在线观看视频| 久久久a久久爽久久v久久| 久久久久视频综合| 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 91精品国产国语对白视频| 久久国产精品大桥未久av | 亚洲第一av免费看| 桃花免费在线播放| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 国产片特级美女逼逼视频| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 亚洲精品国产成人久久av| 在线播放无遮挡| 男女国产视频网站| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 国产亚洲av片在线观看秒播厂| 欧美人与善性xxx| 久久6这里有精品| 五月开心婷婷网| 日韩欧美精品免费久久| 午夜91福利影院| 免费观看在线日韩| 亚洲国产最新在线播放| 国产亚洲一区二区精品| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 国产白丝娇喘喷水9色精品| 一级毛片我不卡| 久久久国产精品麻豆| 欧美日韩国产mv在线观看视频| 久久久久久久亚洲中文字幕| 高清av免费在线| 久久国产精品男人的天堂亚洲 | 国产伦理片在线播放av一区| 日韩人妻高清精品专区| 热re99久久精品国产66热6| 一区在线观看完整版| 在线亚洲精品国产二区图片欧美 | 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的| 免费看光身美女| 亚洲高清免费不卡视频| 欧美日韩一区二区视频在线观看视频在线| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 亚洲人成网站在线播| 精品一区二区免费观看| 国产精品久久久久久精品古装| 69精品国产乱码久久久| 亚洲图色成人| 精品视频人人做人人爽| 久久ye,这里只有精品| 99热这里只有是精品50| 国产男女内射视频| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看| 秋霞伦理黄片| 久久午夜综合久久蜜桃| 免费看光身美女| 一区二区三区四区激情视频| 亚洲无线观看免费| 国产成人a∨麻豆精品| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 亚洲第一av免费看| 成人影院久久| 国产深夜福利视频在线观看| 亚洲精品色激情综合| 精品99又大又爽又粗少妇毛片| 成人国产av品久久久| 久久久国产一区二区| 亚洲不卡免费看| 在线观看三级黄色| 欧美成人精品欧美一级黄| 女人精品久久久久毛片| 男人添女人高潮全过程视频| 亚洲欧洲日产国产| 欧美激情国产日韩精品一区| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 国产成人精品无人区| 日韩一区二区三区影片| 国产成人午夜福利电影在线观看| 国产黄片视频在线免费观看| 欧美日韩亚洲高清精品| 99久久中文字幕三级久久日本| 一级毛片aaaaaa免费看小| 少妇丰满av| 精品久久久噜噜| 人妻一区二区av| 六月丁香七月| 欧美精品一区二区大全| 国产精品99久久99久久久不卡 | 精品少妇黑人巨大在线播放| 亚洲情色 制服丝袜| 乱码一卡2卡4卡精品| 免费av中文字幕在线| 国产精品99久久久久久久久| videossex国产| 狠狠精品人妻久久久久久综合| 中国三级夫妇交换| 97超碰精品成人国产| 国产极品粉嫩免费观看在线 | 男人和女人高潮做爰伦理| 午夜免费男女啪啪视频观看| 中文字幕av电影在线播放| 三级经典国产精品| 在现免费观看毛片| 国产在线视频一区二区| 国产精品久久久久成人av|